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Abstract:Methods are presented for calibrating the hadron calorimeter system of the CMS detector
at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and
scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover
pseudorapidities |η | < 3 and are positioned inside the solenoidal magnet. An outer calorimeter,
outside the magnet coil, covers |η | < 1.26, and a steel and quartz-fiber Cherenkov forward calori-
meter extends the coverage to |η | < 5.19. The initial calibration of the calorimeters was based on
results from test beams, augmented with the use of radioactive sources and lasers. The calibration
was improved substantially using proton-proton collision data collected at

√
s = 7, 8, and 13 TeV, as

well as cosmic ray muon data collected during the periods when the LHC beams were not present.
The present calibration is performed using the 13 TeV data collected during 2016 corresponding to
an integrated luminosity of 35.9 fb−1. The intercalibration of channels exploits the approximate uni-
formity of energy collection over the azimuthal angle. The absolute energy scale of the central and
endcap calorimeters is set using isolated charged hadrons. The energy scale for the electromagnetic
portion of the forward calorimeters is set usingZ→ ee data. The energy scale of the outer calorime-
ters has been determined with test beam data and is confirmed through data with high transverse
momentum jets. In this paper, we present the details of the calibration methods and accuracy.
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1 Introduction

Most precision studies of the standard model (SM) utilizing proton-proton (pp) collisions depend on
reliable, precise measurements of jets andmissing transverse momentum. The uncertainties in these
are often related to the energy scale and the resolution of the measurement of hadron energy. For
example, a precision measurement of the mass of the top quark requires a detailed understanding of
the energy scale and resolution of jets; in a recent measurement of the top quark mass by CMS [1, 2],
the single largest source of experimental uncertainty in two of the channels used was the jet energy
scale. Searches for physics beyond the SM (e.g., searches for dark matter based on measurements of
jets produced through initial-state radiation [3]) often rely on measurements of hadron properties.

The methods used to calibrate hadron calorimeters have been studied and improved by several
experiments. Previous publications from the CMS and ATLAS Collaborations on calorimeter
calibration are reported in refs. [4–9]. The hadron calorimeter (HCAL) [10, 11] is composed of
four major subdetectors: the hadron barrel (HB) [12], the hadron endcap (HE) [10], the hadron
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forward (HF) [13], and the hadron outer (HO) calorimeters [7] (as shown in figure 1). The CMS
Collaboration has developed several techniques for calibrating its HCAL. The initial calibration
makes use of results from several test beam exposures and from signals injected by dedicated
calibration systems based on lasers and radioactive sources. Details of the test beam analyses and
the calibration using radioactive sources can be found in refs. [6, 8, 14]. The calibration of the
detector is improved through the analysis of data from cosmic ray muons, taken when the CERN
LHC was not operating, and data containing energy deposits from secondary particles produced
during LHC beam tuning [15] and traversing the detector longitudinally.

The final calibration, described in this paper, uses information from collision data to further im-
prove the precision of the calibration, and to establish a hadronic energy scale, which is stable over the
course of the data taking. Because of the complex structure of the HCAL, its large angular coverage,
nonuniformities in the amount of material in front of the calorimeters, and the limited acceptance of
the CMS tracking system, these goals can only be achieved through the use of several techniques and
data samples. In addition, the calibration needs to take into account nonlinearities in the HCAL en-
ergy response [8]. The calibration methods reported in this paper were first used with data collected
during 2010–2015 at

√
s = 7, 8, and 13 TeV. Here, we report the calibration performed using data

collected during 2016 at
√

s = 13TeV, corresponding to an integrated luminosity up to 35.9 fb−1.
Detector calibration is needed to reduce the uncertainty in the energy measurement to less than

3%. Sources of changes in response larger than this target goal include aging of the photocathodes
of the photodetectors, scintillator and fiber optic aging, and changes to the configuration of the
hardware during shutdown, e.g., the readout of the HF calorimeter was split into two separate
optical paths during a shutdown at the end of 2015.

Because of the nonlinear energy response of the HCAL, it is not possible to set an absolute
energy scale that is valid for all incident hadron momenta. Although the response is closer to
being linear at high momenta, there are relatively few events available. Therefore, the calibration is
performedwith a sample of isolated hadrons of moderate momentum. The calibration of the HB and
HE described in this paper yields a unit value for the relative energy scale factor of isolated charged
pions with momenta of 50GeV, which do not interact hadronically in the CMS electromagnetic
calorimeter (ECAL). The energy of a reconstructed particle [16] is corrected for the calorimeter
nonlinearity using a parametrization of the response as a function of transverse momentum (pT),
pseudorapidity (η), and the fractions of the particle energy deposited in the different subdetectors,
as determined from a Geant4-based [17] CMS detector simulation. Residual nonlinearities for jets
are removed during the calibration of the jet energy scale [18]. The low-level calibration, reported
in this paper, followed by the corrections and high-level calibration [16, 18], lead to the final jet
energy calibration of the CMS calorimeter system.

Unlike the HB and HE, the HF does not have a strong nonlinear energy response. Themeasured
e/π response decreases from 1.14 to 1.01 when the energy of the incident particles increases from
30 to 150GeV [13]. The energy scale for the HF is set to have a unit value of the relative energy
scale factor for 100GeV electrons and π

− mesons using test beam data [13].
The HO is used to measure the energy deposits from high-pT particles whose showers are not

fully contained in the ECAL and HB. The scale for the HO is set to give the best possible energy
resolution for 300GeV π

− mesons [7].
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The calibration includes the following steps:

(i) the responses of different channels at the same η are equalized in the HB, HE, and HF,
exploiting the approximate uniformity of collected energies over the azimuthal angle (φ);

(ii) for the HB and the part of HE within the acceptance of the CMS tracking system (|η | < 2.5),
isolated charged hadrons are used to equalize the η response and to set the absolute energy
scale;

(iii) the calibration for the electromagnetic portion of the HF is validated using electrons from
decays of Z bosons; and

(iv) the responses of the HO channels are equalized across φ using muons from collision data,
and the energy scale factor is validated using dijet events.

The scale factors obtained from the calibration process are updated if they differ from the
current set of scale factors by more than 3%. During 2016, only two updates were necessary for the
final processing of the data.

The paper is organized as follows. Section 2 provides a brief description of theHCAL. Section 3
describes the reconstruction of HCAL energies and of the physical objects used in the analysis.
Section 4 gives information about the simulated event samples used in the design and testing of the
calibration methods. The analysis of the symmetry in the azimuthal angle is in section 5, and the
calibration using isolated tracks is discussed in section 6. The HF calorimeter calibration usingZ →
ee events appears in section 7, and the intercalibration of the HO calorimeter and the validation of its
energy scale factors are described in section 8. A brief summary of the results is given in section 9.

