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Abstract
We consider a non-relativistic particle in a one-dimensional box with all pos-
sible quantum boundary conditions that make the kinetic-energy operator
self-adjoint. We determine the Wigner functions of the corresponding eigen-
functions and analyze in detail their classical limit, governed by their behavior
in the high-energy regime. We show that the quantum boundary conditions
split into two classes: all local and regular boundary conditions collapse to the
same classical boundary condition, while a dependence on singular non-local
boundary conditions persists in the classical limit.

Keywords: classical limit, Wigner function, particle in a box,
quantum boundary conditions, self-adjoint extensions

1. Introduction

The phase-space formulation of quantum mechanics allows to represent states and operators
as functions on classical phase-space [1]. It has various applications, ranging from quantum
optics, quantum chaos and quantum computing to classical optics and signal analysis [2, 3]. In
quantum physics, phase-spacemethods have also been used to characterize the non-classicality
of quantum states, to identify and reconstruct states via quantum tomography, and to under-
stand the quantum-to-classical transition and the correspondence principle [4–7].
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Between many possible quantum (quasi-)probability distributions, the Wigner function
arguably gives the most natural phase-space representation of quantum mechanics. In spite
of a long history of research, the theory of Wigner functions for systems on a manifold (or
phase-space) with non-trivial topology, as well as having boundaries, is still not complete.
For example, group-theoretical approaches have recently been applied for the Wigner func-
tion on the cylinder S1 ×R [8, 9], the discrete cylinder Z×R [10, 11] and the torus S1 ×S1
[12], whereas the deformation quantization approach is usually employed for manifold with
boundaries, see e.g. [13–16].

In this paper, we are interested in two related subjects: (i) the study of the Wigner function
for eigenfunctions of the kinetic-energy operator (i.e. the free Hamiltonian) acting in a one-
dimensional box with general self-adjoint boundary conditions, and (ii) the analysis of these
Wigner functions in the classical limit, that is in the high-energy regime. Preliminary results
in this direction have already been obtained: the Wigner function has been studied in [17, 18]
for the one-dimensional box with Dirichlet boundary conditions, and in [19, 20] for the half-
line with Robin boundary conditions. Besides, in [21–23] the classical limit of the position
and momentum probability distributions for the one-dimensional box with Dirichlet boundary
conditions have been investigated.

The paper is organized as follows. After introducing in section 2 the free Hamiltonian with
general self-adjoint boundary conditions, in section 3 we explicitly compute the Wigner func-
tions associated with the eigenfunctions of the Hamiltonian, and describe how to determine
their classical limit. In section 4, then, we classify the possible classical limits by analyzing
the asymptotic properties of the spectrum in the high-energy regime. Finally, in section 5 we
discuss the results and compare the classical limits with corresponding classical probability
distributions.

2. A quantum particle in a box

We consider a quantum particle of mass m, confined in a one-dimensional box of unit length,
namely the interval J= [−1/2,1/2]. This system is formally described by the kinetic-energy
operator,

H=− ℏ2

2m
d2

dx2
, (1)

which acts on a proper subspace of the Hilbert space L2(J). As it is well-known, see e.g. [24,
25], equation (1) prescribes the action of H only in the bulk of the system. The Hamiltonian H
should indeed be equipped with suitable boundary conditions (BCs), specifying the behavior
of the particle at the boundary of the interval, in order to generate a well-defined quantum
dynamics. In quantum mechanics the possible BCs, encoded in the domainD(H) ofH, cannot
be arbitrary, but are constrained by the requirement that H must be a self-adjoint operator, i.e.
D(H) =D(H∗) and H= H∗. Indeed, self-adjointness is a necessary and sufficient condition
for a (Hermitian) operator to have a purely real spectrum and to generate a unitary dynamics.

Different domains correspond to different behaviors of the particle at the boundary, give
rise to different dynamics and represent different physical situations. All the self-adjoint real-
izations of the operator (1) are known to be in one-to-one correspondence with the set of 2× 2
unitary matrices U ∈ U(2) [26–29]. Each of these realizations, which we henceforth denote
by HU, is defined on the domain
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D (HU) =
{
ψ ∈H2 (J) : (I−U)Ψ ′ = i (I+U)Ψ

}
, U ∈ U(2) , (2)

whereH2(J) is the space of wave functions ψ with square-integrable first and second derivat-
ive, ψ ′ and ψ ′ ′, on the interval J= [−1/2,1/2], while the C2 vectors

Ψ :=

(
ψ
(
− 1

2

)
ψ
(
1
2

) ) , Ψ ′ :=

(
−ψ ′ (− 1

2

)
ψ ′ ( 1

2

) )
, (3)

contain respectively the boundary values of ψ and of its normal derivative, so that the
constraint4

(I−U)Ψ ′ = i (I+U)Ψ , (4)

compactly encodes the BCs to be satisfied by the wave function at the endpoints of the box
x=±1/2. Some physical properties of the BCs will be highlighted in section (2.1).

Let us now introduce the Wigner function associated with a wave function ψ ∈ L2(R), [1–
3, 30]. The Wigner functionWψ represents the joint quasi-probability distribution of position
and momentum in the state ψ and it is given by

Wψ (x,p) :=
1

2πℏ

ˆ
R
e−ipy/ℏψ

(
x+ y

2

)
ψ
(
x− y

2

)
dy (5)

where (x,p) ∈ R2. For a wave function ψ spatially confined in the interval J, i.e. for an element
of L2(J), the associatedWigner function ofψ can be computed considering the function defined
on R that coincides with ψ in the interval J and vanishes outside. With this procedure one
obtains

Wψ (x,p) =
1

2πℏ

ˆ
R
e−ipy/ℏψ

(
x+ y

2

)
ψ
(
x− y

2

)
dy (6a)

=
χ(x)
2πℏ

ˆ 1−2|x|

2|x|−1
e−ipy/ℏψ

(
x+ y

2

)
ψ
(
x− y

2

)
dy , (6b)

where χ is the characteristic function of the interval J= [−1/2,1/2], i.e. χ(x) = 1 if |x|⩽ 1/2
and χ(x) = 0 if |x|> 1/2, see figure 1. We stress that, although being defined for (x,p) ∈ R2,
by construction the above Wigner function vanishes for |x|> 1/2, i.e. outside of the box5.

