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Abstract: Malignant melanoma (MM) is the “great mime” of dermatopathology, and it can present 

such rare variants that even the most experienced pathologist might miss or misdiagnose them. 

Naevoid melanoma (NM), which accounts for about 1% of all MM cases, is a constant challenge, 

and when it is not diagnosed in a timely manner, it can even lead to death. In recent years, artificial 

intelligence has revolutionised much of what has been achieved in the biomedical field, and what 

once seemed distant is now almost incorporated into the diagnostic therapeutic flow chart. In this 

paper, we present the results of a machine learning approach that applies a fast random forest (FRF) 

algorithm to a cohort of naevoid melanomas in an a�empt to understand if and how this approach 

could be incorporated into the business process modelling and notation (BPMN) approach. The FRF 

algorithm provides an innovative approach to formulating a clinical protocol oriented toward 

reducing the risk of NM misdiagnosis. The work provides the methodology to integrate FRF into a 

mapped clinical process. 

Keywords: fast random forest (FRF); algorithm; naevoid melanoma (NM); artificial intelligence 
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1. Introduction 

Malignant melanoma (MM) is known to be the great mimic of dermatopathology [1] 

as it can mimic different types of malignant neoplasms, not only from a 

histopathological/morphological point of view but also through potential aberrant 

expressions of immunohistochemical markers [2] that contribute to confusing the 

pathologist, making differential diagnosis even more difficult. With respect to MM, 

naevoid melanoma (NM) represents the most frequent cause of financial claims [3] in the 

field of MM diagnosis as it represents a poorly diagnosed variant of melanoma which 

simulates a naevus and can often escape even the most experienced dermatopathologist. 
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Levene [4] initially reported NM in 1980 and assigned it the designation of “verrucous 

and pseudonaevoid melanoma” in doing so. The definition of “naevoid malignant 

melanoma” was first employed in 1985 by Schmoeckel et al. [5], who reported 33 patients 

with malignant melanomas that exhibited histological features resembling benign 

melanocytic lesions and underwent follow-ups for at least five years. NM most frequently 

involved the backs and limbs of male patients with a mean age of 57 years in a 

clinicopathological investigation of 20 cases carried out by Bleessing et al. [6]. Over 50% 

of cases had a clinical diagnosis of benign lesions, while only 10% had a histology 

diagnostic at first. Furthermore, a morphological evaluation of 20 patients with a 

minimum of three years of follow-up found that four tumours recurred and three 

metastasized, all with fatal outcomes. In this study, the average Breslow thickness was 2.5 

mm, and there was no difference in prognosis between NM and conventional malignant 

melanoma [7]. Various authors have summarized the morphological criteria that are the 

most useful in making a correct diagnosis of NM, beginning with the mandated 

recommendation that any melanocytic lesion, particularly when NM is suspected, should 

be assessed not only at panoramic magnifications (× 2, × 4) but also at higher 

magnifications (× 10, × 20, × 40 etc.) in order to study and investigate the more subtle 

morphological features in the lesions [8]. Interestingly, in a 2017 paper, Cook, M.G., et al. 

[9] conducted a retrospective study of 89 NM cases that were divided into two groups 

consisting of 11 cases and 78 cases, respectively. 

The first group (n = 11) consisted of clinically papillomatous lesions which, upon 

histology, consisted of predominantly intradermal melanocytes with hyperchromatic and 

angulated nuclei, numerous dermal mitoses, and no real maturation in depth; in this 

group of lesions, there was li�le or no junctional component. 

The second group (n = 78) consisted of flat or shallow dome-shaped lesions and 

presented melanocytes with a morphological appearance that was referred to as that of a 

“maturing naevoid melanoma” with a greater possibility of the presence of a dysplastic 

junctional melanocytic component and, in addition, the presence of true melanocyte nests 

in the deep dermis. From all that we have said, it is quite clear that there are rather clear 

but also “subtle” criteria that must be followed precisely; otherwise, there is a risk of 

misdiagnosis and all that it would entail for the diagnostic–therapeutic and care pathways 

of the NM-affected patient. 

Artificial intelligence (AI) has changed clinical and diagnostic routines decisively 

[10]. Suffice it to say that the application of AI algorithms to the medical field has 

undergone a surge in the last decade, with pathology also being affected quite extensively 

[11]. When discussing the application of AI to histopathological (and other) diagnostics, 

one must always divide the two types of AI into supervised machine learning, machine 

learning (ML) and deep learning (DL). More specifically, ML is a subset of AI that deals 

with creating systems that learn or improve performance based on the data they use; in 

this framework, validation (internal and/or external) is always required, and algorithms 

can be “supervised” (known outcome) or “unsupervised” (clustering) [12]. 

