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Abstract: The current guidelines recommend the sentinel lymph node biopsy to evaluate the lymph
node involvement for breast cancer patients with clinically negative lymph nodes on clinical or
radiological examination. Machine learning (ML) models have significantly improved the prediction
of lymph nodes status based on clinical features, thus avoiding expensive, time-consuming and
invasive procedures. However, the classification of sentinel lymph node status represents a typical
example of an unbalanced classification problem. In this work, we developed a ML framework to
explore the effects of unbalanced populations on the performance and stability of feature ranking
for sentinel lymph node status classification in breast cancer. Our results indicate state-of-the-art
AUC (Area under the Receiver Operating Characteristic curve) values on a hold-out set (67%) while
providing particularly stable features related to tumor size, histological subtype and estrogen receptor
expression, which should therefore be considered as potential biomarkers.

Keywords: sentinel lymph node; imbalanced dataset; data augmentation; breast cancer; machine
learning; interpretability

1. Introduction

Current recommendations advise sentinel lymph node biopsy (SLNB) for breast cancer
patients experiencing clinically negative lymph nodes on clinical or radiological evalua-
tion [1]. While this procedure is currently the most accurate assessment, it is also the most
expensive and time-consuming, as well as the most invasive, with a variety of potential
adverse effects [2,3]. In addition, in patients with early-stage breast cancer, the incidence of
axillary metastases is around 10–25% [4,5], therefore SLNB is often an unnecessary proce-
dure. In this context, the definition of less expensive and invasive alternative procedures
for the prediction of lymph node involvement represents a current task of interest for the
clinical and scientific community.

In literature, several models have been proposed to predict non-sentinel lymph nodes
status by using different features [6,7]. On the other side, a small number of studies with the
goal of predicting the sentinel lymph nodes status have yielded promising findings [8–10].
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Nevertheless, the classification of sentinel lymph nodes provides a typical example of
an unbalanced classification problem. In healthcare data analysis applications including
cancer diagnosis and disease risk prediction, classifying unbalanced datasets has been
identified as a major challenge. When the quantity of samples in a dataset is substantially
uneven, an unbalanced classification problem emerges. In binary classification tasks,
the unbalanced classification problem occurs when one class (i.e., the minority class) has
much fewer observations than the other class (i.e., the majority class) [11]. For unbalanced
datasets, most of the machine learning (ML) algorithms usually perform poorly since they
aim to optimize overall classification accuracy and thus assume an equal incidence of all
classes. As a result, these methods exhibit classification bias towards the majority class,
failing to identify examples of the minority class [12].

Several strategies have been proposed to overcome these limitations. Resampling
methods have been introduced to rebalance the datasets. Resampling schemes include
random oversampling of the minority class, undersampling (or subsampling) of the ma-
jority class and some advanced synthetic sampling methods that aim at rebalancing the
class distribution at the data level. These rebalancing solutions, however, present several
drawbacks. For example, loss of information is an inherent consequence of undersam-
pling [13], but oversampling by randomly repeating the minority class sample could result
in overfitting [14].

Although several works have investigated the effect of different data balancing strate-
gies on the overall classification performance [15–18], there is a lack of work exploring
the effect of these methods on feature ranking. This issue is particularly crucial in clinical
contexts, where the interpretability of decisions and therefore the accurate identification of
the feature contribution to the decisions of the algorithms is a key requirement [19,20].

In this work, we developed a ML framework to explore the effects of unbalanced
populations on the performance and stability of feature ranking for sentinel lymph node
status classification in breast cancer. In particular, we assessed the predictive power of
different clinical and immunohistochemical features by exploiting two classifiers. We
embedded a module specifically devoted to analysis the importance of features in relation
to the variation of the training set obtained by different sampling techniques. Our work
aims to address some questions: (i) How do the different models perform? (ii) What are the
most important predictors? (iii) Are they stable across populations?

2. Materials
2.1. Data

From 2015 to 2017, we collected 635 patients enrolled at Istituto Tumori “Giovanni
Paolo II” in Bari (Italy) according to the following eligibility criteria: (i) no evidence of
metastatic lymph nodes on palpation or radiological examination, and (ii) patient un-
dergoing SBLN. In particular, the one-step nucleic acid amplification (OSNA) procedure
is performed in our Institute. OSNA is the intra-operative exam with a sensitivity and
specificity of 87.5–100% and 90.5–100%, respectively [21], but it is an expensive and time-
consuming process. Overall, 214 patients had clinically positive lymph nodes, whereas
421 patients resulted negative. For each patient, we collected age at breast cancer diagno-
sis and several prognostic factors related to the tumor evaluated on pre-operative stage.
The retrospective observational study was approved by the Scientific Board of the Istituto
Tumori “Giovanni Paolo II” and carried out according the Helsinki Statement. All patients
who agreed to have their data used for research were enrolled.