2 The CMS detector and its hadron calorimeter

The central feature of the CMS apparatus is a superconducting solenoid of 6m internal diameter,
providing amagnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a
lead tungstate crystal ECAL, and the HB and HE calorimeters. Muons are detected in gas-ionization
chambers embedded in the steel flux-return yoke outside the solenoid. In the barrel section of ECAL,
an energy resolution of about 1% is achieved for unconverted or late-converting photons which have
energies in the range of tens of GeV. For the remaining barrel photons the resolution is about 1.3%
up to |η | = 1, deteriorating to about 2.5% at |η | = 1.4. In the endcaps, the resolution for unconverted
or late-converting photons is about 2.5%, whereas the resolution for the remaining endcap photons
is between 3 and 4% [19]. For isolated particles of 1 < pT < 10GeV and |η | < 1.4, the track
resolutions are typically 1.5% in pT and 25–90 (45–150) µm in the transverse (longitudinal) impact
parameter [20]. When measurements from the tracker and the calorimeters are used, the jet energy
resolution amounts typically to 15% at 10GeV, 8% at 100GeV, and 4% at 1 TeV, to be compared
to about 40, 12, and 5% obtained when only the ECAL and the HCAL calorimeters are used [16].

Events of interest are selected using a two-tiered trigger system [21]. The first level (L1), com-
posed of custom hardware processors, uses information from the calorimeters and muon detectors
to select events at a rate of around 100 kHz within a time interval of less than 4 µs. The second
level, known as the high-level trigger (HLT), consists of an array of processors running a version

– 3 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
5
0
0
2

of the full event reconstruction software optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, is reported in section 5 of ref. [11].

Figure 1 shows a schematic view of the layout of the CMS HCAL during the 2016 LHC
operation at

√
s = 13TeV. The HB is located between radii of 1775 and 2876.5mm and covers

|η | < 1.39. The HB is divided into two half-barrels in the direction along the beam (z), each
assembled from 18 wedges. Each wedge subtends 20◦ in φ and extends to 4330mm from the CMS
detector mid-plane. A wedge contains absorber plates made of brass (an alloy with 70% copper and
30% zinc) that are bolted together. The inner and outer plates are made out of stainless steel. There
are 17 slots per wedge that house the plastic scintillator tiles. The inner and outer slots are 14mm
thick while the remaining ones are 9.5mm thick. The HB has about 40 000 scintillator tiles. In order
to limit the number of individual physical elements, the tiles at the same φ and depth are grouped
into a single scintillator unit, referred to as a megatile. The megatiles in the first and last layers are
of 9mm thickness, while the remaining layers have 3.7mm thick megatiles. Each megatile covers
roughly 5◦ in φ. Of the four φ segments within a barrel wedge, the two segments at a larger radius
are staggered with respect to the inner two. There is 61mm of stainless steel between layers 0 and
1. There are 50.5mm thick brass plates between adjacent layers 1–9, and the 56.5mm thick brass
plates up to layer 15. The back plate, which is in front of the last HB calorimeter layer, is made of
75mm thick stainless steel. The megatiles are divided into 16 sections along the z axis, denoted by
|iη | = 1 to 16, so that each tile corresponds to ∆η of 0.087. The set of scintillators corresponding
to the same value of iη and iφ (denoting the φ segment) in different layers are grouped together and
referred to as a “tower”. All 17 layers are grouped into a single readout channel until |iη | = 14,
beyond which there are two depth sections, as shown in figure 1.
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Figure 1. A schematic view of one quarter of the CMS HCAL during 2016 LHC operation, showing
the positions of its four major components: the hadron barrel (HB), the hadron endcap (HE), the hadron
outer (HO), and the hadron forward (HF) calorimeters. The layers marked in blue are grouped together as
depth = 1, while the ones in yellow, green, and magenta are combined as depths 2, 3, and 4, respectively.
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The HE calorimeter is also made of brass absorber plates with sampling layers of plastic
scintillator. The innermost surface of HE is located 4006.5mm from the interaction point and
covers 1.30 < |η | < 3.00. Each endcap has an 18-fold symmetry in φ and has 34.5mm thick
sector plates each covering 20◦ in φ. The sector layers are separated by 9mm thick brass spacers
to allow space for the scintillator inserts. Each scintillator insert covers 10◦ in φ. The top edge of
the front part of the endcap module has a slope of 53◦ corresponding to the gap angle between the
HB and HE calorimeters. It also has a nose-like structure, with an additional layer of absorber and
scintillator plate for |iη | of 18, to increase the total interaction length for that tower. The absorber
thickness between successive layers amounts to 78mm of brass and scintillator, corresponding to
the thickness of two sector plates and one spacer. The endcap on either side is divided into 14 parts
along |η |, and the 18 layers are combined into 1, 2, or 3 depth sections, as shown in figure 1.

The HO calorimeter consists of one or two layers of scintillator outside the magnet coil. The
entire assembly is divided into 5 rings, each having 12 sectors in φ. Six trays of scintillators are
assembled on a honeycomb structure, which is then mounted in each of these sectors. The central
ring (ring 0) has two layers of 10mm thick scintillator on either side of a stainless steel block at
radial distances of 3850 and 4097mm, respectively. All other rings have a single layer at a radial
distance of 4097mm. The η-φ segmentation of the HO calorimeter matches closely that of the HB
calorimeter. The HO calorimeter covers |η | < 1.26.

For the HB and HE calorimeters, clear fibers carry the light to hybrid photodiodes (HPDs) [22],
and eachHPDsignal is digitized in 25 ns time intervals by a charge integrator and encoder (QIE) [23].
For the HO calorimeter, light is carried to silicon photomultipliers (SiPMs) and the SiPM signals
are digitized by the QIEs.

The front faces of the HF calorimeters are located 11150mm away from the interaction point
on either side of the CMS detector and cover 2.85 < |η | < 5.19. The detectors covering positive and
negative η ranges are referred to as HF+ and HF−. The inner and outer radii of the HF calorimeter
are 125 and 1570mm, respectively. Each HF module is composed of 18 wedges made of steel with
quartz fibers embedded along its length. The detection technique utilizes emission of Cherenkov
light by secondary charged particles going through the quartz fibers. Long (1649mm) and short
(1426mm) quartz fibers are placed alternately with a separation of 5mm. The long fibers reach the
front face of the calorimeter, while the short fibers start 12.5 radiation lengths into the calorimeter.
These fibers are bundled at the back and led to a photodetector, and are grouped into 13 divisions
in η on either side of the CMS detector and 36 divisions in φ, except the two largest |η | sections,
which contain 18 divisions in φ. While the HB and HE calorimeters work in conjunction with the
ECAL for particle measurement, the difference in the energy deposits in the long and short fibers
of the HF calorimeter functions as a separator between electromagnetic and hadronic showers. The
light collected from an HF calorimeter fiber is converted to charge by a photomultiplier tube and
digitized by the QIE.

3 Event reconstruction

In recorded events, signals from the HB, HE, and HO calorimeters are stored as 10 consecutive QIE
measurements (“time samples”, where each sample spans 25 ns). To reduce data volume and readout
latency, a “zero suppression”mechanism is introduced that passes to the data acquisition system only
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those channels with at least one set of two consecutive samples above a threshold. The timing of the
readout system is adjusted so that the triggered bunch crossing is in the fifth time sample. The data
recorded from the HF channels are stored as four consecutive time samples, with the triggered bunch
crossing in the third time sample. Energies are calculated as sums of time samples, after subtraction
of the electronic pedestal and application of the scale factor. For the HB and HE, and for the analysis
described in section 5.2, the energy is calculated by applying a scale factor to the sum of energies in
the fifth- and sixth-time samples, with a correction factor to account for the pulse extending beyond
50 ns. For the HF, since the Cherenkov pulse is shorter than 25 ns, only one time sample is used.