In the following we are interested both in the explicit expression of the Wigner function for
an eigenfunction of HU, which will be the main topic of section 3, and in its behavior in the
classical limit, which we will discuss in section 4. Before moving on, however, we spend a
few words on the allowed quantum BCs, giving some examples in section 2.1 and introducing
a useful parametrization of U(2) in section 2.2.

4 In some related works, as e.g. [26–28], the alternative parametrization (I+ Ũ)Ψ ′ =−i(I− Ũ)Ψ is adopted, with
a given Ũ ∈ U(2); here, following [29, 31], we find convenient to put Ũ=−U†.
5 Interestingly, equation (6) can also be obtained by applying a ‘regularization’ procedure: in [32], e.g. a particle
moving freely on the half-line is treated as moving on the full line in the presence of an infinite potential wall, the
latter being realized as a limit of a smooth (Morse) potential.
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Figure 1. Integration region of equation (6) (shaded area): as x varies in J= [−1/2,1/2]
the integrand function contributes to the integral only for −1/2⩽ x+ y/2⩽ 1/2 and
−1/2⩽ x− y/2⩽ 1/2, that is for 2|x| − 1⩽ y⩽ 1− 2|x|.

2.1. Topology of quantum boundary conditions

If the matrix I−U is invertible, the BC in equation (4) can also be expressed as

Ψ ′ =MUΨ , MU = i (I+U)(I−U)−1
, (7)

whereMU, being the inverse Cayley transform ofU, is an Hermitian matrix. For a more general
inversion formula, holding also when I−U is not invertible, see e.g. equation (19) of [31]. Two
interesting families of BCs are given respectively by (symmetric) Robin conditions

UR (α) := eiαI , Ψ ′ =−cot
(α
2

)
Ψ , (8)

with α ∈ [0,2π), that reduce to Dirichlet (Ψ = 0) and Neumann (Ψ ′ = 0) BCs respectively for
α= 0 and α= π, and by pseudo-periodic BCs

Upp (α) :=−
(

0 e−iα

eiα 0

)
,

{
ψ
(
1
2

)
= eiαψ

(
− 1

2

)
ψ ′ ( 1

2

)
= eiαψ ′ (− 1

2

), (9)

with α ∈ [0,2π), that in turn reduce to periodic and anti-periodic conditions when α= 0 and
α= π, respectively.

As the reader may have noticed, BCs can be either local or non-local: Robin BCs, e.g. are
local, as they do not mix the boundary values of ψ at the left edge x=−1/2 with those at
the right edge x= 1/2, whereas pseudo-periodic BCs are non-local. Differently from local
BCs, which physically confine the particle inside a box, non-local BCs are actually related to
the physics of a particle in a ring. Arbitrary BCs can be effectively realized in a ring with a
junction, depicted in figure 2. In this model, the matrixU encodes the physical properties of the
junction. In particular, local BCs are associated with an impermeable barrier that ‘decouples’
the left edge from the right one, while non-local BCs permit the particle to cross the junction.
The locality of the BCs can be quantified by looking at the probability current density

jψ (x) :=− ℏ2

2m

(
ψ ′ (x)ψ (x)−ψ (x)ψ ′ (x)

)
(10)

4
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Figure 2. A quantum particle in a ring with a junction.

associated with a wave function ψ(x): local BCs, forbidding the transmission across the junc-
tion, are indeed characterized by a vanishing current at the endpoints of the ring, that is by
jψ(−1/2) = jψ(1/2) = 0. For non-local BCs, instead, the current density does not generally
vanishes at the endpoints but the outgoing and incoming currents are exactly balanced, namely
jψ(−1/2) = jψ(1/2), in accordance with the unitarity of the evolution and the conservation of
probability ensured by the self-adjointness of the Hamiltonian.

We also mention that the BCs in equations (4)–(29), upon substituting ±1/2→ 0∓, are
substantially the same that one finds by considering the scattering of a one-dimensional particle
with a generalized point defect located at (say) the origin of the system, that is by studying the
self-adjoint extensions of the free Hamiltonian (1) for a particle living in the punctured line
R\{0}= R− ∪R+, see e.g. [33–36]. In this case, local BCs are usually denoted as confining
(or separated), as they describe an impenetrable barrier effectively isolating the R− region
from the R+ region, whereas non-local BCs are non-confining and allow the transmission of
the particle between the two regions. Remarkably, for this system it is also possible to find an
explicit expression of the transmission and reflection coefficients in terms of an arbitrary BC
U ∈ U(2), see e.g. [37, 38].

More generally, let us stress that BCs are often crucial to determine the spatial topology of
a quantum system. We refer the reader to e.g. [26, 28, 39–44] for further details.