In this paper, after a previous work on MM [13], we present preliminary data on the 

training of an ML algorithm called fast random forest (FRF) which is applied to a dataset 

of histopathological images of NM; we discuss its strengths and limitations and provide 

a critical prospective for the near and distant future. 

2. Materials and Methods 

2.1. Data Acquisition 

For the processes of training, validation and testing, we used a dataset of 18 

photomicrographs of NM, originally taken at 1920 × 1088 pixels using a NanoZoomer S60 

Digital slide scanner C13210-04 at diverse magnifications (from 4 × to 20 ×). The images 

were obtained from patients with histologically confirmed diagnoses of NM in the period 

from January 2010 to December 2022. For each patient, demographic, clinical, 
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histopathological and immunohistochemical features were recorded for routine 

pathological practice; moreover, informed consent was obtained from all patients, and the 

local ethical commi�ee approved this study by CITEL (Dipartimento di Scienze 

Biomediche e Oncologia Umana—Dimo U.O.C. Medicina Interna “G. Baccelli” Policlinico 

di Bari, number 5732). 

Haematoxylin and eosin (H&E) staining was used for histopathological analysis and 

for each case the diagnoses were reviewed in a double-blind manner by two experienced 

dermatopathologists (A.C. and G.C.). Subsequently, a dermatopathologist (G.C.) selected 

the most representative areas with the minimum criteria for a possible diagnosis of NM. 

The criteria used in the pre-selection phase are summarized in Table 1, and the clinical, 

histological and immunohistochemical features of the 18 cases analysed are reported in 

Table 2. 

Table 1. Histological criteria traditionally used in the differential diagnosis of naevoid melanoma 

and in the supervision process of the algorithm. 

Architectural Criteria Cytological Criteria 

Verrucous/warty lesion 

Dome-shaped lesion 

Small, epithelioid, monomorphous cells 

Asymmetry 

Poor circumscription 

Round/oval nuclei; small, eosinophilic 

nucleoli 

Possible junctional component Lack of maturation  

Nested growth pattern Mitoses (in deep) 

Variation in nest sizes Pleomorphism 

Table 2. Clinical, pathological, histological and immunohistochemical features of the NM analysed 

in this paper. 

Number of 

Patient 
Gender Age Topography Breslow Thickness (mm) 

Immunohistochemical 

Investigations 

1 M 74 Back 0.6 Melan-A +−-/HMB-45- 

2 M 56 Left shoulder 1.3 Melan-A +−-/HMB-45- 

3 M 62 Left leg 2 Melan-A +−-/HMB-45- 

4 

5 

M 

F 

83 

47 

Right chest 

Left leg 

1.0 

3.0 

Melan-A +−-/HMB-45- 

Melan-A +−-/HMB-45- 

6 M 43 Back 0.8 Melan-A -/HMB-45- 

7 F 46 Back 5 Melan-A +−-/HMB-45- 

8 M 60 Right axilla 0.7 Melan-A +−-/HMB-45- 

9 F 48 Left flank 1.1 Melan-A-/HMB-45- 

10 F 83 Left tibia 0.8 Melan-A ++-/HMB-45- 

11 M 49 Back 0.7 Not reported 

12 M 39 Abdomen 0.8 Not performed 

13 M 43 Left arm 1.0 Melan-A +−-/HMB-45 +-- 

14 M 44 Not reported 1.2 Not reported 

15 M 66 Right scapula 0.8 Melan-A +−-/HMB-45- 

16 F 51 Back 0.7 Not reported 

17 F 81 Back 0.9 Melan-A ++-/HMB-45- 

18 F 91 Left arm 1.1 Not reported 

Legend. M: Male; F: female; Melan-A and HMB-45 are reported as semi-quantitative scores. 

2.2. Algorithm  

The algorithm applied for feature extraction was the fast random forest (FRF) 

algorithm, a powerful supervised machine learning algorithm that optimizes the 
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performance of the random forest (RF) algorithm with respect to computational speed and 

classification accuracy: it defines the best decision tree split condition step by step, thus 

avoiding unnecessary computations, extracting clusters of pixels appertaining to similar 

classes [1,14,15]. Specifically, the FRF algorithm implements Weka libraries and has been 

primarily used in industrial applications [15] and successively applied to medical images 

[13]. Theoretically, a similar class is identified by a group of pixels with different greyscale 

intensities and specific distances. The FRF algorithm is trained by defining classes in the 

same image: the “ambiguous” areas are selected as classes to focus a�ention on, while the 

other areas are classified as “regular” classes. Only two main classes are identified in each 

image: the alerting class and the regular class; in this way, this classification approach 

provides probability maps concerning only regular and anomalous pixel distributions. 