2.2. Histological Features

We gathered information from our pathological anatomy department’s immunohis-
tochemistry analyses, such as: tumor size stage (T: staging system classify), histological
grade (G, Elston–Ellis scale: 1, 2, 3), estrogen receptor expression (ER, Pos/Neg), histolog-
ical subtype (i.e., ductal, lobular, other special types), progesterone receptor expression
(PgR, Pos/Neg), cellular marker for proliferation (Ki67, Pos/Neg with cut-off 20%), tumor
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multiplicity (Pos/Neg), human epidermal growth factor receptor-2 (HER2/neu: 0, 1+, 2+,
3+), presence of carcinoma in situ associated with invasive component (Pos/Neg), and the
sentinel lymph nodes status (N, Pos/Neg) required in the classification approach. A lower
grade denotes a better prognosis, and the Elston–Ellis adaptation of the Scarff–Bloom–
Richardson grading system uses a three-grade scale to describe the tumor grade G: G1 (low
grade), G2 (intermediate grade), or G3 (high grade) [22]. The histological examination was
carried out using multiple 14–16 G core biopsy sampling while being guided by ultrasound.
The characteristics of the samples are summarized in Table 1.

Table 1. Characteristics of the samples collected in this study.

N. Patients N. Positive/ N. Negative

Overall 635 214/421
Histologic Type

Ductal 512 185/327
Lobular 67 20/47

Special type 56 9/47
Diameter

T1a 31 3/28
T1b 125 18/107
T1c 281 88/193
T2 198 105/93
ER

Positive 571 193/378
Negative 64 21/43
Grading

G1 175 35/140
G2 287 111/176
G3 173 68/105

HER2
0 471 161/310
1 78 23/55
2 46 21/25
3 39 9/30

Multifocality
Positive 143 61/82
Negative 492 153/339

In situ component
Positive 369 114/255
Negative 266 100/166

3. Methods

In this work, we investigated the effectiveness of two classification methods (Random
Forest and Logit Lasso) with three training strategies, i.e., unbalanced strategy, oversam-
pling of the minority class and subsampling of the majority class. As depicted in Figure 1,
we adopted a hold-out approach, randomly selecting M = 100 samples for the independent
test (i.e., the hold-out test). A repeated k-fold validation (N = 10 iterations, k = 10 folds)
was selected as cross-validation approach on the training set. In detail, each of the three
strategies was combined with each of the two classification algorithms resulting in six
training schemes. For each scheme, we evaluated both the importance and variability of
the features. In addition, the consensus degree on the probability scores of the different
strategies was assessed as the correlation between each couple of schemes. Each step is
detailed in the following sections. We used a PC with the following hardware configuration:
Intel Core i7-8550U CPU @ 1.99GHz x 4, and 16GB RAM to run the experiments. All the
analyses were performed by using R Statistical Software (v4.1.1., R Core Team 2021) with a
run-time of 9.8 min for the execution of the entire framework.
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Figure 1. Overview of the proposed framework.

3.1. Training Strategies

The simple subsampling strategy involves randomly eliminating samples from the
majority class in order to match a certain fixed percentage of samples from the minority class.
In this work, we selected the parameter of 50% of the samples in the minority class to achieve
a reasonable trade-off between sample representativeness and computational efficiency.

On the other hand, SMOTE (Synthetic Minority Over-sampling Technique) creates
artificial samples from the minority class leveraging the information in the data [23].
For each sample from the minority class xi, firstly R = 5 samples from the minority class
with the smallest Euclidean distance from the original sample were identified (i.e., the top
R nearest neighbors xNN

j , j = 1, . . . , R), then, one of these samples is randomly chosen

(xNN
s ) and a new synthetic SMOTE sample is defined as:

xSMOTE = x + u · (xNN
s − x), (1)

where u is randomly chosen from the uniform distribution U(0, 1) and is the same for all
variables, but differs for each SMOTE sample in order to ensure that the SMOTE sample
is on the line joining the two original samples used to generate it [24]. Thus, SMOTE is
an augmentation technique to increase the minority class resulting in an output balanced
training set.

