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Controlling and measuring a superposition of position and momentum
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We present an observation of quantum interference between position and momentum with photons. We
prepared a superposition of position and momentum states by using slits, lenses, and an interferometer. The
precise control and measuring of propagation time of the photon results in a clear quantum interference of 85%
visibility. The generated quantum state is then used to verify the violation of particle propagation inequality
proposed by Hofmann [Phys. Rev. A 96, 020101(R) (2017)], resulting in 5.9% below the statistically predicted
lower bound. We believe that this result is a major step towards further developments in quantum theory, such as
fundamental modifications to the interpretation of quantum mechanics.
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I. INTRODUCTION

The precise control and measurement of physical quantities
is at the heart of physics, although the uncertainty principle
prohibits the simultaneous measurement of noncommutative
observables in quantum mechanics [1]. It is therefore of great
interest to investigate a particle trajectory, which is described
by noncommuting observables of position and momentum
for both theory and experiment [2–11]. In this context, there
have been lots of efforts on identifying the particle trajectories
[12,13] such as the direct measurement of the wave func-
tion [14–16], the identification of particle trajectories using
weak measurements [17,18], and the Feynman path integral
form [19–21]. These findings significantly advance the fun-
damental comprehension of quantum mechanics. However,
the explication of these trajectories and their physical signifi-
cance remains a subject of debate when quantum interference
arises. Therefore, it is worthwhile to explore an alternative
approach that measures the degree to which the probability
flux predicted by quantum mechanics deviates from classical
mechanical assumptions, while preserving the meaning of
physical quantities such as position and momentum. Indeed, it
has been shown that in free space, even when the momentum
component of the wave function is defined in the positive
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interval, probability flow goes in the negative direction when
quantum interference arises [22].

Hofmann established a stringent inequality for particle
propagation in this framework by utilizing the motion dynam-
ics outlined in Newton’s first law to describe the probability
flux. He showed that the interference effect in quantum me-
chanics can greatly enhance the violation of this inequality,
particularly when the overlap between position and momen-
tum is optimized [23]. Specifically, probability distributions
are assigned to the noncommutative positions and momenta
in Heisenberg’s equations of motion at a given initial time
and a lower bound on the probability of finding a particle
at some later time has been derived using the assumption
that particles travel in straight lines. An inequality then arises
when the initial state consists of a superposition of two states,
one with a well-defined initial position and one with a well-
defined range of momenta. When these two interfere, this
reduces the probability of finding the particle within the range
predicted by straight line paths at intermediate times proba-
bility. Studies have shown that by optimizing the widths of
position and momentum, the defect probabilities can exceed
7% [23]. This suggests that there may be a need to revise the
relationships between physical properties at distinct points in
time.

In this article, we present an experimental verification
of the particle propagation inequality with photons, as pro-
posed by Hofmann [23,24]. We prepared the superposition
of position and momentum states by using slits, lenses, and
an interferometer [25–29] and then measured the quantum
state at about 470 ps after the initial time. Our experimental
data showed clear quantum interference between position and
momentum with a high visibility of 85%. The obtained prob-
ability distribution was then used to test the rigorous particle
propagation inequality which is derived from the statistics
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in terms of position and momentum. Our results confirmed
that the inequality was violated by approximately 5.9% in the
probability of finding a particle. Our statistical investigation
showed that the uncertainty principle is not sufficient to ex-
plain the particle propagation of a nonclassical superposition
state even for a single particle. Therefore, we believe that
this result is a major step towards further developments in
quantum theory, such as fundamental modifications to the
interpretation of quantum theory [30].

II. THEORETICAL OVERVIEW

Let us first summarize the propagation inequality of a
particle in free space discussed in Ref. [23]. In quantum
mechanics, the time evolution of the position operator x̂(t )
for a single particle is described by the Heisenberg’s formu-
lation. In terms of initial position x̂(0) and momentum p̂x,
the time evolution of the position operator in free space is
given by

x̂(t ) = x̂(0) + p̂x

m
t . (1)