The training was performed in each image by classifying different clusters highlighted by 

the dermatopathologist as part of the “anomalous” class. In Figure 1 is illustrated a 

scheme related to the training model applied to the medical images analysed (all images 

with a resolution of 1920 × 1088 pixels were acquired by a NanoZoomer S60 Digital slide 

scanner C13210-04, Hamamatsu, Japan). The advantage of the proposed approach is that 

it punctually extracts pixels with the same features as the appertaining class (the intensity 

of pixels with defined distances from the other pixels with a specific intensity) from the 

whole image. In Table 3, the difference between the classification approach used in our 

previous paper [13] and the one applied in this paper, which is suitable for an initial 

screening of NM, is detailed. The parameters estimated to quantify the FRF algorithm’s 

performance are recall and precision [16].  

The performed analysis was enhanced via the colour distribution within the 3D RGB 

colour space, thus counting the number of pixels contained in each image (pixels with a 

high probability of classifying an NM region were highlighted in red). Specifically, the 

NM information (possible alerts for clusters to classify in the pre-screening process) is 

expressed in terms of the number of red pixels in equivalent areas expressed in mm2 and 

as a percentage (%). The procedure to estimate the number of red pixels is as follows: 

- The probabilistic images of both the classes C1 and C2 are extracted; 

- For each probabilistic C2 image, a filter enhancing the pixels with the highest values 

in red is applied by considering a red threshold of about 0.38 and a dark background; 

- The RGB distributions of the filtered images, counting only the red pixels (which 

have higher probabilities of classifying NM), are plo�ed.  

The equivalent area expressed as a percentage is a new probabilistic indicator 

measuring the potential classification of NM. The procedure followed to estimate the 

probabilistic indicator is as follows: 

1. For each image, the number of pixels constituting the scale bar line (each image 

indicates a scale bar of 500 microns) is counted; 

2. The length and the height of each image are estimated in microns; 

3. The total area of each image is estimated in pixels2;  

4. The total area of each image is estimated in microns2;  

5. The red pixels of the processed images (indicating a high probability of NM) are 

counted; 

6. The equivalent area of the red pixels is estimated and expressed in microns2;  

7. The same area of the red pixels is expressed in mm2; 

8. The percentage value (the ratio between the total image area in mm2 and the 

equivalent area of the red pixels in mm2) is expressed. 

Table 4 lists the best FRF hyperparameters for optimising the image processing 

analysis. 
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Figure 1. NM pre-screening training model approach based on the identification of a class of 

possible anomalous clusters and of a class of regular clusters. The FRF algorithm training was 

performed on the same image. 

Table 3. Differences in the classification approaches between the methods adopted in [13] and in 

this work. 

Classification  Approach Followed in [13] Approach Followed in This Work 

Number of classes defined in the same 

image 
>2 

2 (C1: regular clusters; C2: possible 

irregular clusters) 

Identification of sure clusters with 

specified characteristics  
Yes 

No (the a�ention is focused on 

“possible” and uncertain clusters 

identifying the risk of naevoid 

melanoma) 

Number of images adopted in the 

entire classification 
125 (images with melanoma) 18 (pre-screening images) 

Table 4. FRF hyperparameters optimizing the training image processing. 

Hyperparameter  Value 

Filter types 
Gaussian blur; Hessian; membrane 

projections; Sobel; difference of Gaussian 

Membrane thickness  1 

Membrane patch size  19 

Minimum sigma 1 

Maximum sigma  16 

Total number of classes 2 

2.3. Pre-Screening Clinical Process Modelling 

The pre-screening clinical process based on the integration of the FRF analysis was 

designed by using the business process modelling and notation (BPMN) approach. The 

BPMN is an international standard (ISO/IEC 19510:2013 “Information technology, Object 

Management Group Business Process Model and Notation”) used to design processes, 

including machine learning decision-making tools [17], and it is adopted to improve 

healthcare organizational processes [18]. The goal of the adopted BPMN approach was 

the standardization of the new clinical pre-screening protocol to facilitate scientific 

approval. The BPMN models will be revised in another paper updating the protocols and 

refining the procedure to further decrease the NM risk.  