A sophisticated reconstruction method is used for the HB and HE subsystems because there is a
large contribution from pileup, and the HPDs used for their readout have larger noise than the SiPMs
used in the HO. For the HB and HE the energy deposited in the triggered bunch crossing, after
subtracting the electronic pedestal, is obtained byfitting the time sampleswith up to three pulse shape
templates shifted in time relative to each other. The reconstruction algorithm also corrects for the
residual contributions caused by additional interactions in the triggered beam crossing as well as the
preceding and subsequent beam crossings (out-of-time pileup). This procedure is employed for the
standard reconstruction of HB and HE in the physics analyses for all the results in this paper, except
for the process described in section 5.2, which uses a simple sum of energies over the two time slices.

The reduction of the light output of the scintillator caused by radiation damage [24] and the
decrease in the quantum efficiency of the HPD photocathodes due to the ion feedback damage [25]
are monitored using a laser calibration system, and corrections are applied to the reconstructed hit
energies based on the monitored results.

Because the HO subsystem is outside the solenoid, the effect of pileup is relatively small, and
a simpler procedure is used. For HO signal pulses longer than 100 ns, a correction is applied to
account for the signal beyond the eighth time sample.

There are several sources of noise in the hadron calorimeter, such as noise in the readout
system, as well as noise from physical sources like particles other than optical photons interacting
directly with the readout system [26].

Noise caused by spurious electronic signals is detected and subtracted during the calibration
procedure. Although the overall rate is low, this noise would result in large values of mismea-
sured missing transverse momentum so dedicated filters are used to eliminate either the specific
calorimeter channel, or the entire event [27].

The reconstruction of physics objects produced in pp collisions starts with the reconstruction
of particles. The CMS global event description is based on the particle-flow (PF) algorithm [16],
which reconstructs and identifies each individual particle in an event with an optimized combination
of information from the various elements of the CMS detector. In this process, the identification of
the particle type (photon, electron, muon, charged or neutral hadron) plays an important role in the
determination of the particle direction and energy. Photons, e.g., coming from π

0 decays or from
electron bremsstrahlung, are identified as ECAL energy clusters not linked to any charged-particle
trajectory extrapolated to the ECAL. Electrons, e.g., coming from photon conversions in the tracker
material or from B hadron semileptonic decays, are identified as primary charged-particle tracks
and potentially many ECAL energy clusters corresponding to this track extrapolation to the ECAL
and to possible bremsstrahlung photons emitted along the path through the tracker material. Muons,
e.g., from B hadron semileptonic decays, are identified as tracks in the central tracker consistent
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with either a track or several hits in the muon system that are associated with very low energy
deposits in the calorimeters. Charged hadrons are identified as charged-particle tracks that are
not identified as electrons or muons. The energy of a charged hadron is determined from the
combination of the measurements from the tracker and the calorimeters. Finally, neutral hadrons
are identified as HCAL energy clusters not linked to any charged-hadron trajectory, or as an excess
in the combined ECAL and HCAL energy with respect to the expected charged-hadron energy
deposit. The reconstructed particles are referred to as PF candidates.

For each event, hadronic jets (PF jets) are clustered from the PF candidates using the infrared
and collinear safe anti-kT algorithm [28, 29] with a distance parameter of 0.4. The jet momentum
is determined as the vectorial sum of all particle momenta in the jet, and is found from simulation
to be, on average, within 5 to 10% of its true momentum over the entire pT spectrum and detector
acceptance. The PF candidates associated with a jet are referred to as jet constituents. The
PF missing transverse energy is calculated from the jet momenta as an imbalance of the energy
flow in the transverse plane of the detector. Because PF makes optimal use of the detector
information, contributions to the jet andmissing transverse energy resolutions from charged hadrons
are dominated by the precision of the momentum measurement from the tracker. The ECAL
determines the contribution to the energy resolution from photons. However, for the highest energy
charged hadrons, which can be produced in jets originating from decays of high-mass new particles,
for neutral hadrons, and for all particles at large rapidities, the hadron calorimeter dominates the
momentum measurement. Accurate measurement of HCAL energies is also important in isolation
calculations, which are used in particle identification.

During the 2016 data taking, the mean number of pp interactions per bunch crossing was
approximately 23. The reconstructed vertex with the largest value of summed physics-object p2

T is
identified as the primary pp interaction vertex. The physics objects in this case are jets, clustered
using the jet finding algorithm [28, 29] with the tracks assigned to the vertex as inputs, and the
associated missing transverse momentum, taken as the negative vector pT sum of those jets. Other
reconstructed vertices are referred to as pileup vertices.

4 Simulated event samples

The methodologies used for the calibration are tested using simulated samples of pp interactions.
Simulation of SM processes, unless otherwise stated, is performed with pythia 8.206 [30] or
MadGraph5_amc@nlo 2.2.2 [31] event generators at leading order in the strong coupling, which
is set to 0.130 at the Z boson mass scale. The event generators employ the NNPDF3.0 [32] parton
distribution functions. Parton shower development and hadronization are simulated with pythia
using the underlying event tune CUETP8M1 [33]. Simulated samples consisting of single high-pT
particles are also produced. Samples that do not contain a collision in the nominal bunch crossing
are used to simulate noise (see section 5.2). The detector response is simulated using a detailed
description of the CMS detector implemented with the Geant4 package [17]. The simulated events
are reconstructed with the same algorithms used for the data. The simulated samples include pileup
with the distribution matching that observed in the data.
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5 Calibration using azimuthal symmetry

The first step in the calibration of the HB, HE, and HF with collision data is to equalize the response
in φ for each iη ring and depth section. The procedure takes advantage of the φ-symmetric particle
energies and the corresponding φ-symmetric collected energy from minimum bias (MB) events
(events selected with triggers designed to collect inelastic collisions with maximum efficiency
while suppressing noncollision events). The layouts of the barrel and the endcap detectors have
some φ dependence because of the absorber structure; the scintillator layers are staggered, and
the absorber layers are also used as a part of the support structure. For the forward calorimeter,
a radial shift in the beam spot position may also introduce asymmetry in the iη rings close to
the beam pipe, which can change with time. The relative contributions to the φ asymmetries from
materials, inhomogeneous magnetic field, beam spot shift, and miscalibration could, in principle, be
understood using simulation. However, the material description in the simulation and the modeling
of the beam spot position is not exact, and the difference between the actual detector and its Monte
Carlo description can increase with time because of stresses from the magnetic field, gravity, etc.

Therefore, the intercalibration is performed by comparing the average collected energy in a
calorimeter channel to the average collected energy in the entire iη ring. Two different calibration
procedures are adopted.

Iterative method: a set of multiplicative correction factors (scale factors) for the uncalibrated
energies are determined iteratively by equalizing the mean of the measured energies that
satisfy both an upper and a lower threshold. This method works best for energies above 4GeV.

Method of moments: this intercalibration is carried out using MB events taken without zero
suppression by comparing the first (mean) and second (variance) moments of the energy
distribution in a calorimeter channel to the mean of the moments of the energy distributions
in the entire iη ring. This method works best for low energies, down to a fraction of a GeV.

By construction, these two methods use events from disjoint data samples and are statistically
independent.

The method of moments is performed using events with no zero suppression (NZS). The
measured energies include contributions both from genuine energy deposits and from noise. The
contributions due to noise are estimated from an independent data sample taken when there were no
beam collisions (pedestal data), and subtracted from themeasurements made using the collision data
to extract the contribution due to signal. The iterative method, on the other hand, makes use of zero-
suppressed events and is based on an estimation ofmean energy in an energy interval. The twometh-
ods symmetrize different energy ranges and offer the best performance in the corresponding range.