3.2. Classification Algorithms
3.2.1. Logistic LASSO

In binary classification studies, the dichotomous response variable yi is usually coded
as 1 for cases and 0 for controls. In order to model logistic regression, the probability
pi = Pr(yi = 1) of case i given the predictor vector xi can be expressed as:

pi =
eβ0+xT

i β

1 + eβ0+xT
i β

, (2)
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The parameter vector Θ = (β0, β1, . . . , βp)T is usually estimated by maximizing the
log-likelihood function:

L(Θ) =
N

∑
i=1

[yilog(pi) + (1− yi)log(1− pi)] (3)

Regularization methods such as shrinkage or penalized regression could reduce the
likelihood of overfitting by modifying the loss function with a penalty term to shrink the
coefficients in the regression towards zero and selecting the nonzero variables in the final
model [25]. This approach has the additional advantage of selecting the most important
variables for the predictions from a large and potentially multicollinear set of features,
resulting in a more relevant and interpretable set of predictors [26–28]. The logistic LASSO
model involves L1 penalty term, resulting in:

L(Θ) + λ
P

∑
j=1
|β j| (4)

In order to tune the penalty constant λ, without introducing bias and overfitting, we
used an inner round of k-fold validation within each training round, with k = 3. The AUC
metric was computed for the test set as the performance measure to tune λ. We used the
“glmnet” package to fit the logistic LASSO regression.

3.2.2. Random Forest

Random Forest (RF) is also recognized as bagged decision trees. This algorithm works
on using different weak learners to implement strong learners [29]. The target outcome for
each sample yi is individually forecast by each tree, while the final predictions are based on
the majority of trees voting.

Two types of randomization are included: (I) a subset of observations is picked at
random for each tree, and (II) a random set of mtry candidate predictors is chosen to
produce a split within each tree. As a result, a purity measure and a decision threshold are
used to divide the node input samples into two groups. Each tree is built until the nodes
have divided their inputs into subsets and assigned a single final label to each of them.
The out-of-the-bag (OOB) set for that tree contains the samples that were not utilized for
that tree [30]. The accuracy of RF is assessed by using the samples of the OOB as:

MSEOOB =
1
N

N

∑
i=1

(yi − ¯̂yiO)
2, (5)

where ¯̂yiO denotes the average prediction for the ith observation from all trees for which
this observation has been OOB. We used the “RandomForest” R Package with the default
parameter mtry = P/3 and number of trees = 100.

3.3. Performance Evaluation

The model decisions that arise may be categorized into four different groups: true
positives (TP), which occur when the model correctly predicts the positive class, true
negatives (TN), which occur when the model correctly predicts the negative class, and false
positives (FP) and false negatives (FN), which occur when the model incorrectly predicts
the positive and negative classes, respectively. Given these four cases, we considered the
following metrics to evaluate the performance of the classification models:

• Accuracy
TP + TN

TP + TN + FP + FN
;
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• Sensitivity
TP

TP + FN
;

• Specificity
TN

TN + FP
;

• Area Under the Receiver Operating Characteristics (ROC) Curve (AUC) that adjusts
the decision threshold to plot sensitivity versus specificity.

3.4. Feature Ranking Analysis

Both RF and Lasso Logistic regression provide embedded feature selection techniques.
As a result of the model, a subset of the features with non-zero weights could be retrieved,
and the coefficients of the least relevant features are shrunk to zero [31]. Moreover, the ab-
solute values of the Lasso coefficients could be used for feature ranking since the weight
βi quantifies the impact that each feature has in the regression model. We exploited the
averaged absolute values of the weights across the validation rounds in order to obtain a
final feature ranking, regardless of the specific training fold.

On the other side, RF feature importance can be assessed by applying the permutation-
based MSE reduction criterion [32]. The relevance of each feature per each tree is deter-
mined by permuting the feature’s OOB data for the tree and calculating the difference
between the permuted and true OOB-MSE. By averaging these differences over all of the
forest’s trees, the final MSE decrease for each feature is produced. The basic logic behind
this technique is that if a feature has no effect on performance, the difference in accuracy
estimated using the true values of the feature and that computed using its permuted values
is unlikely to be significant.

For each classification scheme (i.e., each sampling algorithm with each of the two
machine learning methods), we averaged the importance scores of the features across the
rounds to obtain a single feature importance vector. In addition, the quartile coefficient of
dispersion [33] was used to assess the variability across rounds of each feature.