If we replace these operators with concrete values of x and px,
this equation corresponds to Newton’s first law, which states
that a particle moves in a straight line in time. However, due
to the uncertainty relation in quantum mechanics, the concrete
values of the noncommutative observables (x̂ and p̂x) cannot
be identified simultaneously. In Ref. [23] a lower bound on
the probability of finding a particle at an intermediate time
was derived by assigning a separate probability distribution to
the noncommutative observables of position and momentum
at an initial time. Specifically, if a particle is assumed to
be moving in a straight line, then a particle existing in an
interval of width −L/2 < x < L/2 with a probability of P(L)
and also in an interval −B/2 < px < B/2 at t = 0 with a
probability of P(B) must pass through the position interval
M = L + Bt/m with a probability of P(M, t ). This constraint
requires P(M, t ) � P(L AND B). The lowest possible value
of P(L AND B) can be expressed using the experimentally
observable probabilities of finding the particle in L and B,
resulting in the statistical limit of finding the particle at an
intermediate time as follows [23],

P(M, t ) � P(L) + P(B) − 1. (2)

Because P(M, t ), P(L), and P(B) are obtained from the actual
statistics of position and momentum in a different time, this
equation can thus be confirmed in an experiment.

Many quantum states violate the inequality in the equation,
but in this work we have studied the originally considered
states in Ref. [23], which is a superposition of a position state
|L〉 localized in the spatial interval L and a momentum state
|B〉 localized in the momentum interval B which is given by

|ψ (t = 0)〉 = 1√
2(1 + 〈L|B〉)

(|L〉 + |B〉). (3)

Note that the constructive interference between a position
state |L〉 and a momentum state |B〉 enhances the total proba-
bility P(L) + P(B) at t = 0 in Eq. (2). With time, the shape of
the position wave function 〈x|Û |L〉 broadens and approaches
the sinc function, while the shape of the momentum wave

FIG. 1. Conceptual illustration of the propagation inequality. The
blue line shows a quantum state. The particle moves along the z axis.
p̂x corresponds to the transverse momentum of the photon. The red
dotted line shows the boundary of the trajectory where photons in
the initial position interval L and momentum B move through the
interval M.

function 〈x|Û |B〉 does not change with time. The exact forms
of the wave functions for t > mL2/(2π h̄) are given by
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A strong violation of the inequality can be observed at around
tM = mL/B when the shapes of the wave function of position
and momentum match perfectly, where strong quantum inter-
ference between the position and momentum states reduces
the probability of P(M, t ) in Eq. (2).

III. EXPERIMENTAL SETUP

In this context, we have experimentally investigated the
inequality of Eq. (2) with photons. We utilized a transverse
position x and momentum px of photons propagating at ve-
locity c along the z axis, where the position z = ct is used to
measure the time t (Fig. 1). Using the paraxial approximation
of pz ≈ p = h/λ, the transverse position can be identified as
x̂(t ) = x̂(0) + ( p̂x/p)ct , so that the effective mass in Eq. (1)
can be translated into m = p/c = h/(cλ) where λ is the wave-
length of photons. In this configuration, the initial quantum
state |ψ〉 at t = 0 corresponds to the state at z = 0, and the
state at t corresponds to the state at z = ct .

Figure 2(a) shows the experimental setup for creating the
superposition state of Eq. (3), which is based on a Mach-
Zehnder interferometer equipped with a slit and a lens. The
photon is input to the interferometer and divided by the first
beam splitter, resulting in a superposition of the photons in
one path and in the other path. To produce a position state
|L〉, we put a slit of width L in one arm of the interferom-
eter [Fig. 2(b)], so that the state after the slit approximately
corresponds to an image of the slit. Likewise, to produce a
momentum state, we used an effect on the Fourier transform
of the position by using a lens. We put a slit of width L′ in
the other arm of the interferometer and the lens was placed
on the position after the slit at the distance of focal length f
of the lens [Fig. 2(c)]. Under the paraxial approximation, the
momentum information before the lens is mapped onto the
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FIG. 2. (a) Experimental setup for producing the superposition of
position and momentum. BS: beam splitter; PP: phase plate. (b) The
position state |L〉 was prepared by using slit L in the bottom arm of
the interferometer and (c) the momentum state |B〉 was prepared by
using slit L′ and the lens f in the upper arm of the interferometer.
The lens f ′ was used to create an image of the slit L at the position
of 2 f ′ from the lens f ′.

position scaled by h/( f λ) after the lens. The corresponding
momentum B is therefore given by B = hL′/( f λ). The state
then corresponds to a superposition of position |L〉 and mo-
mentum |B〉.