5.1 Iterative method

The data used in this method are selected from events triggered by subdetectors other than the
HCAL to avoid trigger bias in the energy measurement; only events collected with electron, photon,
and muon triggers are used (single-muon triggers with pT > 24GeV and single-electron triggers
with pT > 25GeV). Results obtained from different triggers are compared, and the difference is
used as input to the estimation of the systematic uncertainty.
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This method utilizes energies recorded in HCAL channels that pass lower and upper threshold
requirements. Figure 2 shows a typical energy spectrum obtained from reconstructed hit energy
before the φ symmetry calibration. It is shown for a single channel in the HB (left) and the HF (right)
calorimeters, along with the values of the lower and upper thresholds used for these subdetectors.
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Figure 2. Energy spectra used as an input to the iterative method of equalizing the φ response of one typical
iη ring for an HB (left) and HF (right) calorimeter channel. Thresholds on the collected energies used for the
energy estimation are shown with dashed lines. The legends show the HCAL channel index in iη, iφ, and
depth segmentation units.

The reconstructed energies are obtained from zero-suppressed events after pedestal subtraction,
and the corresponding mean noise level is zero. The value of the lower threshold (Elow) depends
on the subdetector and is chosen to be well above (approximately 20 times) the RMS of the noise
distribution for a single channel, which is a few hundred MeV. The noise level is determined from
pedestal data and is found to be a few hundred MeV. For the HB and HE calorimeters, the threshold
is 4GeV, whereas it is 10GeV for the HF calorimeter.

The upper threshold (Ehigh) ensures that statistical fluctuations in the tails of the energy distri-
butions do not influence the mean. Its value also depends on the subdetector. For pp collision data,
the threshold is 100 (150)GeV for the HB (HE and HF).

For each channel, the total energy between the thresholds Etot is calculated from the observed
energy spectrum using:

Etot =

∫ Ehigh

Elow

dN(E)
dE

EdE, (5.1)

and the mean channel energy (〈Etot〉) is defined as Etot divided by the number of events used in
the Etot calculation. The scale factor is calculated as the inverse of the ratio of 〈Etot〉 for that
channel to the mean 〈Etot〉 of all channels with the same iη and depth, in each iteration. These scale
factors are then applied to the energy measurement, and the whole process is repeated, including
the selection of the channels included in the determination of Etot through the application of the
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energy thresholds. This procedure is repeated until the mean change in the scale factor (over all
channels) falls below a convergence cutoff value.

Figure 3 shows 〈Etot〉 as a function of iφ for two typical iη rings for the HB and HE calorimeters
before and after the corrections. The spread in the mean channel energy 〈Etot〉 is reduced from 4.7 to
0.3% for HB and from 6.2 to 0.2% for HE. The uncertainties in the scale factors are estimated from
the statistical uncertainties in 〈Etot〉 and the variation from the last iteration, added in quadrature.
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Figure 3. Mean channel energy 〈Etot〉 for the iterative method measured before (solid histogram) and after
(open histogram) correction as a function of iφ for a typical iη ring of the HB (iη = 9, depth = 1, left) and of
the HE (iη = 20, depth = 1, right) calorimeters. Data triggered using electrons, photons, and muon are used
in this calibration procedure.

The statistical uncertainties, including the variations from the last iteration, for the 2016 pp
collision data are of the order of 1% for the HB, between 0.1 and 1.0% for the HE, and below 0.5%
for the HF calorimeter channels, depending on iη and depth.

5.2 Method of moments

The first two central moments of the energy distributions are used to obtain the scale factors for each
channel. The main challenges in this method are (i) the noise exceeds the size of a typical signal,
which is a few MeV in the HB channels and a few tens of MeV in the HE channels, and (ii) the
variance of the noise distribution, 0.04–0.09GeV 2, differs considerably fromone channel to another.
Conditions are more favorable in the HF, where the noise variance is less than the signal variance
and also less than the mean value of the signal. Therefore, both the first and second moments for
the HF calorimeter channels are used in the determination of the intercalibration constants.

The analysis is done using MB events taken with a special trigger where zero suppression
is disabled in the HCAL readout. The noise in each channel is measured separately by using an
independent data set takenwhen the LHCwas not running andwithout any trigger requirements. The
measured noise distribution is subtracted from the energy distribution after suitable normalization
(pedestal subtraction).
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The scale factor obtained using the first moment is given by

Ciη,iφ =
〈Eiη,iφ〉

1
Nφ

∑
jφ 〈Eiη, jφ〉

, (5.2)

where Nφ is the number of HCAL towers in a given iη ring, and

〈Eiη,iφ〉 = 〈E
signal
iη,iφ 〉 + 〈E

noise
iη,iφ〉 (5.3)

is the mean collected energy in the HCAL tower. After pedestal subtraction, the data are consistent
with 〈Enoise

iη,iφ〉 = 0 and eq. (5.3) becomes:

〈Eiη,iφ〉 = 〈E
signal
iη,iφ 〉. (5.4)

The uncertainty in the estimation of the first moment is given by√
∆

2
(
〈Esignal

iη,iφ 〉

)
+ ∆

2
(
〈Enoise

iη,iφ〉

)
, (5.5)

where ∆2 is the variance. It is dominated by the uncertainty in the noise estimation. To achieve a
precision better than 2% for channels in the middle of HB (|iη | = 1), a few tens of millions of events
are required. While the method is straightforward to perform, a large amount of data is required to
use it effectively. Figure 4 shows the scale factors obtained for two specific towers of HB and HE
(iη = 9, depth = 1, and iη = 20, depth = 1) using this method with data collected during 2016.
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Figure 4. Calibration scale factor obtained using the method of moments with the first moment of the energy
distribution for one HB (iη = 9, depth = 1 left)and one HE (iη = 20. depth = 1 right), as a function of iφ.
Only statistical uncertainties in the measurements are shown in these plots and the sizes of the vertical bars
are typically smaller than the marker size.

Estimation of the scale factor from the second central moment (variance) is done after removing
the noise by subtracting the variance of the noise from the variance of the measured energy. The

– 11 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
5
0
0
2

scale factor in this case is given by:

Ciη,iφ =

√√√√ 1
Nφ

∑
jφ ∆

2Riη, jφ

∆
2Riη,iφ

, (5.6)

where
∆

2Riη,iφ = 〈∆
2
(Esignal

iη,iφ ) + ∆
2
(Enoise

iη,iφ)〉 − 〈∆
2
(Enoise

iη,iφ)〉. (5.7)

Assuming no correlation between the noise and signal depositions in the calorimeter,

∆
2Riη,iφ = 〈∆

2
(Esignal

iη,iφ )〉. (5.8)

The minimum sample size for achieving a 2% uncertainty in the signal variance is determined by the
residual noise contribution, and is of the order of a fewmillion events. The method based on the sec-
ond moment requires substantially smaller samples. Therefore, the second-moment method is used
for the final results for HB and HE, but the results are still sensitive to the noise level in the channel,
even when the noise levels are measured. During 2016, the noise levels for channels in the HF
calorimeter were not measured, and the method based on the first moment is used for those channels.

