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Probing nonclassical light fields with energetic witnesses in waveguide quantum electrodynamics
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We propose an operational scenario to characterize the nature of energy exchanges between two coupled
but otherwise isolated quantum systems. Defining work as the component stemming from effective unitary
interactions performed by each system on one another, the remnant is stored in the correlations and generally
prevents full energy extraction by local operations. Focusing on the case of a qubit coupled to the light field of
a waveguide, we establish a bound relating work exchange and local energy extraction when the light statistics
is coherent, and that gets violated in the presence of a quantum light pulse. Our results provide operational,
energy-based witnesses to probe nonclassical resources.
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With the rise of quantum technologies, understanding the
laws governing the exchange of energy and entropy be-
tween quantum systems is of crucial importance [1]. Work
is a powerful concept in the classical world that features
an entropy-preserving, well-controlled energy change [2]. In
the quantum realm, such energy changes typically take place
along unitary interactions, i.e., when the system of interest
gets classically driven—as it is the case for quantum gates.
Extending this concept to coupled quantum systems is still
exploratory and proves to be a very active field of research
nowadays [3–8]. As a distinctive feature, coupled quantum
systems may get entangled during their interaction. The re-
sulting entanglement entropy challenges the concept of work
captured by classical intuitions.

In Refs. [4,5], a general framework was proposed to an-
alyze the nature of energy flows between two coupled but
otherwise isolated quantum systems. Within this simple par-
tition of the physical world, energy flows split into two
components, respectively, stemming from the effective unitary
driving that each system performs on one another and from
the creation of correlations between the two systems. The
former (resp. the latter) quantity is identified as the work
flow (resp. the correlation energy flow), in agreement with the
usual definition of work when one of the systems becomes
classical and no entanglement appears.

In this article, we first propose a scenario where these
definitions acquire a transparent operational meaning, see
Figs. 1(a)–1(c). Energy is locally injected into each system
to prepare a pure product state, then gets delocalized while
entanglement builds up. Finally, the invested energy is tenta-
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tively recovered, only using local unitary operations. While
entanglement generally hinders local energy extraction, full
recovery can be reached at any time provided that the two
systems solely exchanged work, which only happens in the
limit where one of the systems becomes classical [9]. This
scenario extends and generalizes the recently proposed charg-
ing battery protocols [10–17]: It treats work providers and
work receivers in a symmetric way within a unified picture
and relates the performance of the charging protocol to nature
of energy exchanges between the two systems. It motivates
a number of novel investigations, related, e.g., to the opti-
mization of energy recovery from one or both systems, the
derivation of fundamental bounds relating work and local en-
ergy extraction, or the study of how quantum resources impact
the bound. Since this framework does not necessarily involve
a thermal bath, it was dubbed quantum energetics by some of
us [18].

We then start to explore these questions, conducting our
analyses in the waveguide quantum electrodynamics (WG-
QED) platform, taking a qubit coupled to a waveguide as
our bipartite system. WG-QED is an accurate paradigm to
investigate light matter interaction in the quantum regime.
It provides a complete, analytically solvable description of a
driven quantum open system, where the drive, the qubit, and
the bath evolve as an isolated system [19–24]—which is a
major advantage for our present energetic considerations. We
show that the work flows, respectively, performed by the qubit
and the field on one another, compensate each other, singling
out for the first time the self-reaction work giving rise to
spontaneous emission [25,26]. We demonstrate that the work
performed by a coherent pulse on the qubit is always larger
than the work that can later be extracted from the qubit, i.e., its
ergotropy [27–29]. We dub this bound the classical ergotropy
bound and show that it gets violated with a single-photon
pulse—operating as an energetic witness of nonclassicality.

General framework—We first introduce our system and
notations and recall the framework introduced in Refs. [4,5].
We consider two quantum systems, q and f , with respec-
tive free Hamiltonians, Hq and Hf . Throughout the paper,
we shall use the interaction picture with respect to Hq + Hf ,
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FIG. 1. (a)–(c) Operational scenario. (a) Alice prepares the initial
state of the bipartite system q f at time t = t0, spending the amount
of work −WA (blue). (b) At time t = 0 the two subsystems are
interacting, exchanging work (blue) and correlation energy (blue and
red). (c) At time t Bob locally extracts work from both subsytems,
WB. Due to the correlations, some locally unextractable energy may
remain (red). (d)–(f) Waveguide setup. A qubit is located at the
position x = 0 of a 1DWG. (d) At t = t0 = −|x|/v, Alice prepares
a pulse of light and the qubit in a pure state. The field propagates
without dispersion in the region x < 0 (resp. x > 0) at the velocity
v. (e) At t = 0 the pulse impinges the qubit. (f) At time t the qubit
and the pulse are still entangled, preventing full energy extraction by
local unitary operations.

