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DE FINETTI-TYPE THEOREMS ON QUASI-LOCAL

ALGEBRAS AND INFINITE FERMI TENSOR

PRODUCTS

VITONOFRIO CRISMALE, STEFANO ROSSI, AND PAOLA ZURLO

Abstract. Local actions of PN, the group of finite permutations
on N, on quasi-local algebras are defined and proved to be PN-
abelian. It turns out that invariant states under local actions are
automatically even, and extreme invariant states are strongly clus-
tering. Tail algebras of invariant states are shown to obey a form
of the Hewitt and Savage theorem, in that they coincide with the
fixed-point von Neumann algebra. Infinite graded tensor products
of C∗-algebras, which include the CAR algebra, are then addressed
as particular examples of quasi-local algebras acted upon PN in a
natural way. Extreme invariant states are characterized as infinite
products of a single even state, and a de Finetti theorem is estab-
lished. Finally, infinite products of factorial even states are shown
to be factorial by applying a twisted version of the tensor product
commutation theorem, which is also derived here.
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1. Introduction

Distributional symmetries for families of random variables concern
invariance of any finite joint distribution of them under some mea-
surable transformations. For their importance in probability theory,
invariance under shifts, finite permutations or rotations are certainly
worth mentioning. In these cases the random variables are respectively
named stationary, exchangeable or rotatable, and the reader is referred
to [15] for an extensive account of the subject in the setting of com-
mutative probability spaces. The investigation of distributional sym-
metries was initiated by de Finetti’s celebrated theorem, which shows
that sequences of two-point valued exchangeable random variables are
conditionally independent and identically distributed. Phrased differ-
ently, any finite joint distribution of them is obtained by randomization
of the binomial distribution. This result has since found several gen-
eralizations. To name but one of these, the probability measures on
the Tychonov product of compact Hausdorff spaces which are invariant
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under the action of finite permutations are in fact mixtures of product
measures, as proved by Hewitt and Savage in [14].

Now the C∗-algebraic counterpart of Tychonov products is provided
by the theory of tensor products of C∗-algebras. Therefore, it is no
wonder that the earliest non-commutative settings for the generaliza-
tions of de Finetti’s theorem came from the infinite tensor products
of a given unital C∗-algebra. In [20], Størmer carried out a thorough
analysis of all permutation-invariant states of the (minimal) infinite
tensor product ⊗NA of an assigned C∗-algebra A. Among the main
results obtained in that paper, it is worthwhile to mention that the
extreme points of the (weakly-∗) compact convex set of such states
may be identified with infinite product states of a single state on A.
Furthermore, the convex set in question is actually a Choquet simplex,
which allows for a decomposition of any invariant state into an inte-
gral of extreme invariant states with respect to a unique barycentric
measure. To our knowledge, though, it was not until the early 90s that
this line of research got a new lease of life, when far more emphasis
was laid on the probabilistic interpretation. In this respect, Accardi
and Lu proved a general non-commutative version of the Hewitt and
Savage theorem, [2]. In a later paper, [1], connections between ex-
changeability and singleton conditions were also established. Not long
after, Köstler obtained a non-commutative de Finetti theorem within
the formalism of von Neumann algebras in [16], where exchangeability
is seen to imply independence with respect to the tail algebra, although
the converse may fail to hold, as remarked by the author himself. Fi-
nally, also motivated by the key role played in physics by the canonical
anti-commutation rules, Crismale and Fidaleo provided a version of the
theorem for states right on the CAR algebra, [8]. Although the CAR
algebra is isomorphic with the UHF algebra of type 2∞ and is thus
an infinite tensor product of M2(C) with itself, the de Finetti theorem
proved in the last mentioned paper cannot be reached by an application
of the results in [20], not least because the action of the permutations
is not the same as the one considered by Størmer. In fact, the re-
sults obtained there take into account the canonical Z2-grading of the
CAR algebra as well. In particular, any symmetric state turns out to
be even, namely grading-invariant. Furthermore, extreme symmetric
states feature the same properties as in the work of Stormer. The nov-
elty, however, is that the product must be intended in the sense of Araki
and Moriya, [4], and the factor state must be an even state on M2(C),
thought of as a graded C∗-algebra with even (odd) part given by diago-
nal (anti-diagonal) matrices, for the product state to even make sense.
Unlike what happens with usual tensor products, the action of PN, the
group of finite permutations on N, on the CAR algebra is no longer
asymptotically abelian. Nevertheless, the corresponding C∗-dynamical
system is PN-abelian, see [18] for the definition. It is ultimately this
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circumstance which guarantees that the set of symmetric states is still
a Choquet simplex.

This paper in part aims to resume the analysis carried out in [8] in
order to frame it in the broader scope of quasi-local algebras, the in-
terest in which is undoubtedly justified by the many appearences they
make in quantum field theory and statistical mechanics. In the present
work, however, quasi-local algebras are mainly thought of as a source
of examples of Z2-graded C∗-algebras. In particular, in Section 2 we
first single out actions of PN which are fully compatible with the local
structure of the algebras addressed, see Definition 2.3. More in detail,
Proposition 2.4 shows that any such action is PN-abelian. Moreover,
its invariant states are automatically even, with extreme states being
weakly clustering. These are then shown to be strongly clustering in
Theorem 2.6. Tail algebras of invariant states are then given a good
deal of attention. In Proposition 2.9 we show that the tail algebra of an
extreme invariant state is always trivial. Tail algebras corresponding
to non-extreme invariant states, too, can be analized in full detail. In
the first place, their structure is disciplined by a form of the Hewitt
and Savage theorem, in so far as they coincide with the PN-invariant
part of the center of the von Neumann algebra generated by the given
state. As a consequence, they are always abelian and decompose into
a direct integral of ergodic components, as proved in Proposition 2.10.
The section ends with Proposition 2.12 and Proposition 2.13, which
provide de Finetti-type theorems for nets of local algebras. In partic-
ular, under the assumption of additivity of the net, Proposition 2.13
characterizes symmetry of states in terms of a condition reminiscent of
identical distribution, and conditional independence of the local alge-
bras with respect to the conditional expectation onto the tail algebra.
Section 3 is devoted to infinite Z2-graded tensor products as distin-
guished and particularly well-behaved instances of quasi-local algebras.
After providing a quick exposition of infinite graded tensor products,
we show in Example 3.2 how the CAR algebra can be recovered as
a suitable infinite product of this type. The group of finite permuta-
tions acts in a natural way on infinite graded tensors products. In-
variant states for this action lend themselves to a more accomplished
description as opposed to the case of quasi-local algebras. In particu-
lar, extreme states can be identified with infinite products of a single
even state, Proposition 3.5. Moreover, as shown in Proposition 3.6,
the action also turns out to be weakly ergodic when it is the minimal
product to be dealt with. Finally, infinite graded tensor products offer
quite a natural setting to state a fully-fledged version of de Finetti’s
theorem, for in this case invariant states correspond to exchangeable
quantum stochastic processes, see also [9, 10]. This is done in Theo-
rem 3.8, where such processes are characterized in terms of identical
distribution and conditional independence.
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In Section 4 we further develop the analysis of infinite product states
by showing pureness (factoriality) when each factor is pure (factorial),
Proposition 4.6 (Proposition 4.10). The proof of these results heavily
relies on a twisted version of the well-known tensor product commuta-
tion theorem, which is obtained in Theorem 4.4 for the tensor product
of two graded von Neumann algebras, and in Theorem 4.5 for the tensor
product of infinitely many von Neumann algebras. Finally, the analysis
by Størmer in [20] on the type of factor one can obtain from the GNS
representation of product states applies to the present framework, and
the relative results are gathered in Proposition 4.12.

2. Symmetric states on quasi-local algebras

By a Z2-graded C∗-algebra we mean a pair (A, θ) made up of a
(unital) C∗-algebra and a (unital) ∗-automorphism θ which is invo-
lutive, namely θ2 = idA. Setting A1 := {a ∈ A : θ(a) = a} and
A−1 := {a ∈ A : θ(a) = −a}, one easily sees that A decomposes as

A = A1 ⊕ A−1 ,

where the direct sum is topological, and

(Ai)
∗ = (A∗)i , AiAj ⊂ Aij , i, j = 1,−1 .

Note that A1 is a (unital) C∗-subalgebra of A, while A−1 is only an
involutive closed subspace of A. The subspaces Ai, i = 1,−1 are often
referred to as the homogeneous components of A, and correspondingly
any element of Ai is called a homogeneous element of A. For any
homogeneous element x ∈ A±1 we denote its grade by

∂(x) = ±1.

It is easy to see that considering an involutive ∗-automorphism θ on
A amounts to assigning a decomposition of A into a topological direct
sum as above. Indeed, if one is given such a decomposition, then the
corresponding automorphism θ can be defined as

θ⌈A1
:= idA1

, θ⌈A−1
:= −idA−1

.

Note that

εθ :=
1

2
(idA + θ) ,

defines a faithful conditional expectation onto A1. When there is no
risk of confusion, we will suppress the underscript from εθ and simply
write ε. The ∗-subalgebra A+ := A1 and the subspace A− := A−1 are
commonly referred to as the even part and the odd part of A, respec-
tively. Clearly, any a ∈ A can be written as a sum a = a+ + a−, with
a+ ∈ A+, a− ∈ A−, and this decomposition is unique. Taking θ = idA,
one sees that any ∗-algebra A is equipped with a Z2 trivial grading.
Here, A+ = A and A− = {0}.
A simple example of Z2-graded ∗-algebra is obtained by taking a Hilbert
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space H, and a bounded self-adjoint unitary U on H. The adjoint ac-
tion adU(·) := U ·U∗ is an involutive ∗-automorphism which induces a
Z2-grading on B(H).

Let
(
Ai, θi

)
, i = 1, 2, be two Z2-graded ∗-algebras. The map T :

A1 → A2 is said to be even if it is grading-equivariant, i.e.

T ◦ θ1 = θ2 ◦ T .