2.2. Parametrization of the quantum boundary conditions

All the unitary matrices in U(2) can be parametrized by using five real parameters [45]:

eiη
(
m0 + im3 m2 + im1

−m2 + im1 m0 − im3

)
, (11)

with η ∈ [0,2π), and m0,m1,m2,m3 ∈ R such that

m2
0 +m2

1 +m2
2 +m2

3 = 1 . (12)

In order to obtain a one-to-one parametrization of U(2), the values (η,m0,m1,m2,m3) and
(η+π,−m0,−m1,−m2,−m3) have to be identified, as they give the same matrix:

eiη
(
m0 + im3 m2 + im1

−m2 + im1 m0 − im3

)
= ei(η+π)

(
−m0 − im3 −m2 − im1

m2 − im1 −m0 + im3

)
. (13)

To achieve this, we henceforth restrict η ∈ [0,π). On the other hand, equation (12) tells us that
only four parameters are actually independent and, since the pair (m0,m1) always takes values

5
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in the unit disk D= {(x,y) ∈ R2 : x2 + y2 ⩽ 1}, it is convenient to express m2 and m3 in terms
of a new parameter β ∈ [0,2π):

m2 =
√
1−m2

0 −m2
1 cos(β) , m3 =

√
1−m2

0 −m2
1 sin(β) . (14)

Therefore we have that

U(2) = {U(η,m0,m1,β) : η ∈ [0,π), (m0,m1) ∈ D, β ∈ [0,2π)} , (15)

where for all η ∈ [0,π), (m0,m1) ∈ D and β ∈ [0,2π):

U(η,m0,m1,β) := eiη

 m0 + i
√
1−m2

0 −m2
1 sin(β)

√
1−m2

0 −m2
1 cos(β)+ im1

−
√
1−m2

0 −m2
1 cos(β)+ im1 m0 − i

√
1−m2

0 −m2
1 sin(β)

 .

(16)

Notice that if m2
0 +m2

1 = 1 then the matrix U(η,m0,m1,β) does not depend on β, in that case
we will fix β= 0.

Observe that Robin BCs (8) correspond to

UR (α) =

{
U(α,1,0,0) , if 0⩽ α < π ,

U(α−π,−1,0,0) , if π ⩽ α < 2π ,
(17)

whereas pseudo-periodic BCs (9) correspond to

Upp (α) =

{
U
(
π
2 ,0,cos(α) ,0

)
, if 0⩽ α < π ,

U
(
π
2 ,0,cos(α) ,π

)
, if π ⩽ α < 2π .

(18)

The eigenvalues of U(η,m0,m1,β) depend only on η and m0 and are given by

λ±U := expi [η± arccos(m0)] , (19)

and in particular

λ−U = 1⇔ m0 = cos(η) , (20a)

λ+U = 1⇔ η =−arccos(m0) = 0 ⇔ η = 0 , m0 = 1 . (20b)

The above values are relevant since the inverse Cayley transform of U(η,m0,m1,β) is sin-
gular whenever I−U(η,m0,m1,β) is not invertible, that is when λ−U or λ+U is equal to 1.
Otherwise, it is the well defined Hermitian matrix

MU(η,m0,m1,β) =
1

m0 − cosη

(
−sin(η)+ rsin(β) m1 − ircos(β)
m1 + ircos(β) −sin(η)− rsin(β)

)
, (21)

where r=
√
1−m2

0 −m2
1. In figure 3, BCs having at least one eigenvalue equal to 1 are rep-

resented in the parameter space of (m0,m1), for a given value of η. Note that, in particular, the
Dirichlet condition UR(0) = I is the only one having λ−U = λ+U = 1.

6
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Figure 3. Boundary conditionsU(η,m0,m1,β) having at least one eigenvalue λ
±
U equal

to 1 are shown, in red, in the parameter space (m0,m1) ∈ D, for 0< η < π (left) and
η= 0 (right).

Table 1. Some examples of BCs, and of the corresponding unitary matrices U, having
different locality and regularity properties. We take g ∈ R \ {0} and α ∈ [0,2π).

Regular Singular

Local Symmetric Robin Mixed Dirichlet-Neumann(
eiα 0
0 eiα

) (
−1 0
0 1

)
Non-local δ-interaction (g ̸= 0) Pseudo-periodic(

g
g−i

i
g−i

i
g−i

g
g−i

)
−
(

0 e−iα

eiα 0

)

For later convenience, we introduce the definition of regular and singular BCs. We say that
the unitary matrix U(η,m0,m1,β) (and the corresponding BC) is singular if the eigenvalues
satisfy λ−U = 1 and λ+U ̸= 1, that is if

m0 = cos(η) ̸= 1 , (22)

while it is regular otherwise. In other words the matrices in U(2) having zero or two eigenval-
ues equal to 1 are regular, while the ones having just one eigenvalue 1 are singular. Besides,
excluding the case of the identity matrix I (corresponding to the Dirichlet condition), which is
regular by definition but does not admit the inverse Cayley transform, a generic unitary mat-
rix U is regular if and only if it admits the inverse Cayley transform. Notice that the matrices
corresponding to Robin BCs in equation (17) are regular (including the Dirichlet condition),
while the matrices corresponding to pseudo-periodic BCs in equation (9) are singular. In gen-
eral, however, BCs can be either regular or singular, independently of their locality. We give
some interesting physical examples in table 1, where we also introduce the matrix

Uδ (g) :=


g

g− i
i

g− i
i

g− i
g

g− i

 (23)

7
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with g ∈ R, implementing the so-called δ-interaction [33, 46], that is the BCs

ψ
(
1
2

)
= ψ

(
− 1

2

)
, ψ ′ (− 1

2

)
−ψ ′ ( 1

2

)
= 2gψ

(
1
2

)
. (24)

These BCs are non-local for any g ∈ R and regular for g ̸= 0, since the eigenvalues of Uδ(g)
are 1 and (g+ i)/(g− i).

3. Wigner functions

In this sectionwe explicitly determine theWigner function of an eigenfunction ofHU, withU=
U(η,m0,m1,β) ∈ U(2), η ∈ [0,π),(m0,m1) ∈ D and β ∈ [0,2π), that is a non-zero solution of
the eigenvalue equation

HUψ = Eψ , ψ ∈ D (HU) , (25)

with the eigenfunctions satisfying the BC given in equation (4).
More in detail, after solving in section 3.1 the spectral problem of HU, by determining its

eigenfunctions in terms of the zeroes of a certain spectral function, in section 3.2 we compute
the corresponding Wigner functions, and analyze some of their properties in the high-energy
regime. Then, in section 3.3 we review the phase-space description of a classical particle in a
box in order to compare the results.