4. Results and Discussion
4.1. Performance

Figures 2 and 3 show the performance metrics across the cross-validation rounds and
for the independent hold-out test for each classification scheme, respectively. Tables 2 and 3
list the mean and standard deviation for each performance metric for cross-validation sets
and hold-out test, respectively. The Logit Lasso algorithm is less affected by model overfit-
ting as it can be noted from the smaller difference between training and test performance.
Moreover, it is worth noting that among the various strategies, the SMOTE technique
provides the best balance between sensitivity and specificity.

Overall, the achieved performance compares favorably with that obtained in our
previous work [34]. In particular, in this analysis, we also found the logistic regression
model as the method with the most stable performance between the training and test
sets. However, in contrast to our previous work, here we used different training sampling
strategies that showed that SMOTE represents a promising method for this clinical challenge
and that simply undersampling does not guarantee equally effective results.

Other works addressed similar classification tasks, showing that the performance can
be significantly improved by adding predictors extracted from imaging [35,36], genetics [9]
and nomograms of clinical and pathologic variables [37] with more complex nonlinear
models such as deep neural networks [38]. In our analysis, we used simpler and therefore
more interpretable models in combination with known sampling strategies in order to
highlight different effects on performance. In future developments, we will expand the
presented framework to investigate the impact of other features and predictive models.
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Figure 2. Performance metrics across the cross-validation rounds for each classification scheme:
violin plots of the distributions of the sensitivity values (A), specificity values (B), accuracy values
(C), and AUC values (D).

Figure 3. Performance metrics for the hold-out test for each classification scheme: violin plots of
the distributions of the sensitivity values (A), specificity values (B), accuracy values (C), and AUC
values (D).

Table 2. Performance of the ML models for for the cross-validation sets (mean ± std).

Classification Scheme SENS SPEC ACC AUC

RF 0.37± 0.1 0.85± 0.05 0.7± 0.05 0.66± 0.07
RF SUB 0.59± 0.11 0.67± 0.11 0.63± 0.07 0.66± 0.08

RF SMOTE 0.89± 0.03 0.98± 0.01 0.93± 0.01 0.98± 0.005
Logit Lasso 0.39± 0.1 0.85± 0.05 0.70± 0.05 0.72± 0.08

Logit Lasso SUB 0.67± 0.1 0.67± 0.12 0.67± 0.07 0.72± 0.07
Logit Lasso SMOTE 0.73± 0.04 0.72± 0.04 0.73± 0.03 0.77± 0.03
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Table 3. Performance of the ML models for for the hold-out set (mean ± std).

Classification Scheme SENS SPEC ACC AUC

RF 0.34± 0.03 0.87± 0.02 0.69± 0.01 0.66± 0.01
RF SUB 0.62± 0.003 0.58± 0.03 0.60± 0.01 0.66± 0.01

RF SMOTE 0.49± 0.03 0.83± 0.01 0.71± 0.01 0.73± 0.01
Logit Lasso 0.23± 0.02 0.84± 0.02 0.62± 0.01 0.66± 0.006

Logit Lasso SUB 0.65± 0.08 0.57± 0.04 0.60± 0.01 0.64± 0.01
Logit Lasso SMOTE 0.65± 0.03 0.65± 0.01 0.65± 0.01 0.67± 0.004

4.2. Feature Ranking Analysis

We computed the feature ranking list resulting from each classification scheme over
the cross-validation rounds for the clinical interpretability of the results. Figure 4A shows
the feature ranking for the six schemes. It can be noted that only the diameter results are
relevant, regardless of the adopted scheme. The correlation between tumor size and lymph
node status has been evaluated in several studies. In patients with breast cancer, increasing
tumor diameter at diagnosis is associated with an increasing number of metastatic lymph
nodes [39,40].

Moreover, it is worth noting that the three Lasso Logit models agree much more with
each other on the final average feature ranking, outlining the features histology, diameter,
ER and multifocality as the most important features. As a matter of fact, Logit Lasso exhibits
greater stability of feature ranking compared to RF. Stability refers to the feature ranking’s
sensitivity to perturbation of training samples and it is associated with the reproducibility
power of the feature selection method [41]. When analyzing feature selection algorithms
in different clinical scenarios, high stability could be just as crucial as high classification
accuracy [42–44]. We used the quartile coefficient to objectively measure the stability of
these features for each classification scheme. It can be seen in Figure 4B that the feature
diameter is the most stable among all the features, regardless of the adopted scheme,
while the HER2 feature exhibits the highest dispersion coefficient, showing high instability.
Moreover, the weights of Age, PgR and Ki67 are shrunk to zero from the Lasso algorithm,
highlighting their low impact on the classification task.