When θ2 = idA2
, the map T : A1 → A2 is even if and only if it is

grading-invariant, that is T ◦ θ1 = T . If T is Z2-linear, then it is
even if and only if T ⌈A1,−= 0. When

(
A2, θ2

)
=

(
C, idC

)
, a functional

f : A1 → C is even if and only if f ◦ θ = f .
In the sequel, we will denote by S+(A) the weakly-∗ compact convex

subset of all even states. Even states play a role in giving a Z2-grading
to their GNS structures. More in detail, suppose that (A, θ) is a Z2-
graded C∗-algebra, and ϕ ∈ S+(A). Let (Hϕ, πϕ, ξϕ, Vθ,ϕ) be the GNS
covariant representation of ϕ, where the unitary self-adjoint Vθ,ϕ fixes
ξϕ and verifies

πϕ(θ(a)) = Vθ,ϕπϕ(a)Vθ,ϕ , a ∈ A .

Then, (B(H), adVθ,ϕ) is a Z2-graded C∗-algebra. If ϕ is a pure state,
though, evenness is no longer necessary for a unitary onHϕ implement-
ing the grading to exist. In fact, all is needed is that πϕ and πϕ◦θ are
not disjoint representations1. More precisely, one has the following.

Proposition 2.1. Let ϕ ∈ S+(A) be a pure state such that πϕ and πϕ◦θ
are not disjoint. Then there exists a self-adjoint unitary U ∈ πϕ(A+)

′′

such that

Uπϕ(a)U
∗ = πϕ(θ(a)), a ∈ A and 〈Uξϕ, ξϕ〉 ≥ 0 .

Proof. Same proof as Lemma 3.1 in [4]. �

We can now move on to consider quasi-local algebras as notable
examples of Z2-graded C

∗-algebra. To this aim, denote by P0(N) the
set of all finite subsets of N.

Definition 2.2. By a quasi-local algebra over P0(N) we mean a unital
Z2-graded C∗-algebra (A, θ), where A is the inductive limit of a net
{A(I) : I ∈ P0(N)} of local unital C∗-subalgebras A(I) ⊂ A such that:

(i) for every I, J ∈ P0(N) with I ⊂ J , one has A(I) ⊂ A(J);
(ii) for every I ∈ P0(N), one has θ(A(I)) = A(I);
(iii) for every I, J ∈ P0(N) with I ∩ J = ∅, and homogeneous x ∈

A(I) and y ∈ A(J), x and y commute when one of them is even,
and anticommute when they are both odd.

1This means that there exists a non-null intertwining operator T , i.e. a 0 6= T ∈
B(Hϕ,Hϕ◦θ) such that Tπϕ(a) = πϕ◦θ(a)T for all a ∈ A.
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We should mention that the net of local algebras can of course be
indexed by more general sets than P0(N), see e.g. [6]. However, the
choice of P0(N) made here is the most appropriate insofar as we want
our quasi local-algebra to be acted upon by PN, the group of finite
permutations of N. More precisely, throughout this section we will be
focusing on local actions of PN on A, as defined below.

Definition 2.3. A local action of PN on a quasi-local C∗-algebra A is
a group homomorphism α : PN → Aut(A) such that

(i) the action is grading-equivariant, that is ασ ◦ θ = θ ◦ ασ, for
every permutation σ ∈ PN;

(ii) for every finite subset I ⊂ N and σ ∈ PN, one has ασ(A(I)) =
A(σ(I)).

We next show that the states of A which are invariant under such
an action of PN enjoy good properties. First, they are automatically
even. Second, they are weakly (and in fact strongly) clustering as soon
as they are extreme. These properties are proved in the propositions
below. Before stating them, though, some notation and definitions
need to be set first.
A state ω on A is invariant under α, or equivalently α-invariant, if
ω ◦ ασ = ω, for every σ ∈ PN. The set of all α-invariant states, which
we denote by SPN(A), is weakly-∗ compact and convex. Its extreme
states are called the ergodic states for the action of PN. The set of
all invariant extreme states will be denoted by E(SPN(A)). We will be
using the terms invariant states and symmetric states interchangeably
throught the paper.
If now (Hω, πω, ξω) is the GNS triple associated with a given state ω
in SPN(A), the action of every ασ can be implemented on the Hilbert
space Hω by a unitary Uω

σ uniquely determined by

Uω
σ πω(a)ξω := πω(ασ(a))ξω, a ∈ A .

We denote by HPN

ω ⊂ Hω the closed subspace of all invariant vectors
under the action of the unitaries Uω

σ , namely

HPN

ω := {ξ ∈ Hω : Uω
σ ξ = ξ, for all σ ∈ PN} .

The orthogonal projection onto HPN

ω is denoted by Eω. As is clear, the
one-dimensional subspace Cξω is contained in HPN

ω , which means Eω is
never 0. As is known from the general theory of group actions through
automorphisms on C∗-algebras, the condition that HPN

ω reduces to Cξω
implies that ω is extreme in SPN(A), see e.g. [18, Proposition 3.1.10].
The reverse implication may well fail to hold for a given action of a given
group G on a general C∗-algebra A. However, it does hold provided
that the system (A, G, α) is what is known as a G-abelian dynamical
system. This is by definition the case when, for every G-invariant state
ω, the set Eωπω(A)Eω is an abelian family of operators acting on Hω.
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Among other things, we next show that any local action of PN on a
quasi-local C∗-algebra is always PN-abelian.

For every natural n, denote by Pn ⊂ PN the finite subgroup of permu-
tations which act trivially from n+1 onwards. Note that PN =

⋃
n Pn.

We adopt the notation in [8] and define the Cesàro average of an arbi-
trary operator-valued function f : PN → B(H) as

M(f(σ)) := lim
n→∞

1

n!

∑

σ∈Pn

f(σ)

as long as the limit exists in a suitable sense (for instance in the
strong/weak operator topology). We recall that for any ω in SPN(A)
and σ ∈ PN one has M(Uω

σ ) = Eω, where the equality is understood in
the strong operator topology, see [8, Proposition 3.1].

Proposition 2.4. Let α be a local action of PN on a quasi-local algebra

A. If ω ∈ SPN(A), then

(1) ω is even;

(2) Eωπω(A)Eω is a commuting family of operators, hence the dy-

namical system is PN-abelian;

(3) ω ∈ E(SPN(A)) if and only if dimHPN

ω = 1.

Proof. As for (1), we need to show that any symmetric state ω vanishes
on all odd elements of A. By density, it is enough to prove that ω(a) = 0
for every a which is a localized odd element, say a ∈ A(I) for some finite
subset I ⊂ N. Denoting by {·, ·} the anticommutator, for an a as before
we have

{Eωπω(a)Eω, Eωπω(a
∗)Eω}

=M(Eωπω(a)U
ω
σ πω(a

∗)Eω + Eωπω(a
∗)Uω

σ πω(a)Eω)

=M(Eωπω({a, ασ(a
∗)})Eω)

= lim
n→∞

1

n!

∑

σ∈Pn

Eωπω({a, ασ(a
∗)})Eω = 0

where the last equality holds because for every n such that I ⊂ {1, . . . , n}
one has |{σ ∈ Pn : σ(I)∩ I 6= ∅}| ≤ C(n−1)!, with C being a constant
that does not depend on n, see [8, Lemma 3.3], whereas if σ is such
that σ(I) ∩ I = ∅ then {a, ασ(a

∗)} = 0 by virtue of (iii) of Definition
2.2. This readily implies that

(2.1) Eωπω(a)Eω = 0 for any odd a ∈ A .

In particular, for such an a one has

ω(a) = 〈πω(a)ξω, ξω〉 = 〈Eωπω(a)Eωξω, ξω〉 = 0 ,

and so (1) is proved.
As for (2), thanks to Equality (2.1) it is enough to verify that the
commutator [Eωπω(a)Eω, Eωπω(a)Eω] is 0 for even a, b ∈ A, which can



8 VITONOFRIO CRISMALE, STEFANO ROSSI, AND PAOLA ZURLO

be seen with similar computations to those in (1).
Property (3) holds thanks to Proposition 3.1.12 in [18]. �

For any fixed integer n ≥ 1, we denote by σn the permutation acting
on N as

(2.2) σn(k) =






k + 2n−1, 1 ≤ k ≤ 2n−1

k − 2n−1, 2n−1 < k ≤ 2n

k, k > 2n

The next result is key to further characterize extreme symmetric states.

Lemma 2.5. If ω ∈ S(A) is an extreme symmetric state with respect

to a local action α of PN on a quasi-local algebra A, then for every

a ∈ A one has

lim
n→∞

πω(ασn(a))ξω = ω(a)ξω,

in the weak operator topology.

Proof. The proof is the same as in Lemma 5.2 in [8]. The only thing
that needs to be taken care of is that if a ∈ A(I) for some finite subset
I ⊂ N and σ ∈ PN, there exists Nσ,a ∈ N such that ασσn(a) = ασn(a)
for every n ≥ NA,σ. To this end, let r, s ∈ N such that I ⊂ {1, . . . , r}
and the restriction of σ to {n ∈ N : n ≥ s} is the identity. Set Nσ,a :=
max{r, s}. For n ≥ Nσ,a, we have ασσn(a) = ασ(ασn(a)) = ασn(a)
because ασ acts as the identity on each A(J) if J∩{1, . . . s−1} = ∅. �

Before stating the announced characterization, we recall that a sym-
metric state ω is strongly clustering (or mixing) if for every a, b ∈ A

one has limn ω(ασn(a)b) = ω(a)ω(b), cf. [20].

Theorem 2.6. For a symmetric state ω on a quasi-local algebra A

acted upon PN through a local action α the following conditions are

equivalent:

(1) ω is extreme;

(2) ω is strongly clustering;

(3) ω(ab) = ω(a)ω(b) for every a ∈ A(I) and b ∈ A(J) and finite

subsets I, J ⊂ N such that I ∩ J = ∅.

Proof. The equivalence (1) ⇔ (2) can be proved exactly as is done in
[8, Theorem 5.3]. The implication (3) ⇒ (2) is obvious, so it remains
to show that (2) ⇒ (3). To this aim, consider σ ∈ PN such that σ is the
identity on I and coincides with σm on J , where σm is the permutation
defined in (2.2). We have

ω(ab) = ω(ασ(ab)) = ω(aασm(b)) = lim
m
ω(aασm(b)) = ω(a)ω(b) ,

where in the second-last equality we have used that {ω(aασm(b))}m∈N

is actually a constant sequence. �
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The next result shows that PN is represented by a large group of
automorphisms in the sense of [19] whenever it acts on a quasi-local
C∗-algebra as in Definition 2.3. This means that for any invariant state
ω ∈ S(A) and any self-adjoint a ∈ A one has

conv{πω(ασ(a)) : σ ∈ PN} ∩ πω(A)
′ 6= ∅ .