3.1. Spectral problem

The eigenvalue equation (25) can be rewritten as the ordinary differential equation

ψ ′ ′ + ϵψ = 0 , ϵ= 2mE/ℏ2 ∈ R , (26)

further supplied by the BC in equation (4). Here, ϵ represents the dimensionless energy. For
ϵ ̸= 0, the eigenvalue equation (26) has a general solution of the form

ψU (x;ϵ) =
1

NU (k)

(
C+
U (k)eikx+C−

U (k)e−ikx
)
, x ∈

(
− 1

2 ,
1
2

)
, (27)

where C±
U (k) ∈ C, NU(k) ∈ R is a normalization constant, and

k := ei arg(ϵ)/2
√
|ϵ| (28)

is the dimensionless wave number. Differently from ϵwhich is always real, k can be either real
or purely imaginary, respectively when ϵ⩾ 0 or ϵ< 0. We recall that, in general, the eigenval-
ues of HU accumulate to +∞ and can be at most doubly degenerate (see e.g. Theorem 10.6.1
of [47]), thus depending onU there can be at most two vanishing eigenvalues ϵ= 0. Moreover,
the sum of the multiplicities of the negative eigenvalues is at most two [25, 45].

It is convenient to introduce the boundary values

Ψ± := Ψ ′ ± iΨ =

(
−ψ ′ (− 1

2

)
± iψ

(
− 1

2

)
+ψ ′ ( 1

2

)
± iψ

(
1
2

) )
, (29)

8
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so that the BC in equation (4) can be compactly expressed as Ψ− = UΨ+. After inserting the
general solution ψU(x;ϵ), the above boundary values can be rewritten as

Ψ± =
1
NU

A± (ϵ)

(
C+
U (k)

C−
U (k)

)
, A± (ϵ) :=±i

(
(1∓ k)e−ik/2 (1± k)eik/2

(1± k)eik/2 (1∓ k)e−ik/2

)
. (30)

Imposing the BC Ψ− = UΨ+ is then equivalent to impose the homogeneous system

[A− (ϵ)−UA+ (ϵ)]

(
C+
U (k)

C−
U (k)

)
= 0 , (31)

whose non-trivial solutions are obtained by requiring that

FU (ϵ) := det(A− (ϵ)−UA+ (ϵ)) = 0 . (32)

In other words, the non-vanishing eigenvalues of HU correspond to the real zeroes of the spec-
tral function FU(ϵ)6. In terms of the parametrization (16), it is known [25, 27, 45] that, for
ϵ ̸= 0,

FU (ϵ) = sin(k)
[
k2 (cos(η)−m0)+ cos(η)+m0

]
− 2k [m1 − sin(η)cos(k)] , (33)

with k= ei arg(ϵ)/2
√
|ϵ| as in equation (28). As it turns out, the spectrum σ(HU) depends only

on three of the four independent parameters characterizing the matrix U ∈ U(2). Namely, it
depends on η, m0 and m1, which by now we call spectral parameters, but not on β, the non-
spectral parameter. Seen as a manifold, the spectral space

Σ := [0,π]×D (34)

has the same structure of a (twisted) solid torus [45], see figure 4(a). In figure 4(b), as an
example, we represent in Σ both Robin and pseudo-periodic conditions.

The zeroes of FU(ϵ) can be found analytically only for some particular BCs. Nevertheless,
as wewill show, their asymptotic behavior in the high-energy regime ϵ→+∞ follows a simple
pattern. Since we are interested in the classical limit, that is in the high-energy regime, from
now on we will focus only on the positive part of the spectrum:

σ+ (HU) = {E ∈ σ (HU) : E> 0} . (35)

For the time being, let us denote with

(ϵn (η,m0,m1))n⩾1 (36)

the sequence of the positive zeroes of FU(ϵ) and with

kn (η,m0,m1) :=
√
ϵ(η,m0,m1), n⩾ 1 , (37)

the corresponding wave numbers, so that we have

σ+ (HU) =

{
ℏ2

2m
k2n (η,m0,m1) : n⩾ 1

}
. (38)

6 We mention that the definition of the spectral function can be modified to account also for the zero eigenvalues, see
[45] for details.

9
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Figure 4. (a) The spectral space Σ can be constructed by gluing the two bases of the
solid cylinder [0,π]×D after applying a global twist of angle π. The twist emerges as a
consequence of the identification described by equation (13). (b) Some example of BCs
depicted in the parameter space [0,π]×D. Left: Robin conditionsΨ ′ =−cot(α2 )Ψ (red
dashed lines), Neumann condition and Dirichlet condition , see equation (17). Right:
pseudo-periodic conditions ψ( 12 ) = eiαψ(− 1

2 ) (red dashed line), periodic condition
and anti-periodic condition , see equation (18).

To fix the expression of the eigenfunctions, we need to explicitly determine the coefficients
C±
U (k) and the normalization NU(k). By using equation (31) we find

C±
U (k) =±e±i k2

[
(1± k)(m0 + im3)+ (1∓ k)

(
e−iη + e∓ik (m2 + im1)

)]
, (39)

N2
U (k) =

ˆ 1
2

− 1
2

|C+
U (k)eikx+C−

U (k)e−ikx|2 dx

= |C+
U (k)|2 + |C−

U (k)|2 + 2
sin(k)
k

Re
(
C+
U (k)C−

U (k)
)
, (40)

where m2 =
√
1−m2

0 −m2
1 cos(β) and m3 =

√
1−m2

0 −m2
1 sin(β) as in equation (14). The

above expressions reveal that, differently from the spectrum, the coefficients of the eigenfunc-
tions in equation (27) do actually depend on the non-spectral parameter β. In conclusion, the
function

ψU,n (x) := ψU (x;ϵn (η,m0,m1))