Figure 4. (A) Importance scores of the features averaged across the rounds to obtain a single feature
importance vector for each classification scheme. (B) Variability across rounds of each feature for
each classification scheme expressed as the quartile coefficient of dispersion.

4.3. Consensus Degree of the Probability Scores

We better analyzed the behavior of the classification schemes on the independent
hold-out test set, by inspecting the correlation between the probability scores resulting
from each couple of schemes as shown in Figure 5. It is important to underline that the RF
algorithm exhibits the lowest correlations between the probability scores for the different
training strategies, showing an inherent instability with respect to the sampling methods;
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on the contrary, the Logit Lasso algorithm shows the highest correlations between the
probability scores, underlining better stability of performance and less variability among
the sampling strategies. This issue is of paramount importance in the clinical setting, where
stability and generalization of algorithms supporting diagnosis are highly recommended.
These two aspects are closely linked to each other since we need to evaluate how changes
in the composition of the learning set (i.e., sampling randomness) influence the function
produced by the algorithm (i.e., the probability scores) [45–47].

Figure 5. Correlation between the probability scores of the samples in the hold-out test set resulting
from each classification scheme.

5. Landscape

Most of the studies proposed in the literature aimed at predicting the lymph node
status in general terms (i.e., non-sentinel lymph nodes) using nomograms of clinical and
pathological variables [6,7,48,49]. On the contrary, to the best of our knowledge, few works
aimed at predicting the status of the sentinel lymph node [9,50]. The model proposed in [9]
reached an average AUC value of 88.3%. by using genetic characteristics, tumor size and
lymph vascular invasion. In [50], the authors proposed an analogous model for patients
with ductal carcinoma in situ by stating an AUC value of 75%. In our preliminary works,
comparable results were reached to the-state-of-the-art [10,34]. Recent studies, radiomic
features extracted from magnetic resonance images [35,36,51] or ultrasounds [52] were
exploited to identify a better performing customized model. However, none of the works
reported in the literature specifically addressed the issue of class imbalance, as proposed in
this work.

6. Limitations and Future Perspectives

In this work, we analyzed a dataset of limited size, therefore we avoided more sophis-
ticated strategies such as those based on deep neural networks that require large sample
sizes, preferring two simpler methods such as RF and Lasso. Such methods are rather well
established in the literature for classification tasks in various clinical contexts. Moreover,
these methods offer the advantage of providing the most important features for the algo-
rithm’s decisions proving a higher explainability of the impact of the clinical predictors on
the overall performance. This issue is particularly relevant as it enables the integration of
the perspectives of both clinical specialists and algorithm developers, allowing synergy
between the different entities and improving the machine learning paradigms in each
specific clinical context.
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Although our methodological choices were conditioned by the dimensionality of the
dataset, it should be emphasised that for high-dimensional datasets, other approaches
should be evaluated in conjunction with Lasso. As an example, Ren et al. [53] proposed
a network constrained regularization approach for classification exploiting networks to
model interconnections among features, overcoming the existing shortcomings in address-
ing the correlations among features. In addition, when the number of features increases, ro-
bust feature selection techniques are critical for successful performance since these methods
usually have better stability and reproducibility [54]. Accordingly, with higher dimension-
ality of the features and complex data structure, more feature selection algorithms should
be evaluated in order to avoid the oversimplification of the predictive models. On the
other hand, although the proposed framework is fully scalable and would allow a larger
number of machine learning algorithms combined with different sampling strategies to be
compared for future developments, it should be noted that the computational complexity
and the execution time increase with the number of algorithms to be compared. Further
analyses will be carried out to identify the best combinations of ML algorithms and sam-
pling strategies that ensure the best balance among classification accuracy, computational
complexity and interpretability of the models.

7. Conclusions

In this work, we presented a simple ML framework to explore the effect of differ-
ent sampling strategies on both performance and feature stability for the prediction of
the sentinel lymph node status in breast cancer. Due to the unbalanced configuration
of the classification problem, we trained two different machine learning algorithms on
tumor histopathology and clinical features in combination with the random undersampling
method and a synthetic augmentation technique (SMOTE) to balance the training set. We
found that the best combination of techniques consists in the use of the simpler Lasso classi-
fier and the SMOTE strategy both in terms of the ability to generalize the predictive models
on the hold-out test set and the stability of the clinical features. Although the proposed
framework does not yet allow the implementation of a diagnosis support system due to
moderate performance, it provides a set of clinical features worthy of attention, which
should be considered as possible biomarkers alongside other imaging and genetic features.
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