such that the coupling Hamiltonian V (t ) is time dependent.
The reduced equation of motion for the system k ∈ {q, f } is
obtained from the von Neumann-Liouville equation dρ/dt =
−(i/h̄)[V (t ), ρ(t )], with ρ(t ) being the joint state of q f .

dρk

dt
= − i

h̄
[Hk (t ), ρk (t )] − i

h̄
Trl �=k{[V (t ), χ (t )]}; (1)

ρk (t ) = Trl �=k[ρ(t )] is the reduced state of system k and
χ (t ) = ρ(t ) − ρq(t ) ⊗ ρ f (t ) is the correlation matrix at time
t . We emphasize that this equation holds for any initial state of
the systems q and f , in particular with initial correlations as
well. Equation (1) evidences that the two systems influence
each other in two ways. Namely, each system induces the
effective driving term Hk (t ) = Trl �=k[V (t )ρ l (t )] in the other
system reduced dynamics, while a nonunitary term results
from the buildup of correlations between the two systems. It
is straightforward to show that the former term is (resp. the
latter is not) entropy preserving. Each term gives rise, in turn,
to two distinct energetic changes for the system k that we now
characterize.

From now on, we suppose that [Hq + Hf ,V ] = 0.
Throughout the paper, this condition is dubbed “local energies
conservation.” This is the case of, e.g., the so-called thermal
operations [30]. Moreover, we take the coupling V (t ) to be
orthogonal to Hq and Hf , i.e., Tr[V (t )�i] = 0 for i ∈ {q, f },
where {�i} are the projectors on the eigenbasis of Hi. In
this case, the energy of system k ∈ {q, f } equals U k (t ) =
Trk[Hkρ

k (t )]. Substituting Eq. (1) into the energy flow U̇ k =
dU k/dt we obtain

U̇ k (t ) = − i

h̄
Trk{[Hk,Hk (t )]ρk (t )} − i

h̄
Tr{Hk[V (t ), χ (t )]}

≡ Ẇk (t ) + Q̇k (t ), (2)

for k ∈ {q, f }. We have denoted by Ẇk (resp. Q̇k) the energy
flow induced by the unitary (resp. nonunitary) part of the

reduced equation of motion. The former stands for the work
flow. It is the only term remaining when one of the systems
becomes classical, where it matches the usual definition of
work. In the general case where entanglement builds up, this
definition treats work providers and receivers in a symmetric
way. Unlike in Refs. [4,5], we shall not treat this component
“heat” since it does not correspond to some energy exchange
with a thermal bath [31] nor with a classical measuring de-
vice [32]. We thus dub it the correlation energy flow. When
local energies are conserved, we show that Ẇq + Ẇ f = 0
(see Ref. [33]). This result reveals that the work flows, respec-
tively performed by each system on one another, are equal
and can be interpreted as the quantum version of the action-
reaction principle.

Operational scenario—We now propose a scenario pro-
viding an operational meaning to the definitions above. The
quantum systems q and f are initially in their ground states,
see Figs. 1(a)–1(c). At t = t0, Alice prepares the pure product
state |ψq(t0)〉 ⊗ |ψ f (t0)〉, which has a cost −WA = Uq(t0) +
U f (t0). This energy cost corresponds to work in the sense
defined above, since Alice performs unitary operations. In our
convention the work is positive when it is extracted from a sys-
tem. At time t = t+

0 , the coupling between the two systems is
switched on and they evolve unitarily under the total Hamilto-
nian up to some time t , after which the coupling Hamiltonian
is switched off. Switching the coupling on and off has no
energy cost because of the local energies conservation. This
condition implies in particular that the coupling energy re-
mains constant all along the interaction, i.e., �Uq = −�U f .
It allows us to analyze the coupled evolution as an exchange
of energy between the two systems.