Proposition 2.7. Any local action α of PN on a quasi local C∗-algebra

A is a large group of automorphisms.

Proof. The proof can be done as in [8, Theorem 4.2] once we have first
established asymptotic abelianness in average of any symmetric state.
More explicitly, we need to show that if ω is a symmetric state on A,
then M{ω(c[ασ(a), b]d)} = 0 for every a, b, c, d ∈ A.
We start by observing that

M{ω(cασ(a)bd)} =M{ω(ασ(a+)cbd)}

+M{ω(ασ(a−)(c+ − c−)bd)}

as follows by applying [8, Lemma 3.3]. Now the second summand in
the right-hand side of the equality above is 0 since Eωπω(a−)Eω = 0
thanks to (2.1). By PN-abelianness we then have

M{ω(cασ(a)bd)} =M{ω(ασ(a+)cbd)}

= 〈πω(a+)Eωπω(cbd)ξω, ξω〉

= 〈πω(cbd)Eωπω(a+)ξω, ξω〉

=M{ω(cbdασ(a+))}

=M{ω(cbασ(a+)d)} ,

where the last equality is due again to [8, Lemma 3.3]. Now, arguing
as above, one easily sees that M{ω(cbασ(a−)d)} = 0, which ends the
proof. �

As the dynamical system (A,PN) is PN-abelian, by [18, Theorem
3.1.14], one has that the set of symmetric states is indeed a Choquet
simplex. This means that any PN-invariant state is the barycenter of
a unique probability measure which is pseudo-supported on the set of
extreme states, see [6], page 322. More in detail, we have

Proposition 2.8. Let α be a local action of PN on a quasi-local C∗-

algebra A. If ω ∈ SPN(A), then there exists a unique probability measure

µ pseudo-supported on E(SPN(A)) such that

(2.3) ω(a) =

∫

E(SPN(A))

ψ(a)dµ(ψ) , a ∈ A .

We recall that with any state ω on a quasi-local algebra A it is
possible to associate a von Neumann algebra Z⊥

ω ⊂ B(Hω) defined as

Z⊥
ω =

∞⋂

n=1

∨

I∈Fn

πω(A(I))
′′ ,
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where Fn collects all the finite subsets I ⊂ N such that I ⊂ {n, n +
1, . . .}. This algebra is commonly known as the tail algebra of the state
ω, although in quantum statistical mechanics is typically referred to as
the algebra at infinity, see also [6, Definition 2.6.4]. The tail algebra of
an ergodic symmetric state is shown to be trivial below.

Proposition 2.9. Let α be a local action of PN on a quasi-local C∗-

algebra A. The tail algebra Z⊥
ω of any ω in E(SPN(A)) is trivial.

Proof. We first show that Z⊥
ω is contained in the fixed-point von Neu-

mann algebra {T ∈ B(Hω) : Uω
σ T = TUω

σ , σ ∈ PN}, where Uω
σ is the

unitary implementator of ασ in Hω, i.e. Uω
σ πω(a)ξω = πω(ασ(a))ξω,

a ∈ A. Let T be in Z⊥
ω and σ ∈ PN. Then there exists no such that σ

acts trivially on {no, no +1, . . . , }. In particular, adUωσ acts trivially on
πω(A(I)) for every finite subset I contained in {no, no + 1, . . .}. As a
result, adUωσ still acts trivially on

∨
I∈Fno

πω(A(I))
′′. Now since T sits in

particular in
∨

I∈Fno

πω(A(I))
′′, we must have Uω

σ T = TUω
σ .

Furthermore, by Theorem 2.6.5 in [6] we also have that Z⊥
ω is contained

in in πω(A)
′ ∩ πω(A)′′. In particular, ξω is separating for Z⊥

ω . Indeed,
from Z⊥

ω ⊂ πω(A)
′ we see πω(A)

′′ ⊂ (Z⊥
ω )

′, hence ξω is cyclic for (Z⊥
ω )

′.
We are ready to reach the conclusion. Indeed, if T lies in Z⊥

ω , then
Tξω is an invariant vector. By extremality of ω and PN-abelianness, we
then have Tξω = λξω for some λ ∈ C, which means T = λ1 since ξω is
separating for such a T . �

The next proposition provides a quantum analogue of the well-known
Hewitt and Savage theorem that the tail and the symmetric σ-algebras
of an exchangeable sequence of random variables actually coincide, see
[14]. For the reader’s convenience we recall that a sequence of random
variables is exchangeable if the joint distribution of any finite subset of
variables is invariant under permutations.

Given ω in SPN(A), we set ZPN
(ω) := Z(πω(A)

′′) ∩ Uω(PN)
′, where

Uω(PN)
′ := {T ∈ B(Hω) : U

ω
σ T = TUω

σ , σ ∈ PN}

and Z(πω(A)
′′) := πω(A)

′′ ∩ πω(A)′ is the center of πω(A)
′′. The vector

state 〈·ξω, ξω〉 on πω(A)′′ will be denoted by ϕξω .

Proposition 2.10. The tail algebra Z⊥
ω of a symmetric state ω ∈ S(A)

coincides with ZPN
(ω).

Moreover, there exists a unique conditional expectation Eω : πω(A)
′′ →

Z⊥
ω . This is given by

Eω(X) =

∫ ⊕

E(SPN(A))

〈Xψξψ, ξψ〉dµ(ψ), X ∈ πω(A)
′′ ,
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where µ is the measure appearing in (2.3), and X =
∫ ⊕

E(SPN (A))
Xψdµ(ψ).

In addition, Eω preserves the vector state ϕξω .

Proof. By applying Theorem 4.4.3 in [6] and Proposition 3.1.10 in [18],
we see that the abelian von Neumann algebra ZPN

(ω) decomposes into
a direct integral as

ZPN
(ω) =

∫ ⊕

E(SP
N (A))

C1Hψ
dµ(ψ) ∼= L∞(E(SPN(A)), µ) .

Because the diagonal operators of
∫ ⊕

E(SPN (A))
Hψdµ(ψ) are contained in

πω(A)
′′, we can apply Lemma 8.4.1 in [12] to find that

πω(A)
′′ =

∫ ⊕

E(SPN (A))

πψ(A)
′′dµ(ψ) .

The above decomposition enables us to identify the tail algebra. In-
deed, by Theorem 4.4.6 in [6] and Proposition 2.9 one has

Z⊥
ω =

∞⋂

n=1

∨

I∈Fn

πω(A(I))
′′ =

∞⋂

n=1

∨

I∈Fn

∫ ⊕

E(SPN (A))

πψ(A(I))
′′dµ(ψ)

=

∫ ⊕

E(SPN(A))

∞⋂

n=1

∨

I∈Fn

πψ(A(I))
′′dµ(ψ)

=

∫ ⊕

E(SPN(A))

C1Hψ
dµ(ψ) = ZPN

(ω) .

Since by Proposition 2.7 PN acts as a large group of automorphisms
on A, Theorem 3.1 in [19] applies yielding the existence of a unique
conditional expectation, Eω, from πω(A)

′′ onto ZPN
(ω) = Z⊥

ω .
All is left to do is prove the formula for Eω. To this end, note that

F (X) :=
∫ ⊕

E(SP
N(A))

〈Xψξψ, ξψ〉dµ(ψ), X in πω(A)
′′, defines a conditional

expectation of πω(A)
′′ onto Z⊥

ω as it is the direct integral of states.
By uniqueness one sees that F = Eω. Finally Eω is seen to preserve
the vector state 〈·ξω, ξω〉 by means of simple computations, see also [9,
Theorem 5.3]. �

Before we can state our version of de Finetti’s theorem tailored to the
present context, we need to recall what should be meant by conditional
independence for a net of local algebras {A(I) : I ∈ P0(N)} with re-
spect to a given state ω of the quasi-local algebra A. We start by recall-
ing that for any such state ω the tail algebra Z⊥

ω will always be commu-
tative, see [6, Theorem 2.6.5], and thus expected. In other words, there
will always exist a conditional expectation Fω : πω(A)

′′ → Z⊥
ω . As is

customary, we will need to work under the hypothesis that such condi-
tional expectation is normal and ϕξω -preserving, that is 〈Fω[X ]ξω, ξω〉 =
〈Xξω, ξω〉 for any X ∈ πω(A)

′′.
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Definition 2.11. The net {A(I) : I ∈ P0(N)} of the local algebras is
conditionally independent with respect to a conditional expectation Fω
as above if for any I, J ∈ P0(N) with I ∩ J = ∅ we have

Fω[XY ] = Fω[X ]Fω[Y ]

for every X ∈ πω(A(I))
′′
∨
Z⊥
ω and Y ∈ πω(A(J))

′′
∨
Z⊥
ω ;

We are now ready to state our result.

Proposition 2.12. Let α be a local action of PN on a net of local C∗-

algebras with quasi-local algebra A. If ω ∈ S(A) is symmetric, then

Eω ◦ adUωσ = Eω for every σ ∈ PN. Conversely, ω ∈ S(A) is symmetric

if Fω ◦adUωσ = Fω, σ ∈ PN, for some normal ϕξω-preserving conditional

expectation Fω : πω(A)
′′ → Z⊥

ω .

Moreover, in this case the net is conditionally independent with respect

to Eω.