=
1

NU,n

(
C+
U,ne

ikn(η,m0,m1)x+C−
U,ne

−ikn(η,m0,m1)x
)
, (41)

10
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Figure 5. Plot of ℏf0,n(x,p) for ℏ= 1 (left) and ℏ= 1/4 (right).

where C±
U,n := C±

U (kn(η,m0,m1)) and NU,n := NU(kn(η,m0,m1)), is a normalized eigenfunc-
tion of HU corresponding to the eigenvalue ℏ2ϵn(η,m0,m1)/(2m). For later convenience let us
observe that, in the expression (40) for the normalization NU,n, the interference term propor-
tional to sin(kn(η,m0,m1))/kn(η,m0,m1) is negligible for large n, thus we have

lim
n→+∞

|C+
U,n|2 + |C−

U,n|2

N2
U,n

= 1 . (42)

3.2. Classical limit of the Wigner functions

At this point we are ready to compute the Wigner function associated with an eigenfunc-
tion (41). Using the definition in equation (6) we obtain

WψU,n =
1

N2
U,n

[
|C+

U,n|
2f1,n+ |C−

U,n|
2f−1,n+ 2Re

(
C+
U,nC

−
U,ne

2ikn(η,m0,m1)x
)
f0,n
]
, (43)

where for each s ∈ {−1,0,1}:

fs,n (x,p) :=
△(x)
πℏ

sinc

(
1
ℏ
(p− sℏkn)(1− 2|x|)

)
, ∀x,p ∈ R, (44)

with the triangular envelope and the sinc functions being respectively given by

△(y) := χ(y)(1− 2|y|) , sinc(y) :=
siny
y
, ∀y ∈ R. (45)

A plot of ℏf0,n(x,p) is given in figure 5.
The classical limit can be implemented by taking n→+∞, ℏ→ 0 so that ℏkn(η,m0,m1) is

kept fixed [4–6, 48–50]. Formally, it is obtained by setting

ℏ=
pc

kn (η,m0,m1)
, (46)

where pc is a reference value of the classical momentum, related to the classical reference
energy Ec via

Ec =
p2c
2m

, (47)

11
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and by letting n→+∞.
By plugging equation (46) into equation (44), we get for all s ∈ {−1,0,1}:

fs,n (x,p) =
△(x)kn (η,m0,m1)

πpc
sinc

(
kn (η,m0,m1)

pc
(p− spc)(1− 2|x|)

)
, ∀x,p ∈ R.

(48)

Then, by using the well-know identity

lim
a→0

1
π

sin(x/a)
x

= lim
a→0

1
πa

sinc
( x
a

)
= δ(x) (49)

to be understood in the distributional sense, we obtain that

lim
n→+∞

fs,n (x,p) = χ(x)δ(p− spc) , (50)

with δ(x) being the Dirac delta distribution. Moreover, by the Riemann-Lebesgue lemma [52]
and by (42) one also gets

C+
U,nC

−
U,n

N2
U,n

e2ikn(η,m0,m1)x → 0 (51)

in the distributional sense, as n→+∞. Therefore, as distributions,

lim
n→+∞

WψU,n (x,p)−χ(x) [ωU,nδ(p− pc)+ (1−ωU,n)δ(p+ pc)] = 0 ,

where we introduced the shorthand

ωU,n =
|C+

U,n|2

N2
U,n

, (53)

and we used equation (42). Notice how, in the classical limit, the information regarding the
quantum BCs is all contained in the coefficients ωU,n. If it happens that the sequence (ωU,n)n⩾1

admits a limit, say

lim
n→+∞

ωU,n = ωU ∈ [0,1] , (54)

then we also get a well-defined distributional limit for the Wigner function, that is,

WU (x,p) := lim
n→+∞

WψU,n (x,p) = χ(x) [ωUδ(p− pc)+ (1−ωU)δ(p+ pc)] . (55)

As it turns out, the limit in equation (54) does not exist for all the BCs U. To determine the
classical limit of the Wigner function, hence, we have to finely examine the asymptotic beha-
vior of the coefficientsωU,n in the high-energy regime, which in turn depends on the asymptotic
behavior of the spectrum. We perform this analysis in section 4. Before proceeding, however,
in the next subsection we suggest a classical interpretation of the limit Wigner function (55).

12
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Figure 6. Joint probability distribution of a classical particle in a box (left) and in a ring
(right); in the ring, the dashed (solid) line represents a (counter) clockwise motion.

3.3. Classical particle in a box

Let us briefly review the phase-space picture in the classical setting [18]. Heuristically, the
joint (stationary) probability distribution of a classical particle of massm and energy Ec which
is confined in a box of unit length with elastically reflecting hard walls is given by

Wbox (x,p) = χ(x)
√
2mEcδ

(
p2 − 2mEc

)
(56a)

=
χ(x)
2

[δ(p− pc)+ δ(p+ pc)] , (56b)

where pc =
√
2mEc, and corresponds to a rectangular orbit in the phase-space, see the left

panel of figure 6. If the particle is confined in a ring, instead, we can consider two classical
orbits, associated with the joint probability distributions

W±
ring (x,p) = χ(x)δ(p∓ pc) , (57)

with W+
ring(x,p) and W

−
ring(x,p) describing respectively a clockwise orbit and a counterclock-

wise one, see the right panel of figure 6.
Accordingly, the limitWigner functionWU(x,p) introduced in equation (55), when it exists,

can be interpreted from a classical perspective in two different ways. Since

WU (x,p) = ωUW
+
ring (x,p)+ (1−ωU)W

−
ring (x,p) , (58)

we can indeed consider WU(x,p) as the probability distribution of a classical ensemble of
particles in a ring, of which a fraction ωU is moving clockwise whereas the remaining fraction
1−ωU is moving counterclockwise, see figure 7(a).