After switching the coupling off, Bob attempts to extract
energy from each system using local unitary operations. As
the systems get entangled, their reduced entropies increase,
lowering the amount of local work WB that Bob can extract,
WB � −WA. A sufficient condition for reaching the bound at
any time is that q and f remain in a product state, i.e., that
q or f is initially prepared in a classical state. In quantum
optics, the quintessential example of a classical state is a high-
intensity coherent field, injected in a bosonic mode [9,34].

This scenario provides new conceptual tools to analyze
battery-charging protocols [10–17], that usually involve a
“working substance” as a work donor and a “quantum battery”
as a work receiver. The figure of merit to maximize is the
final ergotropy of the battery, i.e., the maximal amount of
work that can be locally extracted from the battery by local
unitary operations [27]. From the analysis above, it appears
that a maximal battery ergotropy is reached when the two
systems solely exchanged work during the loading step. This
invites to relate the performance of the protocol to the amount
of work exchanged between the working substance and the
battery. Our goal now is to establish tight bounds relating
work, correlation energy, and local energy extraction, which
call for a more concrete scenario.

Waveguide QED setup—From now on, q and f , respec-
tively, feature a qubit and a one-dimensional waveguide
(1DWG), i.e., a reservoir of electromagnetic modes at
zero temperature [see Figs. 1(d)–1(f)]. The qubit Hamil-
tonian reads Hq = h̄ω0σ+σ−, with σ− = |g〉〈e|, σ+ = σ

†
−,

and σz = |e〉〈e| − |g〉〈g|, where |e〉 (resp. |g〉) denotes the
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qubit excited (resp. ground) state. The field Hamiltonian is
Hf = ∑∞

k=0 h̄ωkb†
kbk , where the operator b†

k (resp. bk) cre-
ates (resp. annihilates) one photon of frequency ωk � 0 and
momentum h̄k = h̄ωkv

−1, with v � 0 being the field’s group
velocity. The coupling Hamiltonian in the Schrödinger pic-
ture reads V = h̄g

∑
k (ibkσ+ + H.c.), where H.c. stands for

Hermitian conjugate and g is the coupling constant, assumed
uniform over the modes. The lowering operator at the position
x in the interaction picture is given by [35]

a(x, t ) =
√

1

D

∞∑
k=0

e−iωk (t−x/v)bk = a(0, t − x/v), (3)

where D is the mode density, taken as uniform.
Equation (3) evidences that the field operators depend on
the single variable τ = t − x/v and verify the bosonic com-
mutation relations [a(x, t ), a†(x′, t ′)]=[a(0, τ ), a†(0, τ ′)] =
δ(τ − τ ′), with τ ′ = t ′ − x′/v. The qubit is located at the
position x = 0 of the waveguide, such that the coupling
Hamiltonian in the interaction picture reads

V (t ) = ih̄
√

γ σ+(t )a(0, t ) + H.c., (4)

where γ = g2D is the qubit spontaneous emission rate and
σ+(t ) = eiω0tσ+.

Equations (3) and (4) suggest that the field-qubit unitary
dynamics can be modeled as a series of interactions, or colli-
sions, between the qubit and a series of temporal modes that
propagate with velocity v; see Figs. 1(d)–1(f). Our approach
thus bears similarities to the so-called collisional or repeated
interactions model [22,36,37], with the substantial difference
that the dynamics is deduced from first principles and provides
full access to the joint qubit-field state. In the regions where
x < 0 or x > 0, a wave packet travels without deformation
from left to right. All field observables can thus be related
to the input and output operators ain(t ) = limε→0− a(ε, t ) and
aout(t ) = limε→0+ a(ε, t ), respectively, that satisfy

a(0, t ) = 1
2 [ain(t ) + aout(t )]. (5)

Solving the coupled equations of motion for the field and
the qubit gives rise to the mean input-output relation (see
Ref. [33]),

〈aout(t )〉 = 〈ain(t )〉 − √
γ 〈σ−(t )〉. (6)

Note that Eq. (6) should not be confused with the textbook
input-output relation written in Heisenberg representation that
holds for the operators instead [20].