Figure 5 shows the effect of using the first- or second-moment method on a simulated sample of
MB events for the HB (left) and HF (right). The structure in the plot of HF scale factors as a function
of iφ reflects the geometry of the readout system (middle versus edge readouts) and of the passive
material between the calorimeter and the interaction point (support structure and services for the
detectors). The two methods of moments (mean and variance) have different sensitivities to the
amount of material in front of the calorimeter. For HB and HE, the difference is typically 2.2±0.1%
on average, while for the HF calorimeter this difference is somewhat smaller, 0.8±0.1%on average.
This difference is assigned as a systematic uncertainty in the scale factor determination from the
method of moments. An additional systematic uncertainty is assigned related to the determination
of electronic pedestals using various sets of noncollision data. This uncertainty, which is negligible
in the HB and varies in the 1.0–1.5% range in the HE/HF, is added in quadrature to the uncertainty
from the method of second moment.

Figure 6 shows the ratios of scale factors obtained in different portions of the 2016 data set
from the second-moment method for two representative channels: iη = 9, depth = 1 in the HB,
and iη = 20, depth = 1 in the HE. The plots indicate the level of stability of the scale factors over
approximately six months of data taking.

5.3 Combination of the two methods

Figure 7 shows the ratio of the scale factors measured using the two methods (iterative method over
method of moments) for the HB, HE, and HF calorimeters. The two sets of measurements agree
within 5% as indicated from the RMS of the ratio distributions. The two sets of measurements
agree, with the means of their ratios being 0.998 ± 0.001, 0.998 ± 0.001, and 1.004 ± 0.002 for the
HB, HE, and HF calorimeters, respectively. The scale factor obtained from the method of moments
has better precision for low-energy depositions, whereas those from the iterative method are better
for high-energy depositions. The statistical uncertainties from the two methods are comparable for
the HF calorimeter channels, whereas the iterative method gives smaller uncertainties for the HB
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Figure 5. Derived calibration scale factors that equalize the φ response in a simulated sample of minimum
bias events for a channel in the HB (iη = 9, depth = 1, left) and HF (iη = 33, depth = 1, right), as a function
of iφ using two different methods: of first and of second moment.

10 20 30 40 50 60 70
φi

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

S
c
a

le
 f

a
c
to

r 
ra

ti
o

 = 9, depth = 1ηHB, i

-1
8.3 - 12.6 fb

-1
12.6 - 16.6 fb

-1
16.6 - 19.7 fb

-1
19.7 - 27.2 fb

-1
27.2 - 35.9 fb

(13 TeV)

CMS

10 20 30 40 50 60 70
φi

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

S
c
a

le
 f

a
c
to

r 
ra

ti
o

 = 20, depth = 1ηHE, i

-1
8.3 - 12.6 fb

-1
12.6 - 16.6 fb

-1
16.6 - 19.7 fb

-1
19.7 - 27.2 fb

-1
27.2 - 35.9 fb

(13 TeV)

CMS

Figure 6. Ratio of the calibration scale factors for a typical HB (iη = 9, depth = 1, left) and HE (iη = 20,
depth = 1, right) channels as a function of iφ, in different data taking periods, to that obtained in a sample
corresponding to the first 8.3 fb−1 of integrated luminosity for five additional data taking periods during 2016.
Although the dataset is divided into five periods for the purpose of illustration, we end up with three sets of
constants over the entire run of 2016. Only statistical uncertainties in the scale factors are shown.
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Figure 7. The ratio of φ intercalibration scale factors obtained with the method of moments to that obtained
with the iterative method for HB (left), HE (center), and HF (right). The mean, RMS and width from
Gaussian fit to the distribution are 0.998 ± 0.001, 0.058 ± 0.001, 0.045 ± 0.001 for the HB, 0.998 ± 0.001,
0.039 ± 0.001, 0.030 ± 0.001 for the HE, 1.004 ± 0.002, 0.043 ± 0.001, 0.037 ± 0.001 for the HF.

and HE calorimeter channels. The uncertainty-weighted average of the scale factors from the two
methods is used as the final scale factor for the HCAL φ intercalibration. The arithmetic mean
of the corrections is used when the statistical uncertainties of both methods are below 1%. The
weighted average (with weight w = 1/σ2, where σ is the uncertainty in the measurement) is used
otherwise. The systematic uncertainties in the interchannel calibration measured from the method
of moments are estimated using (i) the differences between constants found with the first and the
second moments, which amount to 2–3% for all three detectors: HB, HE, and HF; and (ii) different
sources of data: NZS (events recorded without zero suppression) and single-muon trigger data,
which yield values less than 1%. The systematic uncertainties for the iterative method are estimated
using (i) different triggers: single-electron with pT > 25GeV and single-muon with pT > 24GeV,
which yield values below 1%; and (ii) different choices of the energy threshold in estimating Etot,
which result in effects smaller than 3%. The difference in the coefficients derived using the two
methods provides a combination of systematic and statistical uncertainties, which is 4% for the HB,
and 3% for the HE and HF.

6 Absolute calibration using isolated tracks

The energies of charged hadrons in the central region of the CMS detector are measured by two
independent detector systems: the trackers and the calorimeters. The precise calibration of the
tracker system can be transferred to the calorimeter by comparing the two measurements. Unlike
the momentum measurement by the tracker, the hadronic energy response of the HCAL is not
linear. The nonlinearity is more pronounced at lower energies [8]. The goal of the HCAL absolute
energy calibration is to set the relative energy scale to unity for 50GeV charged hadrons that do not
interact hadronically in the ECAL. In practice, the calibration is done with tracks of momentum
between 40 and 60GeV. The dominant systematic uncertainties are due to the contamination of the
calorimeter energy from other hadrons, produced either in the same interaction that produced the
isolated charged-hadron candidate or in pileup interactions.
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The data used in this method come from two sources. The first sample is selected using a trigger
designed for this analysis. At L1, the event is required to contain at least one jet with pT > 60GeV.
At the HLT, an isolated track with an associated energy in the ECAL below 2GeV is required. The
isolation calculation utilizes information from tracks after extrapolation to the calorimeter surface.
The second sample uses events from the full, varied suite of CMS triggers. Events are selected
offline using a filter that requires a track that satisfies very loose isolation criteria, has associated
energy in the ECAL less than 2GeV, and momentum higher than 20GeV.

Events are required to have at least one well-reconstructed primary vertex [20] that is close

to the nominal interaction point, with r(≡
√

x2
+ y2
) < 2 cm and |z | < 15 cm. Tracks considered

as candidate isolated hadrons are required to be associated with the primary vertex and to satisfy
quality requirements. Their impact parameters are required to be close to the primary vertex in the
transverse (xy) plane (∆r < 200 µm) as well as along the beam axis (∆z < 200 µm). The χ2 of
the track fit per degree of freedom is required to be less than 5, and the number of tracker layers
used in the momentum measurement to be greater than 8. To confidently select tracks that have not
interacted before reaching the calorimeter surface, tracks with missing hits in the inner and outer
layers of the tracker are rejected.