Proof. Suppose that ω is a symmetric state. Then by Proposition
2.10, the tail algebra is given by Z⊥

ω =
∫ ⊕

E(SPN (A))
C1Hψ

dµ(ψ) and the

unique conditional expectation Eω : πω(A)
′′ → Z⊥

ω decomposes as

Eω(X) =
∫ ⊕

E(SPN (A))
〈Xψξψ, ξψ〉dµ(ψ) for every X ∈ πω(A)

′′. We ob-

serve that for any σ ∈ PN the unitary Uω
σ decomposes into a direct

integral as well. More precisely, Uω
σ =

∫ ⊕

E(SPN (A))
Uψ
σ dµ(ψ), where U

ψ
σ is

the unitary acting on Hψ as Uψ
σ πψ(x)ξψ = πψ(ασ(x))ξψ, x ∈ A. Us-

ing this decomposition of Uω
σ , it is now straightforward to check that

Eω ◦ adUωσ = Eω, for every σ ∈ PN.
The converse implication follows by direct computation. Indeed, let
Fω : πω(A)

′′ → Z⊥
ω be a conditional expectation such that Fω ◦ adUωσ =

Fω for every σ ∈ PN. For a ∈ A and σ ∈ PN one then has

ω(ασ(a)) =〈πω(ασ(a))ξω, ξω〉 = 〈Fω ◦ adUωσ (πω(a))ξω, ξω〉

=〈Fω(πω(a))ξω, ξω〉 = ω(a) ,

which shows that ω is symmetric, and thus Fω = Eω thanks to Propo-
sition 2.10.

As for conditional independence, fix now I1, I2 ⊂ N finite subsets
with I1 ∩ I2 = ∅, and for i = 1, 2 take Xi ∈ πω(A(Ii))

′′
∨

Z⊥
ω . We need

to show that Eω(X1X2) = Eω(X1)Eω(X2). To this end, we start by
considering two localized elements, that is Xi ∈ πω(A(Ii)), i = 1, 2,
with I1 ∩ I2 = ∅. In this case, by using Proposition 2.10 and (3) in the
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statement of Theorem 2.6 we have

Eω(X1X2)

=

∫ ⊕

E(SPN (A))

〈X1,ψX2,ψ ξψ, ξψ〉1Hψ
dµ(ψ)

=

∫ ⊕

E(SPN (A))

〈X1,ψ ξψ, ξψ〉〈X2,ψ ξψ, ξψ〉1Hω
dµ(ψ)

=

∫ ⊕

E(SPN (A))

〈X1,ψ ξψ, ξψ〉1Hω
dµ(ψ)

∫ ⊕

E(SPN(A))

〈X2,ψ ξψ, ξψ〉1Hω
dµ(ψ)

= Eω(X1)Eω(X2) .

Since Eω is a normal conditional expectation, by density the above
equality still holds for Xi ∈ πω(A(Ii))

′′, i = 1, 2.
We are now ready to deal with the general case. As Z⊥

ω is contained in
the center of πω(A)

′′, we may assume that Xi, i = 1, 2, is of the form
Xi =

∑
j∈F T

i
jC

i
j, where F is a finite set, {T ij : j ∈ F} ⊂ πω(A(Ii))

′′

and {C i
j : j ∈ F} ⊂ Z⊥

ω for i = 1, 2. Since X1X2 =
∑

j,l∈F T
1
j T

2
l C

1
jC

2
l ,

we find

Eω(X1X2) =
∑

j,l∈F

Eω(T
1
j T

2
l )C

1
jC

2
l =

∑

j,l∈F

Eω(T
1
j )Eω(T

2
l )C

1
jC

2
l

=
∑

j∈F

Eω(T
1
j )C

1
j

∑

l∈F

Eω(T
2
l )C

2
l = Eω(X1)Eω(X2)

and the proof is complete. �

If more assumptions are made on the structure of the net of the
local algebras, the global invariance condition Eω ◦ adUωσ = Eω can
be recast in a seemingly weaker way. To this end, from now on we
will assume that the net {A(I) : I ∈ P0(N)} is additive2, namely that
A(I ∪ J) = C∗(A(I),A(J)) for every I, J ∈ P0(N). In particular, for
any finite subset I ⊂ N we have A(I) = C∗(A({i}) : i ∈ I).
In the present context Theorem 2.12 can be stated as follows.

Proposition 2.13. Let α be a local action of PN on an additive net

of local C∗-algebras. A state ω ∈ S(A) on the quasi-local algebra A is

symmetric if and only if:

(i) the local algebras are conditionally independent w.r.t. Eω;
(ii) for every i ∈ N, Eω[πω(ασ(a))] = Eω[πω(a)], a ∈ A({i}), σ ∈

PN.

Proof. By virtue of Theorem 2.12 we need only show that (i) and (ii)
imply that Eω ◦ adUωσ = Eω.
Since Eω is a normal conditional expectation, by density of πω(A) in

2The terminology is borrowed from algebraic quantum field theory, see Definition
4.13 in [3].
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the bicommutant πω(A)
′′, it is enough to verify the equality on πω(A).

As A is in turn the inductive limit of the local algebras, the thesis
will be achieved if we show that for any fixed finite subset I ⊂ N

one has Eω[ασ(πω(a))] = Eω[πω(a)] for every a ∈ A(I). By additivity
there is no loss of generality to assume that a factors into a product as
a = ai1ai2 · · · ain , with il 6= ik (possible repetitions of the same index at
different places are dealt with by means of (iii) in Definition 2.2). For
any σ ∈ PN we then have:

Eω[πω(ai1ai2 · · ·ain)] = Eω[πω(ai1)]Eω[πω(ai2)] · · ·Eω[πω(ain)]

= Eω[πω(ασ(ai1))]Eω[πω(ασ(ai2))] · · ·Eω[πω(ασ(ain))]

= Eω[πω(ασ(ai1ai2 · · ·ain)] ,

which ends the proof. �

It is worth noting that when the quasi-local algebra arises as a quo-
tient of the infinite free product ∗NB of a sample C∗-algebra B, the
conditions (i) and (ii) in the statement above return the usual notion
for a (quantum) stochastic process to be conditionally independent and
identically distributed with respect to the tail algebra. Indeed, in this
case the states of the quotient are in a one-to-one correspondence with
the stochastic processes on the sample algebra B, see e.g. Theorem
3.4 and Definition 4.1 in [9] or Theorem 2.3 in [10].

3. Processes on infinite graded tensor products

In this section, we collect some results on Z2-graded algebraic struc-
tures obtained as tensor products of graded ∗-algebras. Consider the
C∗-algebras A1 and A2, and denote by A1 ⊗ A2 the algebraic tensor
product A1 ⊙ A2 with the product and involution given by

(a1 ⊗ a2)(a
′
1 ⊗ a′2) := a1a

′
1 ⊗ a2a

′
2 , (a1 ⊗ a2)

∗ := a∗1 ⊗ a∗2 ,

for all a1, a
′
1 ∈ A1, a2, a

′
2 ∈ A2. Let us denote by A1 ⊗max A2 and

A1 ⊗min A2 the completions of A1 ⊗ A2 with respect to the maximal
and minimal C∗-cross norm, respectively, see [21].
If one takes ω1 ∈ S(A1) and ω2 ∈ S(A2), their product state ψω1,ω2

∈
S(A1⊗minA2) is well defined also on A1⊗maxA2, and consequently the
notation ψω1,ω2

∈ S(A1 ⊗ A2) will be used in the sequel.

Suppose that (A1, θ1) and (A2, θ2) are Z2-graded ∗-algebras, and con-
sider the linear space A1⊙A2. In what follows, we recall the definition
of the involutive Z2-graded tensor product, which will be henceforth
denoted by A1⊗̂A2. For homogeneous elements a1 ∈ A1, a2 ∈ A2 and
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i, j ∈ Z2, we set

ε(a1, a2) :=

{
−1 if ∂(a1) = ∂(a2) = −1 ,
1 otherwise .

ǫ(i, j) :=

{
−1 if i = j = −1 ,
1 otherwise .

Given x, y ∈ A1 ⊙ A2 with

x := ⊕i,j∈Z2
xi,j ∈ ⊕i,j∈Z2

(A1,i ⊙ A2,j) ,

y := ⊕i,j∈Z2
yi,j ∈ ⊕i,j∈Z2

(A1,i ⊙ A2,j) ,

the involution, which by a minor abuse of notation we continue to
denote by ∗, and the multiplication on A1⊗̂A2 are defined as (see also
e.g. [7])

x∗ :=
∑

i,j∈Z2

ǫ(i, j)x∗i,j ,

xy :=
∑

i,j,k,l∈Z2

ǫ(j, k)xi,jyk,l .

The ∗-algebra thus obtained, in [7] referred to as the Fermi tensor
product of A1 and A2, also carries a Z2-grading. This is induced by the
∗-automorphism θ = θ1⊗̂θ2, whose action on simple tensors is given by

(3.1) θ1⊗̂θ2(a1⊗̂a2) := θ1(a1)⊗̂θ2(a2) , a1 ∈ A1 , a2 ∈ A2 ,

where a1⊗̂a2 is nothing but a1 ⊗ a2 thought of as an element of the
Z2-graded ∗-algebra A1⊗̂A2, since A1⊗̂A2 = A1 ⊗ A2 as linear spaces.
As of now, we will use a1 ⊗ a2 and a1⊗̂a2 interchangeably when no
confusion can occur.
The even and odd part of the Fermi product are respectively

(
A1⊗̂A2

)
+
=
(
A1,+ ⊙ A2,+

)
⊕

(
A1,− ⊙ A2,−

)
,

(
A1⊗̂A2

)
−
=
(
A1,+ ⊙ A2,−

)
⊕

(
A1,− ⊙ A2,+

)
.

The construction of the algebraic Fermi tensor product can of course
be performed with an arbitrary number n of C∗-algebras Ai, i =
1, 2, . . . , n. As usual, as a linear space A1⊗̂A2⊗̂ · · · ⊗̂An is given by
the algebraic tensor product A1 ⊙A2 ⊙ · · ·⊙ An. Product and involu-
tion can be defined by carefully exploiting the associativity of the usual
tensor product. The ∗-algebra A1⊗̂A2⊗̂ · · · ⊗̂An can be turned into a
Z2-graded algebra by the grading θ(n) := θ1⊗̂θ2⊗̂ · · · ⊗̂θn defined as in
(3.1).

For ωi ∈ S(Ai), i = 1, 2, the state ψω1,ω2
has a counterpart in A1⊗̂A2

by means of the product functional ω1 × ω2, defined as usual by

ω1 × ω2

( n∑

j=1

a1,j⊗̂a2,j

)
:=

n∑

j=1

ω1(a1,j)ω2(a2,j) ,
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for all
∑n

j=1 a1,j⊗̂a2,j ∈ A1⊗̂A2. Contrary to the case of a trivial grad-
ing, the functional defined above is not necessarily positive, unless at
least one between ω1 and ω2 is even, see [7, Proposition 7.1]. More in
general, given ωi ∈ S(Ai), we denote by ω1 × ω2 × · · · × ωn the linear
functional on A1⊗̂A2⊗̂ · · · ⊗̂An defined on simple tensors as

ω1 × ω2 × · · · × ωn(a1⊗̂a2⊗̂ · · · ⊗̂an) := ω1(a1)ω2(a2) · · ·ωn(an)

for every ai ∈ Ai. The following proposition is a straightforward gen-
eralization of [11, Proposition 2.6].