  

C1

C1
C1

C2

C2
C2

C2

C2

C1C1

C1

C1

C1

C1 C1: regular clusters
C2: possible irregular clusters
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In detail, the clinical–pathological process was mapped following the seven 

consequent phases listed below:  

1. Sections stained in haematoxylin and eosin (H&E) are digitally acquired by a 

scanner; 

2. Different scanning modalities are tested to determine the best screening approach 

for monitoring different areas (for example, scanning in 20× and 40× mode (15 mm × 15 

mm), 0.46 µm/pixel (20×) 0.23 µm/pixel resolution (40×); 20×: 1 mm scale bar; 40×: 500 

micron scale bar); 

3. The most significant slide from a single patient containing more diagnostic features 

(more significant images) is chosen; 

4. Supervising the lesion and analysing the main characteristics to define the main 

clinical scenario, using the 2×–4× analysis as a “first look” to evaluate the more general 

characteristics of the lesion; 

5. Conducting an FRF analysis of the selected digital slides (pre-screening); 

6. Carrying out an FRF threshold check (image post-processing): if the 12% threshold 

is exceeded, the “suspected” case is looked at first and then the remaining cases are 

analysed (patient priority in the analysis approach); the threshold value can be changed 

in the function of the image filtering threshold and by assessing the real evolution of the 

NM in the future;  

7. Once the suspected case of NM has been analysed, immunohistochemical 

investigations are carried out for Melan-A, HMB-45, p16 and PRAME. 

3. Results 

Image processing was performed in the self-learning FRF analysis, which focused on 

classifying possible areas of naevoid melanoma (NM). The FRF extracted the probabilistic 

images from the photomicrographs (an example in Figure 2), highlighting the region 

where NM is the most probable. This analysis was enhanced via the colour distribution 

within the 3D RGB colour space, thus estimating the number of pixels contained in each 

image (pixels with a high probability of classifying a NM region were highlighted in red). 

Table 5 lists the NM information in terms of the number of red pixels, equivalent areas 

expressed in mm2 and the percentage (see the last three columns) of four images in the 

pool of used pictures. The equivalent area expressed as a percentage could be a 

probabilistic indicator measuring the potential classification of NM. 

Table 5. Areas of FRF-classified NM pixels in four images from the pool of used images. 

Image (1920 × 

1088 Pixels) 

Total Image Area 

(mm2) 

Number of 

Red Pixels 

Equivalent Area (mm2) 

(Probable NM) 

NM1 6.66122449 166,689 0.531533801 

NM2 13.056 110,438 0.6902375 

NM6 3.985226336 140,468 0.267978694 

NM8 3.398583923 105,898 0.172288239 
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Figure 2. (a) Image NM1 and (b) related colour distribution within the 3D RGB colour space; (c) 

image NM2 and (d) related colour distribution within the 3D RGB colour space; (e) image NM6 and 

(f) related colour distribution within the 3D RGB colour space; (g) image NM8 and (h) related colour 

distribution within the 3D RGB colour space. 

The good performance of the FRF algorithm is verified via the estimated Precision 

parameter in Figure 3. Similar Precision trends are found for all the images analysed. Other 

examples of performance indicators are discussed in Appendix A.  
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Figure 3. FRF Precision parameter confirming the good algorithm performance (NM2 case). 

In order to explain the principal selection, we tested a further 18 cases of benign 

naevus (Unna naevus), which is a differential diagnosis with NM (Figure 4). The goal was 

to create a training model that is useful in detecting possible and probable areas of NM: 

for this purpose, the training model [19] was created by targeting significant pixel areas 

in NM cases. The execution of the trained FRF algorithm provides threshold values for the 

benign cases that are significantly less than 12 %, thus proving the efficiency of the 

algorithm in be�er identifying dangerous cases. An image processing limit is part of the 

correct se�ing of the pixel intensity filter when selecting thresholds to estimate (a wrong 

se�ing could provide wrong results).  
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Figure 4. (a,b) Image processing of benign naevus cases, using the training model used for the 

naevoid melanoma cases (the threshold values are significantly less than 12%). 

4. Discussion 

Naevoid melanoma represents a very important challenge in dermatopathology and 

even today, its misdiagnosis represents one of the main dangers, even in an ultra-specialist 

se�ing. Over time, there have been several descriptions of this entity in which it is 

important to emphasise the differences in the authors’ perspectives regarding the 

presence of a junctional component. In more detail, some authors considered and 

restricted the use of the term “naevoid” only to those cases involving a lesion that 

resembled a benign naevus with a complete absence of a junctional component [20], but 

others [21] also included in their case histories cases in which an intraepidermal 

lentiginous component was recognisable. In recent years, artificial intelligence has shown 

that it can also assist in the field of dermatopathology, not only from a purely diagnostic 

perspective but also from educational, resource and screening perspectives [22–25]. In a 

very recent paper, Ibraheim, M. K., et al. [26] addressed these topics, emphasising, among 

other things, the importance of using artificial intelligence in dermatopathology as a 

screening tool, and our paper a�empts to move precisely in this direction. 