The analysis uses isolation in a cone around the track to reduce contamination from neighboring
hadrons, and to have a more accurate estimation of the hadron energy. The cone algorithm clusters
energy based on the linear distance from the extrapolated track trajectory through the HCAL. For
each HCAL tower, the distance between two points is determined. The first point is the intersection
of the extrapolated track trajectory with the front face of the HCAL. The second point is the
intersection of the tower axis (the straight line joining the center of the CMS and the center of the
tower) with the plane perpendicular to the extrapolated track trajectory. If this distance is smaller
than the radius of a circle on the surface of HCAL (Rcone), the energy from the HCAL tower is
included in the cluster. The signal is measured using Rcone of 35 cm, which contains on average
more than 99% of the energy deposited by a 50GeV hadron.

The ECAL has a depth of approximately one interaction length and therefore more than half of
the hadrons undergo inelastic interactions before reaching the HCAL. These hadrons are not used
for calibration and are rejected by requiring the energy deposited within a cone of radius 14 cm
around the impact point for the ECAL to be less than 1GeV. This requirement also removes a large
fraction of hadron candidates near a neutral particle, which deposit energy in the signal cone that
would otherwise contaminate the measurement.

To further reduce contamination due to neighboring particles, an isolation requirement based
on tracking information is used. The trajectories of all charged particles are propagated to the
ECAL surface. Hadron candidates are vetoed if there are additional tracks above a momentum
threshold impacting the calorimeter surface within a circle of radius 64 cm around the candidate’s
impact point. The momentum threshold depends on the desired selection efficiency and purity.
Two threshold values are used: a 10GeV loose isolation requirement is used for the main analysis,
whereas a 2GeV tight isolation requirement is used in the assessment of systematic uncertainties.
Although a stringent requirement on the isolation from neighboring charged particles would reduce
the uncertainty caused by contamination of the signal energy from other nearby hadrons, the
large number of pileup interactions at high instantaneous luminosity can result in a large amount
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of unrelated energy in the signal cone in the endcap region of the HCAL. The loose isolation
requirement increases the efficiency for the track selection in the presence of pileup.

The calorimeter response is defined as the ratio

EHCAL/(ptrack − EECAL), (6.1)

where EHCAL is the signal region energy of the HCAL cluster, EECAL is the energy deposited in the
ECAL in a cone of radius 14 cm around the impact point of the track, and ptrack is the momentum of
the track. To mitigate the contamination from pileup, we apply a pileup correction, discussed below.
The most probable value (MPV or mode) of the response is extracted using an iterative two-step
fitting procedure to a Gaussian function. The two fits are performed in the intervals ±1.5σTot and
±1.5σFit around the mean of the distribution or the fitted mean, where σTot is the sample RMS and
σFit is the width determined from the first fit.

The contribution from pileup is subtracted on an event-by-event basis by measuring the energy
within an annular region beyond the signal cone. When there is a large amount of pileup energy near
the cone, a relatively high pileup contribution is expected inside the cone. If so, the true particle
energy is lower than that reconstructed in the cone. If the energy deposit outside the cone is caused
by the particle itself, the true particle energy will be higher than the reconstructed energy in the
cone. The track under consideration and the pileup originate from independent collisions within the
same bunch crossing. From a study using simulated single isolated high-pT pion events, the pileup
contribution is related to the energy in a region around Rconewith an annular radius of+10 cm. It does
not depend on the track momentum, and rather depends on the ratio of the energy in the cone to the
track momentum. The corrected energy Ecor is calculated on an event-by-event basis using eq. (6.2),

Ecor = E

(
1 + a1

E
p

(
∆

p
+ a2

(
∆

p

)2
))
,

(a1, a2) =


(−0.35,−0.65) for |iη | < 25,
(−0.35,−0.30) for |iη | = 25,
(−0.45,−0.10) for |iη | > 25,

(6.2)

where E is the energy in the signal region cone Rcone = 35 cm around the impact point of the
selected isolated track, p is the track momentum, and ∆ is the energy deposit in the annular region
around the signal cone. The values for the constant depend on |η | because of the tracker coverage
and the |η | dependence of the pileup particle energies. The values of the coefficients a1 and a2
are extracted using the dependence of the response on the ratio ∆/p by minimizing the difference
between the mean corrected response for simulated samples that are processed two ways: with and
without pileup. The pileup scale factors are derived using single pion simulated samples with and
without pileup, and cross-checked with independent single pion simulated samples with pileup.

Figure 8 (left) shows the response distribution for the sample of simulated pions without pileup
before and after application of residual energy scale corrections using the isolated track calibration
technique. The bias in the mode of the energy distribution for the simulated pion sample that is
caused by a pileup correction is less than 0.3%. The right plot in figure 8 shows the ratio of the
modal value from a simulated single pion sample with pileup to that from a sample without pileup.
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The pions in the sample with pileup are required to satisfy the isolation criteria, and their analysis
utilizes the pileup correction technique described above. The modes agree to within 1% for the
entire calorimeter, and within 0.5% in the barrel region.
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Figure 8. (Left) Distribution of the energy response in a simulated sample of single isolated high-pT pions
without pileup when the corrections for pileup have (red squares) or have not (black circles) been applied.
The plot also shows the results of Gaussian fits. (Right) The ratio of the mode of the response distribution
for a simulated pion sample with pileup, with loose charged-particle isolation, and the correction for pileup
applied (red squares) to the mode from the sample without pileup. The uncertainties in the mode without
pileup are shown with the gray band. Only statistical uncertainties are included. The dashed vertical lines
show the boundaries between the barrel and the endcaps.

The calibration method utilizes an iterative approach. At the m-th iteration, the new scale
factor c(m+1)

i is calculated using:

c(m+1)
i = c(m)i

©«
1 −

∑
j w
(m)
i j

(
E
(m)
j

p j−Ej,ECAL
− RR

)
∑

j w
(m)
i j

ª®®®®¬
, (6.3)

where the sum is over events that contribute to the towers at the i-th iη ring, RR is the reference to
which the mean response is equalized, Ej,ECAL is the measured energy in the ECAL cluster around
the track j, pj is the track momentum, w(m)i j is the weight of the particular tower with measured
energy ei j in the cluster energy E (m)j :

w
(m)
i j =

c(m)i ei j

E (m)j

, E (m)j =

n j∑
i=1

c(m)i ei j . (6.4)

It follows from eq. (6.3) that the iterative procedure results in equalization of the mean response
of the detector around the value RR, which equals 1 by default. If the most probable value for
the sample, modesample, differs from the sample mean, meansample, the reference response is set to
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RR = meansample/modesample. The formulation in eq. (6.3) makes the procedure stable with respect
to fluctuations of E (m)j .

The statistical uncertainty in the scale factor ∆c(m+1)
i is estimated from the measured RMS of

the response distribution ∆R(m)i for the subsample used for the i-th subdetector:

∆c(m+1)
i = ∆R(m)i

√∑
j (w

(m)
i j )

2∑
j w
(m)
i j

. (6.5)

The procedure is iterated until the difference between the scale factors in subsequent steps
becomes three times smaller than the statistical uncertainty.