Proposition 3.1. Let (Ai, θi) be graded C∗-algebras, i = 1, 2, . . . n.
Given ωi ∈ S(Ai), then their product state ω1×ω2×· · ·×ωn is positive

if and only if at least n−1 of them are even. Moreover, ω1×ω2×· · ·×ωn
is even if and only if all states ω1, ω2, . . . , ωn are even.

Proof. A simple induction on n. �

As in the case with only two factors, which has been addressed in
[11], the product A1⊗̂A2⊗̂ · · · ⊗̂An will in general admit many C∗-
completions. We first consider the minimal completion, namely the
one obtained by completing with respect to the norm

‖x‖min := sup{‖πω(x)‖ : ω = ω1×ω2 · · ·×ωn, ωi ∈ S+(Ai), i = 1, . . . , n} ,

which we denote by A1⊗̂minA2⊗̂min · · · ⊗̂minAn. It is still a Z2-graded
C∗-algebra, with the grading obtained by extending θ(n) to the minimal
completion, cf. [11, Proposition 4.7].

Minimal infinite tensor Fermi products can be defined through in-
ductive limits. More precisely, if {(Ai, θi) : i ∈ N} is a countable family
of unital Z2-graded C

∗-algebras, then for each n ∈ N we can consider
the injective homomorphism

Φn : A1⊗̂minA2⊗̂min · · · ⊗̂minAn → A1⊗̂minA2⊗̂min · · · ⊗̂minAn⊗̂minAn+1

completely determined by

Φn(a1⊗̂a2⊗̂ · · · ⊗̂an) = a1⊗̂a2⊗̂ · · · ⊗̂an⊗̂1 ,

for every ai ∈ Ai and i = 1, . . . , n, where by a slight abuse of notation
1 denotes the unity of Ai for every i ∈ N.
Clearly, {A1⊗̂minA2⊗̂min · · · ⊗̂minAn,Φn} is an inductive system of C∗-

algebras, whose limit we denote by ⊗̂
i∈N
minAi and call the (minimal) in-

finite Fermi tensor product.

We denote by ιn the embedding ofA1⊗̂minA2⊗̂min · · · ⊗̂minAn into ⊗̂
i∈N
minAi.

Henceforth, we will often write a1⊗̂a2⊗̂ · · · ⊗̂an⊗̂1 ⊗̂1 · · · rather than
write ιn(a1⊗̂a2⊗̂ · · · ⊗̂an), as is commonly done in the literature.

Infinite Fermi tensor products provide examples of quasi-local al-
gebras. Here, the net of local subalgebras is as follows. For every
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I = {i1, . . . , i|I|} finite subset of N, we denote by A(I) ⊂ ⊗̂
i∈N
minAi the

unital C∗-subalgebra generated by simple tensors of the type

1⊗̂ · · · ⊗̂ai1⊗̂ · · · ⊗̂ai2⊗̂ · · · ⊗̂ai|I|⊗̂1⊗̂1 · · ·

when the aij ’s vary in Aij , j = 1, . . . , |I|.

If now A is a fixed unital C∗-algebra, we denote by A(n) the min-

imal Fermi tensor product of A with itself n times and by ⊗̂
N

minA

the corresponding infinite graded tensor product. We still denote by

ιn : A(n) → ⊗̂
N

minA the embeddings of A(n) into ⊗̂
N

minA.

Finally, note that ⊗̂
N

minA is still a Z2-graded C
∗-algebra, whose grading,

which we denote by ⊗̂
N
θ, is obtained as the inductive limit ot the θ(n)’s.

In the following example we show how the CAR algebra can be re-
obtained as an infinite Fermi tensor product.

Example 3.2. Our starting data is the Z2-graded C
∗-algebra (A, θ) =

(M2(C), ad(U)), where U is the (Pauli) unitary matrix U =

(
1 0
0 −1

)
.

Note that, given B ∈ M2(C), one has UBU∗ = B if and only if B is a
diagonal matrix and UBU∗ = −B if and only if B is anti-diagonal.

We next show that ⊗̂
N
M2(C) is ∗-isomorphic with the CAR algebra

and ⊗̂
N
ad(U) is its usual grading. To this end, set A :=

(
0 1
0 0

)
.

Note that A is odd and A2 = 0, A∗A + AA∗ = I. For every j ∈ N,

denote by ij : M2(C) → ⊗̂
N
M2(C) the injective

∗-homomorphism given
by

ij(B) = 1⊗̂1⊗̂ · · · ⊗̂ B︸︷︷︸
j-th place

⊗̂1⊗̂1 · · · , B ∈ M2(C).

and define aj := ij(A), j ∈ N. Since A generates M2(C), {aj : j ∈ N} is
a set of generators of the infinite Fermi tensor product of M2(C) with
itself. Now the relations ajak + akaj = 0 and aja

∗
k + a∗kaj = δj,kI,

j, k ∈ N, are a straighforward consequence of the equalities A2 =
0, A∗A + AA∗ = I and of the fact that A is odd. As the CAR al-
gebra, CAR(N), is the universal C∗-algebra generated by bj ’s satis-
fying the above relations, we find that there must exist a surjective

∗-homomorphism Ψ : CAR(N) → ⊗̂
N
M2(C) such that Ψ(bj) = aj ,

for every j ∈ N. By simplicity of CAR(N), Ψ is also injective and

so CAR(N) ∼= ⊗̂
N
M2(C). Finally, as for the grading, it is enough to

observe that each aj is odd w.r.t. ⊗̂
N
ad(U).
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If ωi ∈ S+(Ai) are even states for every i ∈ N, then their infinite

product, ×
i∈N
ωi, is the state on ⊗̂

i∈N
minAi uniquely determined by

×
i∈N
ωi(x1 ⊗̂ · · · ⊗̂xn ⊗̂1 ⊗̂1 ⊗̂ · · · ) = ω1(x1)ω2(x2) · · ·ωn(xn)

for every xi ∈ Ai, i = 1, 2, . . . , n, and every n ∈ N.
If ωi is a fixed even state ω on A for each i ∈ N, we then simply denote

by ×Nω the product state ×
i∈N
ωi on ⊗̂

N

minA .

Similarly to what we have seen for C∗-algebras, the definition of
the Z2-graded tensor product of two Hilbert spaces, as given in [11],
can easily be extended to an arbitrary number of spaces. We start by
recalling that a Z2-graded Hilbert space is a pair (H, U), where H is a
(complex) Hilbert space and U a self-adjoint unitary acting on H. In
such a situation, H decomposes into an orthogonal direct sum of the
type

H = H+ ⊕H− ,

where H+ := Ker(I − U) and H− := Ker(I + U). As usual, vectors
in H+ (H−) are called even (odd) vectors. Even or odd vectors are
collectively referred to as homogeneous vectors.
The Hilbert tensor product H1 ⊗ H2 of two Z2-graded Hilbert spaces
(H1, U1) and (H2, U2) will always be conceived of as a graded Hilbert
space, with the natural grading associated with U1 ⊗ U2.

We also recall that infinite tensor products of Hilbert spaces can
be defined as direct limits of finite products following a construction
due to von Neumann, which we rather quickly sketch for convenience.
We first observe that, given two Hilbert spaces H1 and H2, for any
unit vector ξ ∈ H2 the map H1 ∋ x → x⊗ξ ∈ H1⊗H2 is isometric.
Given a sequence {(Hi, ξi) : i ∈ N} of Hilbert spaces, where for each
i ∈ N ξi ∈ Hi is a unit vector, we can consider the isometries Φn :
H1⊗H2⊗ · · ·⊗Hn → H1⊗H2⊗ · · ·⊗Hn+1 given by

Φn(x1⊗x2⊗ · · ·⊗xn) := x1⊗x2⊗ · · ·⊗xn⊗ξn+1.

The infinite tensor product of the Hilbert spaces Hi with respect to
the sequence ξ = {ξi}i∈N is by definition the inductive limit of the
direct system {(H1⊗H2⊗ · · ·⊗Hn,Φn) : n ∈ N}, and will be denoted
by ⊗

ξ
Hi. For each integer n, we denote by ιn the isometric embedding

of H1⊗H2⊗ · · ·⊗Hn into ⊗
ξ
Hi. Note that ιn+1 ◦ Φn = ιn for every n

by definition of inductive limit. Instead of ιn(x1⊗x2⊗ · · ·⊗xn) we will
every so often write x1⊗x2⊗ · · ·⊗xn⊗ξn+1⊗ξn+2⊗ · · · . When all the
Hilbert spaces Hi are graded, say by self-adjoint unitaries Ui ∈ B(Hi),
then the infinite product ⊗

ξ
Hi can be equipped with a Z2-grading

through the self-adjoint unitary ⊗n∈NUn, whose definition is deferred



DE FINETTI-TYPE THEOREMS 19

to Section 4.