The reduced equation capturing the dynamics of the qubit
is presented in Ref. [33] and involves the effective driving op-
erator Hq(t ) = ih̄

√
γ 〈a(0, t )〉σ+(t ) + H.c. Interestingly, the

injection of a coherent input pulse leads to the same evolu-
tion for the qubit observables as the Optical Bloch Equations
(OBE) at zero temperature [34,38]. The analytical solution
provided by the WG-QED model can thus be seen as a pu-
rification of the well-known OBE, where the qubit, the drive,
and the zero-temperature bath evolve unitarily. Given Eqs. (5)
and (6), it is straightforward to see that the driving operator
Hq(t ) involves the field radiated by the qubit

√
γ 〈σ−(t )〉,

while it reduces to the input field 〈ain(t )〉 in the case of the
OBE. This is expected since unlike our framework, the OBE
do not provide any quantum description of the electromag-
netic field: It is either treated as a classical drive or as a thermal

bath. Both descriptions do converge, however, when the field
amplitude is large such that |〈ain(t )〉|2 � γ [33]. This defines
the classical limit of the field, where stimulated emission in
the driving mode largely overcomes spontaneous emission.

Classical ergotropy bound—We now introduce the frame-
work needed for our energetic analyses. Note that the coupling
is always on: There is thus no cost related to switching the
coupling on and off, simplifying the energetic analysis. More-
over, we restrict the study to the cases where 〈V (t0)〉 = 0,
which is satisfied if the qubit dipole or the mean input field
at t = t0 are zero, or if both have the same phase. We show in
Ref. [33] that if the field is resonant with the qubit, then the
mean coupling remains zero all along the evolution—which
realizes the local energies conservation condition. This allows
us to define a unique work flow Ẇ = Ẇq = −Ẇ f that fea-
tures the work received by q and provided by f .

We employ Eqs. (5) and (6) to expand the work flow Ẇ as
a function of the input field and qubit dipole (see Ref. [33]).
We obtain Ẇ (t ) = h̄ω0(2

√
γ Re[〈σ−(t )〉〈ain(t )〉∗] −

γ |〈σ−(t )〉|2). The first term features work exchanges
by stimulated emission [36,38–40] and is the only term
remaining in the classical limit of the field. The latter is
remarkable since it remains in the absence of input field,
〈ain(t )〉 = 0, i.e., during spontaneous emission. From the
qubit perspective, it features the “self-work” performed by
the radiation reaction force [25,26]. This self-work is always
negative since the qubit can only provide energy to the
vacuum field. From the field perspective, it corresponds to
the “spontaneous work” already evidenced in Ref. [41]. It is
interesting to rewrite the work flow as a function of the field
quantities only: Ẇ (t ) = −h̄ω0(|〈aout(t )〉|2 − |〈ain(t )〉|2). This
equation reveals that the work is the energy change of the
field coherent component [42], which is accessible through
homodyne or heterodyne measurement schemes [39,43]. It
evidences that the amount of exchanged work is fully encoded
in the field state, from which it can be directly measured—in
other words, work is an observable. Conversely, the energy
change of the field incoherent component directly reflects
that the qubit and the field became correlated during their
interaction.

Our framework gives rise to a general energetic bound
if the pulse statistic are coherent. Our bound involves
the so-called qubit ergotropy that features the maximal
amount of work that can be extracted from the qubit
by unitary operations [27]. Its expression is computed
in Ref. [33] and reads Eq(t ) = h̄ω0[〈σz(t )〉 + r(t )]/2, with
r(t ) = √〈σx(t )〉2 + 〈σy(t )〉2 + 〈σz(t )〉2. Then, for any initial
state of the qubit, the correlation energy flow reads Q̇(t ) =
h̄γ (|〈σ−〉|2 − 〈σ+σ−〉) � 0 [33], such that the correlation en-
ergy is always negative. In turn, this implies that W (t ) �
�Eq(t ), where �Eq(t ) = Eq(t ) − Eq(t0) is the change in the
qubit ergotropy [33]. This inequality reveals that a coherent
field cannot provide more ergotropy than work to the qubit.
Henceforth, we refer to this bound as the classical ergotropy
bound. It is reached at any time if no correlations are created,
i.e., if the field state reaches the classical limit.