Another interesting interpretation is suggested by the ergodic theorem [53]: WU(x,p) can
also represent the time-averaged probability distribution of a single classical particle in a ring
with a junction, which acts as a door that can be opened or closed, allowing respectively the
particle to pass through it or to be elastically reflected, thus inverting its motion, see figure 7(b).
In particular, in order to implement the limit distribution WU(x,p), each time the particle
approaches the junction, the door has to be closed (and then subsequently reopened) with
probability ωU if the particle is moving clockwise, and with probability 1−ωU if it is mov-
ing counterclockwise. Notice however that, if the initial conditions are known, the probability
distribution (58) can be also realized by a deterministic classical system.

13
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Figure 7. Two possible classical realization of the limit Wigner function WU(x,p): (a)
statistical ensemble of particles in a ring; (b) time-average of a single particle in a ring
with a door (a classical junction) which opens with probability ωU .

4. Asymptotic analysis

In order to analyze the asymptotic behavior of the coefficients ωU,n for large n, we start by
observing that equation (39) implies that

|C±
U (k)|= |kA±

U (k)±B±
U (k)| , (59)

where

A±
U (k) := m0 + im3 − e−iη − e∓ik (m2 + im1) , (60a)

B±
U (k) := m0 + im3 + e−iη + e∓ik (m2 + im1) . (60b)

Notice that A±
U (k) can vanish, as it happens for example when m0 = cos(η) and m3 =

−sin(η) (and thus m1 = m2 = 0). Therefore there are two possibilities for ωU,n, in the high-
energy regime:

lim
n→+∞

(
ωU,n−

|A+
U,n|2

|A+
U,n|2 + |A−

U,n|2

)
= 0 , if A±

U,n ̸= 0 , (61a)

lim
n→+∞

(
ωU,n−

|B+
U,n|2

|B+
U,n|2 + |B−

U,n|2

)
= 0 , if A±

U,n = 0 , (61b)

where A±
U,n := A±

U (kn(η,m0,m1)), B
±
U,n := B±

U (kn(η,m0,m1)), and we used the fact that
kn(η,m0,m1)→+∞ for n→+∞.

14
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We say that the sequence (ωU,n)n⩾1 is balanced, when it admits the limit

lim
n→+∞

ωU,n =
1
2
, (62)

and is unbalanced otherwise.
The balanced case can be easily characterized: equation (62) holds when

lim
n→+∞

|A−
U,n|2

|A+
U,n|2

= 1 , if A±
U,n ̸= 0 , (63a)

lim
n→+∞

|B−
U,n|2

|B+
U,n|2

= 1 , if A±
U,n = 0 . (63b)

In turn, one can easily verify that these limits hold when one of the following sufficient
conditions is satisfied.

(i) If m1 = 0 and m2 = 0, that is if we consider the asymmetric Robin BCs

U(η,cos(β) ,0,0,β) =

(
ei(η+β) 0

0 ei(η−β)

)
, (64)

then A+
U,n = A−

U,n and B
+
U,n = B−

U,n for each n⩾ 1. Remarkably, these are the most general
local BCs. Notice that they can be either regular (if e.g β= 0, when they reduce to sym-
metric Robin BCs) and singular (if e.g. β =−η ̸= 0, which gives a mixed Dirichlet-Robin
BC).

(ii) If

lim
n→+∞

sin(kn (η,m0,m1)) = 0 (65)

then A+
U,n ∼ A−

U,n and B
+
U,n ∼ B−

U,n asymptotically as n→+∞. As we will show in the next
subsection, this spectral condition is always satisfied for regular BCs.

On the other hand, the study of the unbalanced case is more involved, and it requires
the asymptotic estimate of the spectral quantities e∓ikn(η,m0,m1) for large n. Thus, we devote
section 4.1 to analyze in detail this spectral asymptotics. Then, in section 4.2, after gathering
the obtained results, we finally classify the possible classical limits of the Wigner functions
WU,n(x,p).

4.1. Spectral asymptotics

By defining the sequence

δn (η,m0,m1) := kn (η,m0,m1)− nπ, n⩾ 1 , (66)

the spectral condition in equation (65), that is relevant for the balanced case, is equivalent to

lim
n→+∞

sin(δn (η,m0,m1)) = 0 , (67)
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Figure 8. Plot of the spectral function FU(
√
k) in equation (33) (red line) and of its

derivative (black line) for the boundary condition U(0,cosθ,sinθ,0) with θ≈ 0.25.

whereas the spectral quantities that are relevant for the unbalanced case can be rewritten as

e∓ikn(η,m0,m1) = (−1)n e∓iδn(η,m0,m1) . (68)

As it turns out, the behavior of
(
δn(η,m0,m1)

)
n⩾1

can be quite erratic for small values of n,
but becomes more regular for large n, see figure 8 for an example. The currently available
spectral estimates associated with the Weyl law for quantum graphs [54, 55] are not enough to
characterize the remainder term in equation (66), as they just imply that δn(η,m0,m1) = o(n),
for the system under study (which can be regarded as the ‘building block’ of more complex
quantum graphs). However, in the particular situation considered here, the asymptotic behavior
of δn is known, see section 1.5 of [56]. In this subsectionwe thus determine, on the lines of [56],
the asymptotics of δn(η,m0,m1) needed to analyze the limit of the coefficients ωU,n.