In [11] the Fermi product of grading-equivariant representations was
defined for two representations. Obviously, the construction given
there continues to work with an arbitrary number n of representa-
tions. In other terms, if πi : Ai → B(Hi), with i = 1, 2, . . . , n, are
grading-equivariant representations acting on the Z2-graded Hilbert
spaces (Hi, Ui), then it is possible to define a representation π of the
Fermi product A1⊗̂A2⊗̂ · · · ⊗̂An acting on the Hilbert space H :=
H1⊗H2⊗ · · ·⊗Hn as

π(a1⊗̂a2⊗̂ · · · ⊗̂an) := π1(a1)⊗̂π2(a2)⊗̂ · · · ⊗̂πn(an)

for every ai ∈ Ai, i = 1, 2, . . . , n. Note that in the formula above
the symbol ⊗̂ is actually used to denote the Fermi tensor product of
two or more operators acting on (possibly different) Hilbert spaces,
as defined in [11]. For convenience, we recall the definition with two
(homogeneous) operators Ti ∈ B(Hi), i = 1, 2:

T1⊗̂T2(ξ1 ⊗ ξ2) := T1ξ1 ⊗ T2ξ2

for homogeneous vectors ξi ∈ Hi, where, as usual, the sign ε(T2, ξ1)
is −1 if T2 and ξ1 are both odd. Notice that if T1 and T2 are both
even, then T1⊗̂T2 is nothing but the usual tensor product T1 ⊗ T2 of
operators.
We will say that π is the Fermi tensor product of the representations
πi and write π = π1⊗̂π2⊗̂ · · · ⊗̂πn. It is easy to verify that π can be ex-
tended to a representation of the completion A1⊗̂minA2⊗̂min · · · ⊗̂minAn.
With a slight abuse of notation, we continue to denote this extension by
π1⊗̂π2⊗̂ · · · ⊗̂πn. Once finitely many representations have been dealt
with, infinitely many representations can be handled easily. For the
sake of simplicity, we only consider cyclic representations.
Indeed, if πωi : Ai → B(Hωi), with i ∈ N, are the GNS representations
of the even states ωi ∈ S+(Ai), then their Fermi product is the repre-
sentation ⊗̂

i∈N
πωi of the Fermi product C∗-algebra ⊗̂minAi acting on the

Hilbert space ⊗
ξ
Hωi, with ξ := {ξωi}i∈N, uniquely determined by

⊗̂
i∈N

πωi(a1 ⊗̂ · · · ⊗̂an ⊗̂1 ⊗̂1 ⊗̂ · · · ) = πω1
(a1)⊗̂ · · · ⊗̂πωn(an) ⊗̂1 ⊗̂1 ⊗̂ · · · .

Remark 3.3. The representation ⊗̂
i∈N

πωi is still cyclic and coincides

(up to unitary equivalence) with the GNS representation of the product
state ω = ×

i∈N
ωi. Indeed, the unit vector ξ defined as

ξ := ιn(ξω1
⊗ · · ·⊗ξωn) =: ⊗

i∈N
ξωi

(note that the definition does not depend on n) is cyclic, and the equal-
ity ω(·) = 〈 ⊗̂

i∈N
πωi(·)ξ, ξ〉 is easily checked.
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Remark 3.4. Note that if we start with a faithful even state ω on
A, then its product ×Nω will be a faithful state on ⊗̂

N

minA. This can
actually be seen much in the same way as in the proof of Proposition
5 in [13], page 22.

Finally, we will simply denote by ⊗N Hω the infinite product ⊗
ξ
Hωi ,

with Hωi = Hω and ξ being sequence constantly equal to ξω.

As already remarked, the infinite Fermi tensor product ⊗̂
N

minA of a

given C∗-algebra A is a quasi-local algebra. In addition, ⊗̂
N

minA is acted
upon by PN in a natural way. Indeed, associated with any σ ∈ PN there

is a ∗-automorphism ασ ∈ Aut(⊗̂
N

minA), which is completely determined
by

ασ(ιn(a1⊗̂a2⊗̂ · · · ⊗̂an)) = ιn(aσ(1)⊗̂aσ(2)⊗̂ · · · ⊗̂aσ(n)) ,

for n ∈ N, ai ∈ A, i = 1, 2, . . . , n. Clearly, this is a local action of PN in
the sense of Definition 2.3. In particular, Theorem 2.6 applies to the
present context in a strengthened fashion. More precisely, the extreme
symmetric states can now be characterized as infinite products of a
given state on A.

Proposition 3.5. Let (A, θ) be a Z2-graded C
∗-algebra. If ω is a sym-

metric state on ⊗̂
N

minA, then the following are equivalent:

(1) ω is extreme;

(2) ω is strongly clustering;

(3) there exists an even state ρ ∈ S(A) such that ω = ×Nρ.

Proof. In light of Theorem 2.6 we need only show that (2) and (3) are
equivalent, which can be done exactly as in [8, Theorem 5.3]. �

As a consequence of the above result, we find that the extreme sym-

metric states of ⊗̂
N

minA are sufficiently many to separate its points. This
circumstance plays an instrumental role in proving weak ergodicity of
the permutation action on an infinite product, as shown below.

Proposition 3.6. For any given Z2-graded C
∗-algebra (A, θ), the C∗-

dynamical system (⊗̂
N

minA,PN, {ασ : σ ∈ PN}) is weakly ergodic, i.e.

x ∈ ⊗̂
N

minA with ασ(x) = x for every σ ∈ PN implies x = λ1 for some

λ ∈ C.

Proof. We start by showing that for any given x in ⊗̂
N

minA there exists a

separable Z2-graded subalgebra Ã ⊂ A such that x belongs to ⊗̂
N

minÃ.
Indeed, by definition x is the limit in norm of a sequence {xn}n∈N,
where the xn’s are elements of the form

xn =
∑

k≤Kn

a
(n)
1,k ⊗̂a

(n)
2,k ⊗̂ · · · ⊗̂a(n)Ln,k

⊗̂1⊗̂1 · · ·
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where Kn, Ln are suitable integers and a
(n)
i,k belongs to A for every

integers k ≤ Kn and i ≤ Ln. The countably generated C∗-subalgebra

Ã := C∗{a(n)i,k , θ(a
(n)
i,k ) : i ≤ Ln, k ≤ Kn, n ∈ N} ⊂ A

clearly does the job. Let now x in ⊗̂
N

minA be a fixed point, that is
ασ(x) = x for every σ ∈ PN, and let ρ be a faithful even state on

the separable C∗-algebra Ã considered above. Note that the action of

PN leaves ⊗̂
N

minÃ invariant. Define ω as the infinite product of ρ with
itself. By Remark 3.4 ω is still faithful. Since x is invariant under the
action of all σ’s in PN, we have that πω(x)ξω lies in HPN

ω . By virtue of
Propositions 2.4 and 3.5 there exists λ ∈ C such that πω(x)ξω = λξω.
By faithfulness of ω we find x = λ1. �

The compact convex set SPN(⊗̂
N

minA) is again a Choquet simplex.
Moreover, its extreme points make up a closed set since the bijec-

tion S+(A) ∋ ρ
T
7→ ×Nρ ∈ E(SPN(⊗̂

N

minA)) establishes a homeomor-
phism between the two topological spaces. In particular, for any ω ∈

SPN(⊗̂
N

minA), there exists a unique probability measure µ which is now

genuinely supported on E(SPN(⊗̂
N

minA)) such that

ω =

∫

E(SPN (⊗̂
N

minA))

ψ dµ(ψ) .

Because S+(A) and E(SPN(⊗̂
N

minA)) are homeomorphic compact spaces,
the above equality can also be rewritten as

ω =

∫

S+(A)

×Nρ dµ∗(ρ) ,

where µ∗ is the probability measure on S+(A) induced by µ through
T , i.e. µ∗(B) = µ(T (B)), for any Borel set B ⊂ S+(A).

The structure of our Choquet simplex can be further analyzed by
spotting its faces. This was done in [20] in the case of usual infinite ten-
sor products and can be easily adapted to the present situation. More
explicitly, Theorem 2.9 and Corollary 2.10 in [20] admit a straightfor-
ward extension to the graded case. In order to the state it, we keep
the same notation as in the above mentioned paper and denote by X
the generic type of a given von Neumann algebra. In other words, X
can be I, II1, II∞, III.

Proposition 3.7. For any X as above, define the convex subsets

SPN(⊗̂
N

minA)X := {ω ∈ SPN(⊗̂
N

minA) : πω(⊗̂
N

minA)
′′ is of typeX} .

Then SPN(⊗̂
N

minA)X is a face of SPN(⊗̂
N

minA). Moreover, SPN(⊗̂
N

minA) is

the closed convex hull of the faces SPN(⊗̂
N

minA)X .
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We are next going to draw our attention to maximal completions of
infinite graded tensor products. As we will recall, these can also be ob-
tained as quotients of a universal C∗-algebra, the infinite free product
of a given C∗-algebra. It is this very property that makes maximal com-
pletions particularly suited to establishing a correspondence between
their symmetric states and quantum stochastic processes of a particu-
lar form. Notably, this allows us to come to a version of de Finetti’s
theorem for the processes thus obtained. With this in mind, we start
by quickly outlining how maximal completions of infinite products can
be got to.
For finitely many factors Ai, i = 1, 2, . . . , n, the maximal Fermi ten-
sor product A1⊗̂maxA2⊗̂max · · · ⊗̂maxAn is nothing but the completion
of the algebraic product A1⊗̂A2⊗̂ · · · ⊗̂An with respect to the maximal
C∗-norm, see [7] for the details. Infinite products, as usual, are dealt
with by taking inductive limits. Henceforth we will be focusing on the

maximal infinite tensor product ⊗̂
N

maxA of a given Z2-graded C
∗-algebra

(A, θ).

First, we observe that ⊗̂
N

maxA can also be recovered as a suitable quo-
tient of the infinite free product ∗NA of A with itself, see [5] for a
thorough account of free products. Note that ∗NA is a Z2-graded C

∗-
algebra with grading given by θ∗ := ∗Nθ. For every j ∈ N, we will
denote by ij : A → ∗NA the j-th embedding of A into its infinite free
product, cf. [5]. Consider now the closed two-sided ideal I of ∗NA
generated by elements of the form [ij(a), ik(b)]θ∗ as a, b vary in A and
j 6= k, where for homogeneous x, y in ∗NA the symbol [x, y]θ∗ is the
commutator of x and y if at least one of them is even, or the anti-
commutator when x and y are both odd.
An easy application of [7, Theorem 8.4] shows that the quotient C∗-

algebra ∗NA/I is ∗-isomorphic with ⊗̂
N

maxA. We will denote by Ψ :

∗NA → ⊗̂
N

maxA the canonical projection onto the quotient.
Following [9], by a quantum stochastic process we mean a quadruple
(A, {ιj : j ∈ N},H, ξ), where A is a unital C∗-algebra, H is a Hilbert
space, ιj : A → B(H) is a ∗-representation for every j ∈ N, and ξ ∈ H
is a cyclic vector for the von Neumann algebra

∨
j∈N ιj(A). As shown in

[9], there is a one-to-one correspondence between stochastic processes
on A and states of the infinite free product ∗NA. This is realized as
follows. Starting from a state ω on ∗NA, the corresponding process is
obtained as

(3.2) ιj := πω ◦ ij , j ∈ N.