The classical ergotropy bound is violated if the input field
is a resonant single-photon pulse, a paradigmatic example of
nonclassical statistics. A particularly striking case is provided
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by a mode-matched inverted exponential. Such fields have
been theoretically [44,45] and experimentally [46–48] shown
to lead to complete population inversion (see Ref. [33]), yield-
ing ergotropy to the qubit as soon as 〈σz〉 � 0. Meanwhile,
a single-photon pulse has no coherent component, such that
〈a(0, t )〉 = 0 at any time. Therefore, it does not perform
any work on the qubit, leading to W (t ) = 0 � �Eq(t ) when
the population gets inverted. This violation of the classical
ergotropy bound established above provides an energetic wit-
ness to probe the nonclassicality of the field. This remarkable
feature completes other criteria based on Wigner function
negativities [9,42] and relies on operational quantities that are
experimentally accessible.

Impact of quantum resources on work recovery—We now
propose an experimentally realistic scenario to probe the
bound derived above. To do so, it is convenient to make the
connection with the general framework presented in the first
part of the paper. The field and the qubit are initially in their
ground state. At t0 � 0, Alice prepares an input light pulse
while the qubit remains in |g〉. Under the free evolution, the
light pulse propagates from the negative to the positive x axis;
see Figs. 1(d)–1(f). It typically interacts with the qubit when
it crosses x = 0, at a time chosen as the origin t = 0. At long
times with respect to the pulse duration and the spontaneous
emission time, the qubit has relaxed back to its ground state
and the field is in a pure state defined by the scattered pulse.

At any time t , we evaluate the capacity of Bob to locally
extract the respective energies of the field and the qubit. Here
we assume that Bob can only employ a classical resonant field
to generate his unitary operations. He can thus fully extract the
qubit ergotropy by optimizing the phase and duration of the
driving pulse. Conversely, he can only displace the light field,
hence extract the energy of the field coherent component. This
can be done, e.g., by using homodyning schemes [39,43]. The
complete ergotropy of the light pulse is thus not recovered by
this operation. As we show below, this experimental constraint
on the class of operation Bob can perform provides a direct
access to the classical ergotropy bound.

The maximum amount of work that Bob can extract at
time t equals WB(t ) = Eq(t ) + E f

coh(t ). We have introduced
E f

coh(t ) = h̄ω0(
∫ t

t0
dt ′|〈aout(t ′)〉|2 + ∫ ∞

t dt ′|〈ain(t ′)〉|2) the to-
tal energy of the field coherent component [42], whose change
in time equals the work performed by the qubit. We now
consider the extra amount of work �WB(t ) = WB(t ) − WB(t0)
that Bob can extract at time t with respect to t = t0. It can
also be written as �WB(t ) = �Eq(t ) − W (t ); �WB(t ) thus
features a measurable quantity that captures our bound. It
is plotted in Fig. 2 in the two situations studied above: A
coherent pulse containing one photon on average and a single-
photon wave packet. In the first case, the classical ergotropy
bound translates into the decrease of �WB. Conversely, for the
single-photon pulse, the bound violation induces an enhance-
ment of the energy locally extracted by Bob. We have also

FIG. 2. Classical ergotropy bound and correlation energy. At
t = t0 the qubit is prepared in |g〉 and a light pulse at the position x =
−vt0. The pulse envelope reads α(t ) = √

γ eγ t/2−iω0t for t ∈ [−∞, 0]
and α(t ) = 0 for t ∈ (0,∞] (see Ref. [33]). The extra amount of
work �WB(t ) (see text) is plotted for the coherent field case (solid
purple) and the single-photon case (solid blue). The correlation en-
ergy Q(t ) is plotted for the coherent (dashed red) and single-photon
(dashed orange) cases. We set t0 = −5/γ .

plotted the correlation energy Q in both cases, which gives
insights into the physical origin of the bound. As it appears
on the figure, a coherent field only gives rise to a negative
correlation energy, while correlations induced by the quantum
pulse can efficiently fuel the qubit.

Outlook—Our work brings new evidence that quantum
resources impact the energetic behavior of quantum systems,
providing a new “quantum energetic signature” [49]. These
new mechanisms can take the form of operational energetic
witnesses that complement the well-known quasiprobability
distributions of quantum optics. The experiments we pro-
pose are feasible on state-of-the-art platforms of integrated
photonics [50], superconducting circuits [51], and atomic
physics [52]. Beyond the WG-QED scenario, this framework
opens new avenues to extend the concept of work in the
quantum world that can be further used to analyze other kinds
of interactions, e.g., modeling measurement processes. The
energy recovery scenario could find useful applications in
the realm of quantum technologies, e.g., the work spent to
run quantum circuits could be optimally recovered when the
algorithm is completed.
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