To achieve this, let us rewrite the spectral function as

FU (ϵ) = aU (k)k
2 + bU (k)k+ cU (k) , ϵ > 0 , (69)

where k=
√
ϵ and

aU (k) := sin(k)(cos(η)−m0) , (70a)

bU (k) :=−2(m1 − sin(η)cos(k)) , (70b)

cU (k) := sin(k)(cos(η)+m0) . (70c)

It is convenient to separate the analysis into three cases:

• BCs U such that kn(η,m0,m1) = nπ and hence aU
(
kn(η,m0,m1)

)
= 0 for all n⩾ 1 (exact

cases including Dirichlet BCs);
• BCs U such that cosη = m0 ̸= 1 and hence aU(k) = 0 for all k> 0 (singular BCs);
• all the remaining BCs U (regular BCs).
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4.1.1. Exact cases. We first consider the case of BCs U= U(η,m0,m1,β) such that
kn(η,m0,m1) = nπ for all n⩾ 1. We show that this case occurs if and only if η = m1 = 0.
In fact,

FU
(
(2nπ)2

)
=−4nπ [m1 − sin(η)] = 0 ⇔ m1 = sin(η) , (71)

and

FU
(
(2n+ 1)2π2

)
=−2(2n+ 1)π [m1 + sin(η)] = 0 ⇔ m1 =−sin(η) , (72)

and hence m1 = η = 0. In this case we have that for all n⩾ 1:

δn (0,m0,0) = 0 , (73)

which clearly implies the spectral condition (65). Notice that the corresponding BCs
U(0,m0,0,β) are always regular.

4.1.2. Singular boundary conditions. Let us now consider the singular BCs (22), i.e.
cos(η) = m0 ̸= 1. For this choice of parameters the spectral function simplifies to

FU (ϵ) = 2sin(k)cos(η)− 2k [m1 − sin(η)cos(k)] , (74)

and by considering the equation

FU
(
kn (η,m0,m1)

2
)
= 0 , (75)

which, since η ∈ (0,π), can be rearranged as

cos(kn (η,m0,m1))−
m1

sin(η)
=−cot(η)sin(kn (η,m0,m1))

kn (η,m0,m1)
, (76)

we get ∣∣∣cos(kn (η,m0,m1))−
m1

sin(η)

∣∣∣⩽ cot(η)
kn (η,m0,m1)

. (77)

Notice that |m1/sin(η)|⩽ 1. In this case, one can show [56] that for large n the sequence(
k2n−1(η,m0,m1),k2n(η,m0,m1)

)
n⩾1

is asymptotically close to the sequence(
2nπ − arccos

(
m1

sin(η)

)
, 2nπ + arccos

(
m1

sin(η)

))
n⩾1

. (78)

In our notations, since arccos(x) = π− arccos(−x), we can restrict δn(η,m0,m1) to [0,π]
obtaining the asymptotic limits

lim
n→+∞

δ2n (η,cosη,m1) = arccos

(
m1

sin(η)

)
, (79)

and

lim
n→+∞

δ2n−1 (η,cosη,m1) = arccos

(
− m1

sin(η)

)
. (80)
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Remarkably, for η = π/2 we recover the exact spectral sequence [25], that is:

δn

(π
2
,0,m1

)
= arccos

(
(−1)nm1

)
. (81)

For m1 = 0, in particular, the correction is constant:

δn

(π
2
,0,0

)
=
π

2
. (82)

Conversely, the limit η→ 0 (which gives Dirichlet BC) is ill-defined, and one should rely
on the exact expression (73). We conclude that the asymptotic behavior of the sequence(
δn(η,m0,m1)

)
n⩾1

for singular BCs has a residual dependence on U, and, for m1 ̸= 0, also
on the parity (−1)n of n.

4.1.3. Regular boundary conditions. For what concerns the remaining (regular) BCs, we
can now assume that k ̸= nπ, as the latter values have been discussed before. We rewrite the
equation FU(ϵ) = 0 as

aU (ϵ) =
bU (ϵ)
k

+
cU (ϵ)
k2

, (83)

from which we get

∣∣sin(k)(cos(η)−m0)
∣∣= ∣∣∣∣−2(m1 − sin(η)cos(k))

k
+

sin(k)(cos(η)+m0)

k2

∣∣∣∣⩽ ∣∣∣∣6k
∣∣∣∣ . (84)

Therefore for all n⩾ 1:

∣∣sin(kn (η,m0,m1))
∣∣= ∣∣sin(δn (η,m0,m1))

∣∣⩽ 6
|cos(η)−m0|

1
kn (η,m0,m1)

. (85)

Then, by using the fact that the wave numbers accumulate to+∞, the above inequality implies
the spectral condition in equation (65), that is

lim
n→+∞

sin(δn (η,m0,m1)) = 0. (86)

4.1.4. Numerical results. To corroborate the asymptotic analysis, in figure 9 we plot the val-
ues of some wave numbers kn(η,m0,m1), which have been determined by numerically finding
the zeroes of the spectral function, both in the low-energy regime (small n) and in the high-
energy regime (large n), as function of the spectral parameters η,m0,m1. The high-energy plots
are consistent with the asymptotic formulas obtained so far. In figure 10 we also plot some
exact values of ωU,n in the high-energy regime, again as function of the spectral parameters
η,m0,m1. As expected, for m0 ̸= cos(η) (that is for regular BCs) we have that ωU,n ≈ 1/2,
while for m0 = cos(η) we observe a residual dependence on U, and in particular on β.
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Figure 9. Exact values of some kn(η,m0,m1), plotted over the parameter space
(m0,m1) ∈ D for η= 0 (top row), η = π

4 (middle row) and η = π
2 (bottom row). For

η ̸= 0, red lines have been added representing the asymptotic formulaes (79)–(80).

4.2. Asymptotics of the Wigner function

To sum up, we obtained two sufficient conditions for having a balanced classical limit. Indeed,
we found that if U is a local BC, that is if U= U

(
η,cos(β),0,0,β

)
for η ∈ [0,π) and β ∈

[0,2π), see equation (64), or ifU is a regular BC, so that the spectral condition in equation (65)
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Figure 10. Exact values of ωU,52, plotted over the parameter space (m0,m1) ∈ D for
η = π

4 (left column) and η = π
2 (right column) and for different values of the non-

spectral parameter β.

is satisfied [see equations (73) and (86)], then the coefficients ωU,n have the well-defined high-
energy limit

ωU = lim
n→+∞

ωU,n =
1
2
, (87)

and the corresponding Wigner functions admit a limit in the form of equation (55) with bal-
anced coefficients ωU = 1−ωU = 1/2, that is:

lim
n→+∞

WψU,n (x,p) =
χ(x)
2

[δ(p− pc)+ δ(p+ pc)] . (88)

This balanced classical limit is represented, respectively for the case of Dirichlet and Neumann
BCs, in the first and in the second row of figure 11.