Note that the GNS vector ξω is certainly cyclic for
∨
j∈N ιj(A). Now PN

acts naturally on the infinite free product ∗NA. Indeed for any σ ∈ PN

there is a unique automorphism ασ of ∗NA determined by

ασ(ij1(a1)ij2(a2) · · · ijn(an)) = iσ(j1)(a1)iσ(j2)(a2) · · · iσ(jn)(an)
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for j1 6= j2 6= · · · 6= jn ∈ N, a1, a2, . . . , an ∈ A, n ∈ N. Invariant
states under this action of PN are again referred to as symmetric states
and correspond to so-called exchangeable processes. We recall that a
process (A, {ιj : j ∈ N},H, ξ) is said to be exchangeable if for every
j1 6= j2 6= · · · 6= jn ∈ N, n ∈ N, a1, a2, . . . , an ∈ A, and σ ∈ PN one has

〈ιj1(a1)ιj2(a2) · · · ιjn(an)ξ, ξ〉 = 〈ισ(j1)(a1)ισ(j2)(a2) · · · ισ(jn)(an)ξ, ξ〉 .

We are actually interested in processes (A, {ιj : j ∈ N},H, ξ) where
the sample algebra A is in fact a Z2-graded C

∗-algebra, and such that
for homogeneous a, b ∈ A and j 6= k ιj(a) and ιk(b) commute if at
least one between a or b is even and anti-commute otherwise. Clearly,

processes of this type arise from states of the quotient ∗NA/I ∼= ⊗̂
N

maxA,
and therefore they will be referred to as Z2-graded processes on the
sample algebra A. Like minimal graded infinite products, maximal
ones are seen at once to be quasi-local algebras. In addition, the natural
action of PN on them is of course local. As a consequence, Proposition

2.10 applies, so if ω is a symmetric state on ⊗̂
N

maxA, we denote by

Eω : πω(⊗̂
N

maxA)
′′ → Z⊥

ω the unique conditional expectation onto the
(commutative) tail algebra. That said, we are now ready to state a de
Finetti-type theorem for graded processes.

Theorem 3.8. A Z2-graded process (A, {ιj : j ∈ N},H, ξ), with corre-

sponding ω ∈ S(⊗̂
N

maxA), is exchangeable if and only if:

(i) the process is conditionally independent w.r.t. Eω, namely

Eω[XY ] = Eω[X ]Eω[Y ]

for every X ∈
(∨

i∈I ιi(A)
)∨

Z⊥
ω and Y ∈

(∨
j∈J ιj(A)

)∨
Z⊥
ω ,

and I, J ⊂ N finite disjoint subsets;

(ii) the process is identically distributed w.r.t. Eω, namely

Eω[ιj(a)] = Eω[ιk(a)]

for every j, k ∈ N and a ∈ A.

Proof. It is an application of Proposition 2.13. Indeed, ⊗̂
N

maxA is a
quasi-local C∗-algebra coming from the additive net of local algebras
{A(I) : I ∈ P0(N)}, where A(I) is the unital C∗-subalgebra generated
by simple tensors of the type

1⊗̂ · · · ⊗̂ai1⊗̂ · · · ⊗̂ai2⊗̂ · · · ⊗̂ai|I|⊗̂1⊗̂1 · · ·

when the aij ’s vary in A, j = 1, . . . , |I|.
In order to apply the aforementioned proposition, though, we first need
to ascertain that the equality

∨
i∈I ιi(A) = πω(A(I))

′′ holds for any
finite subset I. This follows by additivity and (3.2), for we have

∨

j∈I

ιj(A) =
∨

j∈I

πω(ij(A)) = πω

(
C∗(ij(A) : j ∈ I)

)′′

= πω(A(I))
′′ ,
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where, by a slight abuse of notation, ij : A → ⊗̂
N

maxA denotes the map
Ψ ◦ ij . �

4. The twisted commutant of a Fermi product and

product states

The main goal of this section is to prove that an infinite product of
even factorial states is still factorial. This task will be accomplished
by making use of the so-called twisted commutant, see [7] and the
references therein. For the reader’s convenience, though, we recall some
basic definitions. By a Z2-graded von Neumann algebra we mean a pair
(M, U), where M ⊂ B(H) is a von Neumann algebra and U ∈ U(H)
is a self-adjoint unitary such that UMU = M. With such a U it
is possible to associate a ∗-automorphism of (B(H), adU), commonly
known as twist automorphism, see e.g. [7] and references therein, which
is defined as

ηU(T+ + T−) := T+ + iUT−
for T = T+ + T− in B(H). The twisted commutant of M is M≀ :=
ηU(M′) = ηU(M)′. Obviously, the definition makes sense with any
subset of B(H). Again, more details are found in [7]. Here, we will
limit ourselves to observing that η2U = adU . We start with a preliminary
lemma.

Lemma 4.1. Let (H, U) be a Z2-graded Hilbert space and let A ⊂ B(H)
be a ∗-algebra such that UAU = A. A vector ξ ∈ H with Uξ = ξ is

cyclic for A if and only if it is cyclic for ηU(A).

Proof. We start by observing that if T ∈ A, then both T+ := T+UTU
2

and T− := T−UTU
2

are still in A. The thesis is reached thanks to the
following computation

ηU (T )ξ = T+ξ + iUT−ξ = (T+ − iT−)ξ

which shows that the map Aξ ∋ Tξ 7→ ηU(T )ξ ∈ Aξ is a linear bijec-
tion. �

Here follows a twisted version of Theorem 2 in [17]. We denote by
As the set of all self-adjoint elements of a given ∗-algebra A. Following
[17], for any subspace K ⊂ H we denote by K⊥ the real orthogonal
complement, namely K⊥ = {x ∈ H : ℜ〈x, k〉 = 0, k ∈ K}, where ℜ is
the real part of a complex number.

Lemma 4.2. Let (H, U) be a Z2-graded Hilbert space and let A,B ⊂
B(H) be unital ∗-subalgebras such that UAU = A and and UBU = B .

If ξ ∈ H is an even cyclic vector for A and A ⊂ B≀, then the following

conditions are equivalent:

(1) A≀ = B≀≀;

(2) ηU (As)ξ + iBsξ is dense in H;

(3) [ηU (As)ξ]
⊥ = iBsξ.
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Proof. Throughout the proof ηU will be simply written as η to ease the
notation. We start by showing that (2) and (3) are equivalent. First,
observe iBsξ ⊂ [η(As)ξ]

⊥. Indeed, for B ∈ Bs and A ∈ As, we have
that η(A)B is self-adjoint because η(A) and B commute since A ⊂ B≀

(that is η(A) ⊂ B′), but then ℜ〈iBξ, η(A)ξ〉 = ℜ〈iη(A)Bξ, ξ〉 = 0.
From the observation above (2) and (3) are seen to be equivalent by
a straightforward application of the following general fact: X +X⊥ is
dense in H for any real subspace X ⊂ H.

We next show that either (2) or (3) implies (1). First, note that (2)
or (3) implies (A≀)sξ ⊂ Bsξ. Indeed, the same computation as above
shows that in general (A≀)sξ ⊂ [iη(As)]

⊥. Obviously, we only have to
prove the inclusion A≀ ⊂ B≀≀ = B′′. To this aim, fix T in (A≀)s and
R ∈ B′

s. We need to show that RT = TR. Since ξ is cyclic for A, by
Lemma 4.1 it is also cyclic for η(A), which means it suffices to verify
that

〈RTAξ, Cξ〉 = 〈TRAξ, Cξ〉

for every A,C ∈ η(A). Now there exists a sequence {Bn}n∈N ⊂ Bs such
that ‖Tξ − Bnξ‖ → 0, and we have

〈RTAξ, Cξ〉 = 〈RATξ, Cξ〉 = lim
n
〈RABnξ, Cξ〉 = lim

n
〈BnRAξ, Cξ〉

where in the last equality we have used that by hypothesis the inclusion
η(A) ⊂ B′ holds. Then

lim
n
〈BnRAξ, Cξ〉 = lim

n
〈RAξ,BnCξ〉 = lim

n
〈RAξ, CBnξ〉

= 〈RAξ, CTξ〉 = 〈RAξ, TCξ〉 = 〈TRAξ, Cξ〉 ,

and we are done.
That (1) implies (2) can be seen in the exact same way as in the

proof of Theorem 2 in [17] provided that A is replaced with η(A). �

Remark 4.3. Taking A = B≀ in the above result, one finds that Asξ+
i(A≀)sξ is a dense subspace of H and [ηU(As)ξ]

⊥ = i(A≀)sξ.

Our aim now is to use Lemma 4.2 to come to a twisted version of
the tensor product commutation theorem. For completeness’ sake, we
recall that this states that the commutant of the tensor product of two
(or infinitely many) von Neumann algebras equals the tensor product
of their commutants. The first general proof was obtained in [22] and
later simplified in [17].

We first need to introduce graded (or Fermi) products of von Neu-
mann algebras. We directly discuss infinite products. If {(Mn, Un) :
n ∈ N} is a family of Z2-graded von Neumann algebras on the Hilbert
spaces Hn and ξ := {ξn : n ∈ N} is a sequence of unit vectors ξn ∈ Hn

such that Unξn = ξn for every n ∈ N, the infinite graded product ⊗̂
ξ
Mn

is the von Neumann algebra on the Hilbert space ⊗
ξ
Hn generated by
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operators T1⊗̂T2⊗̂ · · · ⊗̂Tk⊗̂1⊗̂1 · · · with Ti ∈ Mi for i = 1, 2, . . . , k
and k ∈ N.
The condition Unξn = ξn, n ∈ N, comes in useful to define a self-adjoint
unitary on ⊗

ξ
Hn as the infinite product ⊗n∈NUn. This is understood as

the strong limit of the sequence given by finite products of the type

⊗n
i=1Ui⊗1⊗1⊗ · · ·

which is easily verified to be Cauchy in the strong operator topology.
The operator ⊗n∈NUn thus obtained is a self-adjoint unitary as it is
the limit of self-adjoint unitaries. Moreover, ⊗̂

ξ
Mn is invariant under

the adjoint action of ⊗n∈NUn. Phrased differently, (⊗̂
ξ
Mn,⊗n∈NUn) is

a Z2-graded von Neumann algebra.