The approach used herein, which is based on FRF image processing, is a part of an 

innovative clinical protocol based on a pre-screening method able to decrease the health 

risk/misdiagnosis risk. The clinical approach is mapped via the BPMN scheme shown in 

Figure 5.  
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Figure 5. BPMN pre-screening process, including FRF analysis (highlighted in red). 

Such an approach, in our opinion, could be of great assistance in the context of 

pathology laboratories that have very high volumes of cases and slides, allowing for faster 

screening of lesions and the initiation of immunohistochemical and, in necessary cases, 

molecular investigations that can shorten reporting times and improve diagnostic 

timelines for patients. However, as ML algorithms require a pre-selection by a pathologist 

as well as a certain amount of data to allow for a high level of reliability, and considering 

that NM accounts for just under 1% of MM histotypes, it is quite difficult to obtain large 

amounts of data. 

To the best of our knowledge, this is the first paper to address and employ an AI 

algorithm in pre-screening in dermatopathology. 

The very good performance of the algorithm (see the “Precision” parameter, Figure 

3) indicates that the algorithm automatically defines the number of instances required for 

the best computation. A limit is certainly the first se�ing of the parameter of the algorithm 

(see the definition of the parameters, such as the Gaussian/Sobel/Hessian filter parameters 

bilateral/Lipschi�/Gabor/derivative/structured filtering conditions, etc. [13]). Moreover, 

the high level of sensitivity of the error response was confirmed by slowly varying the 

algorithm’s parameters. Also, other neural network algorithms could be used for image 

processing, such as long short-term memory (LSTM). This last algorithm requires the 

establishment of further se�ings of parameters calibrated for specific images, which could 

increase the error calculus. The choice of FRF was then mainly due to the optimisation of 

the dermatopathology platform to decrease the computational time and simultaneously 

increase the response accuracy (the main properties of the FRF algorithm).  

It is important to underscore that the indicators adopted for the analysis of the 

experimental results in Table 5 are: 

 The total image area (mm2): this indicator provides a reference for the related 

percentage of the anomalous clusters of the dimension of a specific area according to 

the image scale (this percentage will increase for a wider image); 

 The number of red pixels: the possibly anomalous pixels contained in the image, 

which represent a primary quantification of the ”risk distribution”; 

 Equivalent area (mm2): the red pixels are merged to estimate an equivalent area 

which is useful in defining the final percentage value via losing the information 

associated with the spatial distribution; 

 Equivalent area (%): the final indicator defining the threshold of risk for the pre-

screening analysis; the threshold could change after changing the FRF algorithm 

parameters (a change in the parameters could increase or decrease the number of red 

pixels, thus changing the threshold value, which is set to 12 % according to the clinical 

point of view). 
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5. Conclusions 

Even today, despite advances in the histopathological diagnosis of atypical, 

pigmented lesions, NM continues to be a source of diagnostic error. In this paper, we have 

a�empted to introduce an innovative prognostic procedure in dermatopathology to 

decrease the risk of NM misdiagnosis and to hasten the flow within the pathology 

laboratory. The procedure was formulated into a preliminary clinical protocol based on 

the application of the FRF algorithm, which is optimized to be efficient while using a low 

number of images for training the model. New studies with larger case series are 

necessary to confirm or otherwise refute our reported results. 
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Appendix A 

Table A1 lists the main performance parameters of the adopted FRF algorithm. 

Figures A1–A3 show the precision, recall and the Fmeasure parameter plots of the NM8 

case, respectively. All the graphs prove the efficiency of the FRF algorithm.  

Table A1. Main performance parameters of the FRF algorithm (TP: true positive; TN: true negative; 

FP: false positive; FN: false negative). 

Performance Parameter Function 

Precision TP/(TP + FN) 

Recall TP/(TP + FP) 

FMeasure 2TP/(2TP + FP + FN) 

 

Figure A1. Precision versus epoch number (sample NM8). 
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Figure A2. Recall parameter versus epoch number (sample NM8). 

 

Figure A3. FMeasure parameter versus epoch number (sample NM8). 
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