The calibration procedure is applied to the 2016 collision data to obtain scale factors for each iη
ring through iη = 23. Scale factors for rings beyond iη = 23 in the HE are obtained by extrapolating
these results. We note that the determination of the scale factors cannot be extended all the way
to the boundaries of the tracker coverage, because the tracks used in the calibration are required to
satisfy isolation criteria with respect to other particles, so the entire isolation cone is required to
be within the tracker acceptance. Different criteria for selection of isolated hadrons and different
methods for the pileup correction are tested, and the resulting correction factors for each data taking
period are compared. The initial and resulting (after convergence) response distributions are shown
in figure 9 for three HCAL η ranges. The resulting equalization of the mode is shown in figure 10.
Equalization within ±2.5% is achieved with the iterative procedure for subdetectors up to |iη | = 23.
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Figure 9. Response distributions for pions from2016 data in three different η regions, |η | ≤ 1.22 (left), 1.22 ≤
|η | ≤ 1.48 (middle), and 1.48 ≤ |η | ≤ 2.04 (right), with loose charged-particle isolation criterion: initial
(black circles) and after convergence (red squares). Only statistical uncertainties are shown on the data points.

The statistical uncertainty in the scale factor, as obtained from data, is typically below 2%. The
uncertainty in the scale factor is computed from the differences obtained (i) using tight and loose
isolation criteria (estimated to be <1% for |iη | < 15, and <2% for |iη | > 14); (ii) using simulated
isolated high-pT pion samples with andwithout pileup (estimated to be less than 0.1% over the entire
iη range); and (iii) using the true momenta versus the measured momenta of the charged particles
in simulated events (estimated to be also less than 0.1%). The overall uncertainty is around 2%.
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Figure 10. Modes of the response with their statistical uncertainties versus iη from the 2016 data sample
before (black circles) and after convergence (red squares). The loose charged-particle isolation constraint is
applied.

7 Calibration of the HF using Z → ee events

The initial calibration of the HF was based on test beam data [13]. The energy scales of the long
and short fibers in six HF wedges were set using the responses from 100GeV electrons and negative
pions. The scale was transferred to the rest of the wedges using radioactive source data.

The energy scale for the long fibers is validated using events from Z boson decays. The
dileptonic decays of the Z boson are useful tools for checking the detector calibration, because the
production cross section of the Z bosons at the LHC is large, and the signature is almost background
free. The dataset used for this calibration consists of events with one electron candidate in the HF
and the other in the ECAL, which has been precisely calibrated. The scale of the HF long fibers
is adjusted so that the dielectron invariant mass corresponding to the Z peak is consistent between
simulation and data. The scale of the HF short fibers utilizes the short-to-long ratio measured in an
analysis of 100GeV test beam electron data.

Because theHF is outside of the tracker acceptance, the PF algorithm does not identify electrons
that impinge on this detector and they are instead identified as photon candidates, which are clustered
into PF jets. An isolated high-pT electron, such as those produced in Z boson decays, would be
identified as a jet by this algorithm. The reconstruction of HF electrons for this analysis, thus, starts
with the PF jets. To select jets consistent with being isolated electrons, jets with characteristics
consistent with those of anomalous energy deposits are rejected. Electron candidate jets must either
have a nonzero hadronic or nonzero electromagnetic energy after zero-suppression is applied. The
electromagnetic (EM) and hadronic (HAD) energies are defined by the deposits in the long (L) and
short (S) fibers in the following way: EM = L−S, HAD = 2S.
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Jets created from energy deposits of isolated electrons have a characteristic shower size ∆R ≡√
(∆η)2 + (∆φ)2 of about 0.15–0.2, where ∆φ is in radians. Also, most of the energy is deposited in

the long fibers, and the energy in the short fibers is small. Thus, HF electron candidates are required
to have a “seed” for the core electron shower, chosen as the constituent of the PF jet with the largest
energy. This seed defines the initial four-vector of the HF electron candidate. The four-vectors of
other constituents of the PF jet, ordered in energy, are added to the four-vector of the HF electron
candidate if the constituents are within ∆R = 0.15 of the current four-vector of the core shower.
The process stops when there are no more constituents close enough to the core shower. The choice
of ∆R = 0.15 to sample the core energy of the HF electron candidate is used to minimize the
dependence on pileup. Because electrons from Z boson decays are expected to be more energetic
than electron candidates arising from the misidentification of quark and gluon jets, the pT of HF
electron candidates are required to exceed 15GeV. Furthermore, the electromagnetic fraction of
the candidate’s energy, calculated as a sum of all the EM energies of the PF constituents that form
the core four-vector of the HF electron candidate, must be sufficiently large. The EM energy is
required to be nonzero, and the ratio of the HAD to EM energy is restricted to be less than 1.20.
The HF electron candidate is required to be isolated, as expected for leptons from Z boson decays.
The total energy of all the PF candidates found in the vicinity of the shower, 0.15 < ∆R < 0.30,
should not exceed 55% of the energy in the core shower. These requirements result in an efficiency
of 62% for the selection of genuine electrons from Z boson decays, and retain only 1.5% of jets
misidentified as electrons, as estimated using simulated Drell-Yan events.

Candidate Z boson events are selected by requiring only one isolated electron in the ECAL
with pT > 25GeV and with |η | < 2.5 [34]. The events are further required to have at least one HF
electron candidate with pT > 15GeV and 2.964 < |η | < 5.191.
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Figure 11. Invariant mass of the two electrons in candidate Z → ee events for simulation (left), and for
2016 data (right). One candidate is required to be in the ECAL, the other one in the HF. The mean (µ) and
the width (σ) of the Gaussian fits are shown on the plots with their uncertainties. The quality of the fits is
sufficient to extract the mean and the width to the necessary accuracies.
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The dielectron invariant mass distributions (Me+e−) from candidate Z → ee events are shown
in figure 11 for simulation and 2016 data. The Z boson mass is measured from a fit to a Gaussian
function in a restricted mass region around the peak position. In both simulation and data, the
measured Z boson mass is lower than the nominal mass (91.1876GeV [35]) because only the long-
fiber energies of towers within ∆R = 0.15 of the seed are used, resulting in an underestimation of
the shower energy due to energy leakage outside of this region. The HF energy scale in data is not
adjusted to match the fitted mean from the invariant mass distribution using the simulation, since
both values are consistent within their uncertainties. Therefore, no corrections are applied to the
energy response in data. The 25% difference in the width between data and simulation is not yet
fully understood, but selection of electron pairs in data from the Z boson decays, as well as shower
mismodeling in the simulation, could cause this discrepancy.

The bias in the energy due to pileup is estimated using events with different numbers of pileup
interactions. The result is consistent with a shift of the measured Z boson mass of up to 1%.
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Figure 12. (Left) The results of the fits of the dielectron invariant mass to a Gaussian function for different η
values of the HF electron candidates obtained in simulation (black line, combined HF+ and HF−) and 2016
data, split by HF+ and HF− (red and blue, respectively). (Right) The results of the fits of the dielectron
invariant mass to a Gaussian function for different pseudorapidity η values of the HF electron candidates
obtained in data corresponding to different run ranges. The dielectron mass in the denominator comes from
the first run range corresponding to 5.7 fb−1. Errors on the data points are statistical only.

Figure 12 shows the dielectron invariant mass as a function of the HF electron candidate |iη |, for
iη values between 30 and 38. TheHF energy response in data for bothHF+ andHF− are similar. The
energy response in the simulation has a shape similar to that of the data, but there is a visible trend: for
the towers with |iη | = 33–38, the data show a lower energy scale than the simulation. This deviation
is not completely understood and therefore no specific corrections are considered at the moment.
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8 Calibration of the HO calorimeter

The calibration of the HO calorimeter is carried out in two steps. The intercalibration makes use
of muons from collision data, as well as cosmic ray muons that traverse the tiles of the HO. The
determination of the absolute energy scale makes use of dijet events.