In order to arrive at the general form of our product commutation
theorem, we start by attacking the case of a product of two von Neu-
mann algebras.

Theorem 4.4. If M ⊂ B(H) and N ⊂ B(K) are von Neumann alge-

bras on Z2-graded Hilbert spaces (H, U) and (K, V ) such that UMU =
M and VNV = N , then

(M⊗̂N )≀ = M≀ ⊗̂N ≀ .

Proof. We start with the inclusion M≀ ⊗̂N ≀ ⊂ (M⊗̂N )≀, which can be
checked by direct computation as follows. Since for any von Neumann
algebra L by definition one has L≀ = η(L′), we need to show that

[ηU(M
′)⊗̂ηV (N

′), ηU ⊗V (M⊗̂N)] = 0

for every homogeneous M ∈ M, N ∈ N ,M ′ ∈ M′, N ′ ∈ N ′. This
requires an easy but tedious inspection of the signs, which we leave
out.

The converse implication is obtained as an application of Lemma 4.2
with A = M⊗̂N and B = M≀ ⊗̂N ≀. First note that without loss of
generality we may assume that M has an even cyclic vector ξ1 ∈ H and
N has an even cyclic vector ξ2 ∈ K. This can be seen as in [17] and ref-
erences therein because even normal states on a graded von Neumann
algebra separate its points. In particular, ξ := ξ1⊗ξ2 is an even cyclic
vector for M⊗̂N .
In order to apply Lemma 4.2, we need to make sure that η(M⊗̂N )sξ+
i(M≀ ⊗̂N ≀)sξ is dense in H⊗K, where η := ηU⊗̂ηV . Now, as is eas-
ily checked, η(M⊗̂N )sξ ⊃ ηU(Ms)ξ1⊗ηV (Ns)ξ2 and (M≀ ⊗̂N ≀)sξ ⊃
(M≀)sξ1⊗(N ≀)sξ2, which means it is enough to verify that

ηU(Ms)ξ1⊗ηV (Ns)ξ2 + i(M≀)sξ1⊗(N ≀)sξ2
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is dense in H⊗K. In light of Remark 4.3, we are reconducted to veri-
fying that

ηU(Ms)ξ1⊗ηV (Ns)ξ2 + i
(
[ηU(Ms)ξ1]

⊥ ⊗[ηV (Ns)ξ2]
⊥
)

is dense, which follows from the final lemma in [17]. �

We can finally state the general version.

Theorem 4.5. If {(Hi, Ui) : i ∈ N} is a family of Z2-graded Hilbert

spaces, and Ni ⊂ B(Hi) are von Neumann algebras such that UiNiUi =
Ni, ı ∈ N, then (

⊗̂
ξ
Ni

)≀
= ⊗̂

ξ
N ≀
i

for any sequence ξ := {ξi : i ∈ N} of unit vectors ξi ∈ Hi with Uiξi = ξi,
i ∈ N.

Proof. First note that a straightforward induction shows that Theorem
4.4 holds for any finite Fermi tensor product. Again, the inclusion

⊗̂
ξ
N ≀
i ⊂

(
⊗̂
ξ
Ni

)≀
is trivially satisfied.

For the converse inclusion, take T in
(
⊗̂
ξ
Ni

)≀
. We will show that T

sits in the weak closure of ⊗̂
ξ
N ≀
i . Set H := ⊗

ξ
Hi. Now a neighborhood

of T for the weak operator topology is of the form

G = {S ∈ B(H) : |〈(T − S)xi, yi〉| < ε, i = 1, 2, . . . , n},

for some xi, yi ∈ H, i = 1, 2, . . . , n, and ε > 0. By definition of H,
there exists N ∈ N such that

‖Pxi − xi‖ ≤ ε and ‖Pyi − yi‖ ≤ ε, for every i = 1, 2, . . . , n,

where P is the projection uniquely determined on simple tensors ⊗i∈Nui
in H by

P (⊗ui) = ⊗N
i=1ui⊗(⊗i≥N+1〈ui, ξi〉ξi) .

The same calculations as in the proof of Proposition 9 on page 34 of

[13] show that PT lies in (⊗̂
N

i=1Ni)
≀ ⊗̂C ⊗̂C · · · . Since we have

(⊗̂
N

i=1Ni)
≀ ⊗̂C ⊗̂C · · · = ⊗̂

N

i=1N
≀
i ⊗̂C ⊗̂C · · · ⊂ ⊗̂

ξ
N ≀
i

the thesis will be arrived at as long as we make sure that PT ∈ G. This
follows exactly as in the above reference. �

As an easy application of the theorem above, we provide the following
result, where pureness of product states is addressed.

Proposition 4.6. Let (Ai, θi) be Z2-graded C
∗-algebras, and let ωi ∈

S(Ai) be pure states, i ∈ N. Suppose all of these states are even but

one, say ω1. If πω1
and πω1◦θ are unitarily equivalent, then the product

state ×iωi is pure as well.
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Proof. It suffices to note that under the above hypotheses π×iωi is still
(unitarily equivalent to) ⊗̂

ξ
πωi with ξ := {ξωi}i∈N, see Proposition 2.1,

which means Theorem 4.5 applies. �

We are going to further apply Theorem 4.5 to infer factoriality of an
infinite product of even factorial states. To do so, we first establish a
couple of related results.

Lemma 4.7. Let (H, U) be a Z2-graded Hilbert space and let N1,N2 ⊂
B(H) be von Neumann algebras with UNiU = Ni, i = 1, 2, then

(N1 ∩N2)
≀ = N ≀

1 ∨N ≀
2 and (N1 ∨N2)

≀ = N ≀
1 ∩N ≀

2 .

Proof. The first equality is arrived at through the chain of equalities
below

(N1 ∩ N2)
≀ = ηU((N1 ∩ N2)

′) = ηU (N
′
1 ∨N ′

2)

= ηU(N
′
1) ∨ ηU(N

′
2) = N ≀

1 ∨N ≀
2 .

The second follows analogously. �

Proposition 4.8. Let (H, U) and (K, V ) be Z2-graded Hilbert spaces.

If Mi ⊂ B(H) and Ni ⊂ B(K), i = 1, 2, are von Neumann algebras

such that UMiU = Mi and VNiV = Ni, i = 1, 2, then

(M1 ⊗̂N1) ∩ (M2 ⊗̂N2) = (M1 ∩M2)⊗̂(N1 ∩ N2)

and

(M1 ⊗̂N1) ∨ (M2 ⊗̂N2) = (M1 ∨M2)⊗̂(N1 ∨N2) .

Proof. As for the first equality, only the inclusion

(M1 ⊗̂N1) ∩ (M2 ⊗̂N2) ⊂ (M1 ∩M2)⊗̂(N1 ∩N2)

needs to be dealt with, for the converse inclusion is trivially verified.
To this aim, we show that

(
(M1 ∩M2)⊗̂(N1 ∩ N2)

)≀
⊂

(
(M1 ⊗̂N1) ∩ (M2 ⊗̂N2)

)≀
.

Now by Theorem 4.4 and Lemma 4.7 we have
(
(M1 ∩M2)⊗̂(N1 ∩ N2)

)≀
= (M1 ∩M2)

≀⊗̂(N1 ∩N2)
≀

= (M≀
1 ∨M≀

2)⊗̂(N ≀
1 ∨ N ≀

2)

⊂ (M≀
1 ⊗̂N ≀

1) ∨ (M≀
2 ⊗̂N ≀

2)

= (M1⊗̂N1)
≀ ∨ (M2⊗̂N2)

≀

=
(
(M1⊗̂N1) ∩ (M2⊗̂N2)

)≀
.

In the second equality both inclusions can be verified directly. �

Remark 4.9. By using Theorem 4.5 one sees that the first equality of
the above result holds with infinite graded tensor products as well.



DE FINETTI-TYPE THEOREMS 29

Before stating our next result, we recall that a factor is a von Neu-
mann algebra with trivial center.

Proposition 4.10. Under the same hypotheses as in Theorem 4.5, an

infinite Fermi tensor product is a factor if and only if each component

is a factor.

Proof. SetR := ⊗̂
ξ
Ri, where theRi’s are all factors. With U = ⊗i∈NUi,

thanks to Theorem 4.5 and Remark 4.9 we have

ηU(R) ∩ R≀ = ⊗̂
ξ
ηUi(Ri) ∩ ⊗̂

ξ
R≀
i = ⊗̂

ξ

(
ηUi(Ri) ∩ R≀

i

)
= C ,

which shows that R is still a factor. The converse implication is obvi-
ous. �

A representation π : A → B(H) of a given C∗-algebra is said to be
factorial if π(A)′′ is a factor, i.e. π(A)′′ ∩ π(A)′ = C1. A state ϕ of a
C∗-algebra is factorial if its GNS representation is. Moreover, the type
of a factorial state is by definition the same as the type of the factor
generated by its GNS representation.

Proposition 4.11. Let (Ai, θi) be Z2-graded C
∗-algebras, and let ωi be

in S+(Ai), i ∈ N. The product state ω = ×iωi is factorial if and only

if each ωi is.

Proof. A straightforward application of Remark 3.3 and Proposition
4.10. �

Actually, far more can be said about the type of factor one can obtain
from a GNS representation as above. In fact, the analysis conducted
in [20] for tensor products carries over almost verbatim to the graded
case. More precisely, we can provide a graded version of Theorem 2.2 in
[20]. We limit ourselves to stating the result since the proof is exactly
the same as the original by Størmer.

Proposition 4.12. If ω is an even factorial state on a Z-graded C∗-

algebra (A, θ), then

(i) ×Nω is of type I1 if and only if ω is mutiplicative;

(ii) ×Nω is of type I∞ if and only if ω is pure but is not multiplica-

tive;

(iii) ×Nω is of type II1 if and only if ω is a trace but is not multi-

plicative.

(iv) ×Nω is of type II∞ if and only if the restriction of the vector

state ϕξω to πω(A)
′ is a trace, and ω is neither pure nor a trace.

(v) ×Nω is of type III if and only if the restriction of the vector

state ϕξω to πω(A)
′ is not a trace.
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