In order for the inequality in Eq. (2) to be strongly violated,
t , L, and B must be chosen carefully. To quantify the violation
of Eq. (2) at different times, we define the defect probability
as

Pdefect (t ) = P(L) + P(B) − 1 − P(M, t ). (6)

The condition for the inequality to be maximally violated
is obtained by maximizing this probability. As shown in
Ref. [23], the maximum value of this probability is obtained
when LB = 0.024(2π h̄) with tM = mL/B where the shapes
of the wave functions of position and momentum match per-
fectly. In the experiment, we chose the slit widths of the
position and momentum state for L = 47 µm and L′ = 37 µm,
respectively, and we chose a lens of f = 10 cm. LB was
approximately calculated as 0.022(2π h̄). The position zM =
ctM where the shapes of the wave functions of position and
momentum match perfectly is calculated as 10 cm.

Figure 3(a) shows the dependence of the defect probability
on the position scaled by zM . As shown in the figure, the
maximum value of Pdefect is obtained at around z = zM . More
precisely, the maximum value of Pdefect is obtained at a time
z = 1.1zM , which is slightly different from z = zM in our
choice of L and B. Note that for our experimental parame-
ters of the slit widths and lens we have chosen, the optimal
condition is different from the original ones in Ref. [23]. Note
also that the violation of the inequality can be observed over a
fairly wide time range from about z ∼ zM to z ∼ 8zM , which
correspond to the position from z = 10 cm to z = 80 cm.

In this proof-of-principle demonstration, we used a weak
coherent laser light with a wavelength of 800 nm. The laser
was attenuated by using a neutral density filter at a single-

FIG. 3. (a) Dependence of the defect probability on the normal-
ized position of the photon scaled by zM . The star-shaped points
represent the conditions of the present experiment. The degradation
of the experimental values with respect to the theoretical values is
due to the visibility of the interference fringes. (b) Experimentally
observed interference fringe between position and momentum at
z = 1.4zM . The gray dot shows the experimental data. The red line
shows the fitted curve. The purple line shows the probability densities
corresponding to the minimal value of P(M ) which is expected from
Eq. (2). |ψ (t )〉 = Û (t )|ψ〉, where Û (t ) is the unitary operator of time
evolution in free space.

photon level. The average photon number existing in the
interferometer was estimated as 0.6, which ensures that the
contribution of more than two photons from the laser was
negligible. The interferometer was stable enough during the
experiment due to the displaced common path design shown
in Fig. 2(a). The obtained visibility of our interferometer
was about 85% as discussed later. We used a single-photon
sensitivity charge coupled device (CCD) to measure the in-
terference fringe which ensures that the detected interference
fringe is constructed from a pseudo-single-photon source of
weak coherent light.

IV. RESULTS

Figure 3(b) shows the interference fringe at an intermediate
position z = 1.4zM (approximately 470 ps in time) which
is slightly longer than its optimal time of 1.1zM . We have
clearly observed an interference fringe between the position
and momentum state. From the fitting, the measured visibility

012215-3



ONO, SAMANTARRAY, AND RARITY PHYSICAL REVIEW A 108, 012215 (2023)

FIG. 4. (a) Interference fringe of position and momentum obtained experimentally in position space for the initial state of |ψ〉. Red is the
fitting curve. The fitting was done using the Gaussian function instead of the slit function. (b) is the measurement system for the position
state in position space, and (c) is the measurement system for the momentum state in position space. (d) Interference fringe of position and
momentum obtained experimentally in momentum space for the initial state of |ψ〉. (e) is the measurement system for the position state in the
momentum space, and (f) is the measurement system for the momentum state in the momentum space.

was roughly 85%. Figures 4(a) and 4(d) show the measured
probability densities at z = 0 in the position basis and momen-
tum basis, respectively. For the measurement in the position
basis, the interference fringe was taken on the image plane of
the position slit L outside of the interferometer as shown in
Figs. 4(b) and 4(c). The probability of P(L) is then calculated
by integrating the probability density at z = 0 over the posi-
tion x from −L/2 to L/2. From the fitted curve, the probability
was calculated as P(L) = 56.5%. For the measurement in the
momentum basis, we used the effect on the Fourier transform
by using the lens, where the state of Eq. (3) is mapped into the
momentum space of p̂x. For the position state of 〈px|L〉, we
put the lens at the position after the slit at the distance of focal
length f of the lens, where the momentum information before
the lens is mapped onto the position scaled by h/( f λ) after
the lens. For the momentum state of 〈px|B〉, we put the lens at
the position after the slit at a distance of 2 f . The interference
fringe was then taken on the image plane of the position slit L′
outside of the interferometer as shown in Figs. 4(e) and 4(f).
The probability of P(B) was then calculated by integrating the
probability density at t = 0 over the momentum from −B/2
to B/2. From the fitted curve, the probability was calculated
as P(B) = 56.5%.