For singular non-local BCs, instead, the situation is complicated by the fact that even in
the high-energy regime the correction δn(η,m0,m1) does generally still depend on the parity
of n, see equations (79)–(80), thus not admitting a limit. However, since in the high-energy
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Figure 11. Density plot of WψU,n(x,p) for Dirichlet (U= I, first row) and Neumann
(U=−I, second row) BCs; from left to right the value of n is increased, by setting
ℏ= pc/kn, approaching the classical limit.

regime also the coefficients ωU,n depend on n only through its parity, see equations (59)–(60)
and (68), the following limits

ωU,e := lim
n→+∞

ωU,2n , ωU,o := lim
n→+∞

ωU,2n+1 , (89)

are well-defined and finite. We stress that both ωU,2n and ωU,2n+1 have a limit, but in gen-
eral ωU,2n ̸= ωU,2n+1. Accordingly, although for singular non-local BCs the Wigner functions
WψU,n(x,p) do not generally admit a classical limit, the even and odd subsequences have the
well-defined limits in the form of equation (55),

WU,e (x,p) := lim
n→+∞

WψU,2n (x,p)

= χ(x) [ωU,eδ(p− pc)+ (1−ωU,e)δ(p+ pc)] , (90a)

WU,o (x,p) := lim
n→+∞

WψU,2n+1 (x,p)

= χ(x) [ωU,oδ(p− pc)+ (1−ωU,o)δ(p+ pc)] , (90b)

with (generally) unbalanced coefficients ωU,e ̸= 1/2 and ωU,o ̸= 1/2.
This phenomenon is shown in figure 12 for the family of ‘quasi-periodic’ BCsU(π2 ,0,0,β),

given by

ψ

(
1
2

)
= i cot

(
β

2
+
π

4

)
ψ

(
−1
2

)
, ψ ′

(
1
2

)
= i tan

(
β

2
+
π

4

)
ψ ′
(
−1
2

)
. (91)

In particular, these BCs reduce for β= 0 to the pseudo-periodic BC Upp(π/2), that is to
ψ(1/2) = iψ(−1/2) and ψ ′(1/2) = iψ ′(−1/2), and to the mixed Dirichlet-Neumann BC
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Figure 12. Density plot of WψU,n(x,p), with ℏ= pc/kn, for the singular BCs
U(π2 ,0,0,β), with n= 10 (first row) and n= 11 (second row) and for different values
of the non-spectral parameter β.

ψ(1/2) = 0 and ψ ′(−1/2) = 0 for β = π/2. Remarkably, for any β ∈ [0,2π], by using
equation (82) we are able to get the simple exact expression

ωU(π
2 ,0,0,β),n

=


cos
(
β
2

)2
, n even

sin
(
β
2

)2
, n odd

, (92)

corresponding to the limit Wigner functions

WU(π
2 ,0,0,β),e

(x,p) = χ(x)

[
cos

(
β

2

)2

δ(p− pc)+ sin

(
β

2

)2

δ(p+ pc)

]
, (93a)

WU(π
2 ,0,0,β),o

(x,p) = χ(x)

[
sin

(
β

2

)2

δ(p− pc)+ cos

(
β

2

)2

δ(p+ pc)

]
. (93b)

5. Discussion and outlook

We showed that in the classical limit both local boundary conditions and regular boundary
conditions are associated with a ‘balanced’ ensemble, having a limit coefficient ωU = 1/2, so
that the corresponding limit Wigner function coincides with the joint probability distribution
of a classical particle in a box with elastically reflecting walls,

lim
n→∞

WψU,n (x,p) =Wbox (x,p) . (94)
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Notice that in the limit any information about the quantum boundary condition is lost. In this
sense, the whole family of quantum systems with local and regular boundary conditions cor-
respond to one and the same classical system.

For what concerns singular non-local boundary conditions, the situation is more elaborate,
as the coefficients ωU,n do not generally admit a limit, but oscillate between the limits of the the
even and odd subsequences, that is between the values ωU,e and ωU,o defined in equation (89).
The correspondingWigner functions behave accordingly, with the even and odd subsequences
having the limit Wigner functions WU,e(x,p) and WU,o(x,p) given by equations (90). These
latter distributions have exactly the form (58), in general with an unbalanced coefficient ωU ̸=
1/2 carrying a residual information—a classical echo—of the quantum boundary condition
U. As we discussed in section 3.3, in this case, for a given parity, the limit Wigner function
can be interpreted as the probability distribution of an ensemble of classical particles in a ring,
with a fraction ωU moving clockwise and a fraction 1−ωU moving counterclockwise.

We conclude with some outlooks. In this Article we have analyzed the classical limit for
the eigenfunctions of the non-relativistic kinetic-energy operator in a one-dimensional box
with general self-adjoint boundary conditions. The corresponding classical distribution prob-
abilities are stationary, i.e. time-independent. Performing a similar analysis by considering
suitable wave packets, instead of the eigenfunctions, we expect to obtain a different classical
distribution [18, 57] mimicking a classical dynamical orbit. Future research will be devoted
to this subject. Besides, more generally, it is still an open question if in the classical limit dif-
ferent self-adjoint extensions of a given operator all collapse (in a suitable sense) to the same
classical object. One could investigate this problem by looking at the asymptotic behavior of
the symbols associated with the different self-adjoint extensions of the operator [50, 51]. Other
interesting generalizations of the present work may involve the analysis of a particle with spin
and of a relativistic particle in a box (with general boundary conditions) [58–60], as well as
the case of multiple particles [61].
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