8.1 Intercalibration of the HO towers

Before data taking began, the intercalibration of the HO towers was performed by equalizing signals
from cosmic ray muons. This method has a few drawbacks:

• large statistical uncertainties in the calibration of the HO towers near iφ = 1 and 37 because
there are few horizontal muons in the cosmic muon sample;

• a large uncertainty in the extrapolated track position in theHO,whichwas based on standalone
muon reconstruction using information from muon chambers alone; this leads to a large
uncertainty in the resulting calibration.

The intercalibration is improved using muons from W and Z decays in pp collisions. Muon
candidates [36] are selected using the following criteria:

• the associated track is well measured and satisfies reconstruction quality criteria;

• the energy in the calorimeter tower traversed by the muon is consistent with the expectation
of a minimum ionizing particle;

• the muon is isolated: no other reconstructed muon is present within a 15◦ cone around the
muon under study and the scalar pT sum of all other tracks within ∆R < 0.3 relative to the
muon is less than 4GeV;

• the momentum of the muon after extrapolation to the HO face is more than 15, 17, and
20GeV for towers in rings 0, ±1, and ±2, respectively;

• the cosine of the angle made by the muon trajectory with respect to the HO scintillator surface
is more than 0.6 (0.4) for ring 0 (other rings);

• the location of the muon after extrapolation to the HO is at least 2 cm away from the tower
boundary; and

• the time of the HO energy deposits is within 30 (20) ns of the beam crossing time for towers
in ring 0 (other rings).

Figure 13 shows a typical distribution of the energy deposited in a tower impacted by a muon,
for two typical HO towers. The signal distribution is parametrized in the pedestal region with a
Gaussian function whose mean and width are set to values obtained from pedestal data, and with a
convolution of Gaussian and Landau functions in the signal region, where width (σ) of the Gaussian
function, the most probable value (µ), and width (Γ) of the Landau function are free parameters
of the fit. The most probable values from the fits to the convoluted function are calculated for all
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Figure 13. Energy distributions for HO towers impacted by a high-pT muon for the central ring (iη = −4,
iφ = 4, left) and for a side ring (iη = −8, iφ = 4, right), fitted with a combination of a Gaussian function for
the pedestal region (shown as red lines) and a convolution of a Gaussian and a Landau function for the signal
region (the combined fits are shown as the green lines). The parameters µ, Γ and σ are the most probable
values andwidths of the Landau and theGaussian functions, and ndf is number of degrees of freedom in the fit.

towers. In parallel, the product of the path length of each muon trajectory in the tower and the
ratio of the expected energy loss of the muon with respect to the energy loss at a fixed momentum
(8GeV) is calculated. These observed responses are then normalized over all (iη, iφ) channels.
These responses are then symmetrized over all iφ channels for a given iη ring.

8.2 Absolute scale in the HO

In a test beam experiment [8], a 150GeV muon beam was used to obtain the conversion factors
from charge to energy for both the HB and HO. However, because the HO measures the energy
deposited in the tail of a hadronic shower, which typically contains low-energy secondary particles,
the energy resolution can be improved with the application of a weight factor to the HO energies.
This weight factor was estimated using a test beam of 300GeV π

− mesons [7].
The relative weight factor derived from a single particle test beam may not be optimal for jets,

so the utility of an extra weight factorwHO is explored. The value ofwHO is tested with collision data
by balancing energies in dijet events, where one of the jets produces a substantial energy deposit in
the HO. The analysis varies the scale of the HO energy deposits contributing to a PF jet to find the
weight factor which gives the best jet energy resolution.

Events are selected with the following criteria:

• if there are more than two jets in the event, the third jet pT is required to be less than 30GeV,

• the two leading jets must have ∆φ > π/2, and

• the event must not contain any isolated photon, electron, or muon with pT > 20GeV.
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This analysis uses jets in |η | < 0.34 (which corresponds to the central HO ring) with the highest
energy HO cluster. Figure 14 shows the width of the dijet energy balance distribution as a function
of wHO, where the energy balance (Eb) is defined as

Eb = 2
(pT1 − pT2)
(pT1 + pT2)

, (8.1)

with pT1 and pT2 being the transverse momenta of the leading and the subleading jet, respectively.
The smooth curves are results from fits to asymmetric parabolic function through the points, which
is defined as,

σ(Eb) = p0 + α1,2
(
wHO − p2

)2
, (8.2)

where α1,2 are used for
(
wHO − p2

)
≥ 0 and

(
wHO − p2

)
< 0, respectively, and p0, α1, α2, and p2

are parameters of the fit. Events containing jets with higher HO energy provide a better sensitivity
to wHO. The results imply that within the uncertainty of measurements the relative weight factor of
HO in these events is the same as in the test beam. Similar analyses are carried out for the other
HO rings (±1, ±2) as well.
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Figure 14. The Gaussian width of the relative difference of pT of the two jets in dijet events as a function of
HO weight factor in different ranges of energy contained in the HO cluster of the jet carrying the highest HO
energy, when that jet is in ring 0. The smooth curves are results from fits to asymmetric parabolic function
(eq. (8.2)) through the points. Uncertainties are statistical only.

9 Summary

The CMS experiment utilizes a variety of data to calibrate the energy measurements obtained from
its hadron calorimeter systems. The strategy utilizes different approaches since the calorimeter sub-
detectorsmake use ofmultiple technologies, have different radiation environments, and probe a large
range of particle energies. Mean noise levels (pedestals) of all the channels are monitored for each
fill of LHC and the scale factors are checked for each run period, which typically spans one month.
The mean noise levels as well as the correction factors are updated whenever any of the correction
factors change by more than 3%. The calibration is generally performed in two steps: the azimuthal
(φ) intercalibration of the channels, followed by the determination of an absolute energy scale.
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In the barrel, endcap, and forward calorimeters, the φ symmetry of minimum bias events is used
to carry out an interdetector calibration, whereas the hadron outer calorimeter utilizes reconstructed
muons for this purpose. The absolute energy calibration of the barrel and endcap calorimeters is
based on isolated charged hadrons with momenta between 40 and 60GeV, whereas the calibration
of the forward calorimeter relies on a validation based on Z → ee events. The nonlinearity
in the energy measurement of hadrons is addressed during the particle-flow reconstruction by
using the predicted dependence on transverse momentum and pseudorapidity from a Geant4-based
simulation. Residual nonlinearities that affect the energy scale of reconstructed jets are reduced
during the calibration of the jet energy scale. The calibration of the hadron outer calorimeter relies
on the energy balance in dijet events.

The methods use proton-proton collision data at
√

s = 13TeV collected with the CMS detector
in 2016, and corresponding to integrated luminosities up to 35.9 fb−1. The results are applied
to the final reconstruction of events collected during that period. The systematic uncertainties
in these measurements are dominated by the uncertainties in the amount of material between the
interaction point and the detectors, including their dependence on azimuthal angle, and by the
systematic uncertainties from the simulation of the effect of noise on the readout signal. Systematic
uncertainties in the intercalibration are below 3% for HB, HE, HF and HO. The uncertainty in the
absolute energy scale, as determined here for HB and HE, is below 2%. Absolute energy scale for
HF and HO are kept at their nominal values and validated during 2016 using the methods described
in the text. These techniques lead to the typical calibration precision of less than 3%.
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