Finally, we analyze the data. At an initial position of t = 0,
we obtained the probabilities of P(L) and P(B) as 56.5%.
We also measured the probability at the intermediate position.
From the propagation inequality of Eq. (2), the minimum
value of the probability of finding the photon within an in-
terval M at t = 1.4tM was predicted as P(L) + P(B) − 1 ≈
13.1%, which corresponds to the area under the purple line
as shown in Fig. 3(b). The figure clearly shows that the actual
measured probability of P(M, t ) is smaller than the value. The
value of P(M = L + 1.4 BtM/m) is calculated by integrating
the probability density at t = 1.4tM over the position x from
−M/2 to M/2. From the fitting, which takes into account
the visibility of the fringe, the probability was calculated as
P(M, t = 1.4tM ) = 7.2%. From the measured data, we ob-
tained Pdefect (t = 1.4tM ) ≈ 5.9%, which means that the 5.9%
probability cannot be explained by the statistical limit which
assumes that the particles move along a straight line.

V. DISCUSSION AND CONCLUSIONS

To demonstrate the precise control of position and mo-
mentum in quantum mechanics, it is interesting to compare
our experimental results with the quantum uncertainty limit
for the widths of the position and momentum distributions.
This limit is expressed quantitatively as P(L) + P(B) � 1 +√

U , where U = LB/(2π h̄) [31,32]. Notably, this inequality
presents a more quantitative measure of statistical uncertainty,
as opposed to the variance of the distributions, particularly
when the product of L and B is smaller than Planck’s constant.
In our experiment, with U = LB/(2π h̄) ≈ 0.022, we obtained
1 + √

U ≈ 1.15 and P(L) + P(B) = 1.13. These results in-
dicate that the deviation between our experimental data and
the lower limit is approximately 2%. Therefore, we conducted
our experiment under conditions that were close to the limits
of quantum uncertainty. This was achieved by implementing
precise control over both the position and momentum of the
system. While this study adopted the argument proposed in
Ref. [23], it is crucial to emphasize that the violation of the
particle propagation inequality is primarily an interference
effect between position and momentum. Therefore, despite
the superposition state by a rectangular function being the
state that is closest to violating the particle propagation in-
equality, it is interesting to explore other quantum states that
are theoretically and experimentally tractable for a deeper
comprehension of quantum mechanics through particle prop-
agation inequalities [32].

In conclusion, we have experimentally demonstrated the
superposition of position and momentum states by precisely
adjusting the slit width, lens, and the propagation distance of
the photons. The strong interference of position and momen-
tum was obtained at about 470 ps after the initial time, when
the two states are almost overlapped. We then investigated
how much the quantum coherent process between position
and momentum can deviate from the lower bound on the
probability of finding the particle, which is derived from the
statistical analysis of the photon. Note that our experimental
result does not give a new interpretation for quantum particle
trajectories. Instead, on the basis of the observed statistics,
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we have quantitatively showed that at least Newton’s first
law falls about 5.9% short of explaining quantum mechan-
ical probability flows, due to quantum interference effects.
Therefore, we believe that this result is a major step towards
further developments in quantum theory, such as fundamental
modifications to the interpretation of quantum theory.

In this proof-of principle experiment, we employed a
single-photon state [33] that was obtained through postse-
lection via the use of attenuated weak coherent (laser) light.
While our current measurement system does not fully capture
the multiphoton interference patterns that arise from more
than two photons, the contributions of more than two photons

will obscure the single-photon pattern. This analysis can be
performed by observing the correlation of counts between
different positions in the interference pattern [34]. Therefore,
it would be worthwhile to explore the inequality with multi-
particle quantum states, including the entangled state.
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