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Abstract 

Drug-induced blockade of the human ether-à-go-go-related gene (hERG) channel is today 

considered the main cause of cardiotoxicity in post-marketing surveillance. Hence, several 

ligand-based approaches were developed in the last years and are currently employed in the 

early stages of a drug discovery process for in silico cardiac safety assessment of drug 

candidates. Herein we present the first structure-based classifiers able to discern hERG binders 
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from non-binders. LASSO regularized Support Vector Machines were applied to integrate 

docking scores and protein-ligand interaction fingerprints. 396 models were trained and 

validated based on: i) high-quality experimental bioactivity information returned by 8,337 

curated compounds extracted from ChEMBL (version 25) and ii) structural predictor data. 

Molecular docking simulations were performed by using GLIDE and GOLD software 

programs and four different hERG structural models, namely the recently published structures 

obtained by cryo-electron microscopy (PDB codes: 5VA1 and 7CN1) and two published 

homology models selected for comparison. Interestingly, some classifiers return performances 

comparable to ligand-based models in terms of accuracy (AUCMAX = 0.86±0.01) and negative 

predictive values (NPVMAX = 0.81±0.01) thus putting forward the herein proposed 

computational workflow as a valuable tool for predicting hERG-related cardiotoxicity without 

the limitations of ligand-based models, typically affected by low interpretability and a limited 

applicability domain. From a methodological point of view, our study represents the first 

example of a successful integration of docking scores and protein-ligand interaction 

fingerprints through a support vector machine (SVM) LASSO regularized strategy.  Finally, 

the study highlights the importance of using hERG structural models accounting for ligand-

induced fit effects and allowed us to select the best performing protein conformation (made 

available in the SI) to be employed for a reliable structure-based prediction of hERG-related 

cardiotoxicity. 

Introduction 

Ether-à-go-go (EAG) proteins are potassium channels expressed in the muscles as well as in 

various brain regions, endocrine cells, and heart. The EAG-related gene (ERG) channels 

represent an EAG subfamily including three isoforms, namely Kv11.1, Kv11.2 and Kv11.3, all 

characterized by the co-assembly of four identical α-subunits each containing six 



transmembrane helices.1 Commonly known as hERG, the human isoform Kv11.1 has attracted 

increasing interest over the last years since its dysfunction is associated to prolongation of the 

QT interval (i.e., Long QT syndromes – LQTS) inducing ventricular arrhythmia (torsades de 

pointes - TdP) which may cause ventricular fibrillation and sudden death.2,3,4 Since LQTS can 

be the result not only of congenital dysfunctions but also of the drug-induced block of the 

channel,5 hERG is today recognized as a primary antitarget in the screening of drug candidates. 

Noteworthy, in the last years many pharmaceuticals from multiple drug classes including 

antihistamines,6 antiarrhythmics,7 antipsychotics,8 antimalarials,9 antibiotics10 and 

gastroprokinetic11 were proved to induce hERG-related LQTS; a side effect responsible for 

about 30% post-marketing drug withdrawal between 1953 and 2013 in the US.12 In this context, 

a meaningful example is represented by terfenadine, an antihistamine drug removed from the 

market by the U.S. Food and Drug Administration (FDA) in 1997 because of its hERG blocking 

ability.5,13 As a result, the assessment of hERG-related cardiotoxicity is today recognized as a 

common practice in the preclinical stages of drug discovery,14 in agreement with the regulatory 

guidelines.15 In this respect, different in-vitro tests can be employed such as radioactive flux-

based, binding and fluorescence-based assays.16,17 In particular, several companies allow 

screening today large collections of chemicals with a reasonable cost.  In this context, in silico 

approaches are extremely appealing for their ability to support experimental toxicity testing 

quickly and at an even lower costs.18–20  

To this aim, several ligand-based models have been developed in the last years by employing 

quantitative structure-activity relationship (QSAR) approaches,21–23 pharmacophore models24–

28 and machine learning algorithms.28–37 Of note is the paper by Ekins et al.24 published in 2002 

and reporting the first pharmacophore model for hERG inhibition. Although developed based 

on few available experimental data, the model, containing one positive ionizable and four 

hydrophobic features, was successfully employed in the last two decades. In the same year, 



Cavalli et al.26 published a pharmacophore model showing that most of the hERG blockers are 

flexible molecules bearing a central tertiary amine function and at least two aromatic moieties. 

Although ligand-based models can provide good predictive performances, their application 

for screening compounds spanning very different classes is limited by their restricted 

applicability domain38 as they are usually developed from training sets containing a limited 

number of congeneric analogues.  

In this context, employing structure-based approaches, usually characterized by higher 

interpretability, can represent a valuable strategy to overcome this limitation14 and can be 

efficiently used in consensus strategies in combination with ligand-based classifiers.39,40 In 

particular, in the last few years, molecular docking is emerging as a valuable strategy to develop 

classification models in the context of predictive toxicology.41,42 

Such a computational technique has been widely employed to shed light on the hERG-drug 

interactions, often in combination with other computational (e.g., Molecular Dynamics – 

MD)43–45 and experimental (mutagenesis studies) approaches46,47 allowing the identification of 

a pool or residues responsible for drug binding in the so-called hERG central cavity (CC), 

namely F656, Y652, G648, T623, S624, V625 and F557.48 As a result, although we cannot 

exclude the presence of other binding sites for some hERG binders, as postulated in some 

papers, 49,50 CC is today the recognized pocket for hERG blockers.51 Noteworthy, most of these 

structure-based investigations were performed employing homology models based on the 

crystal structure of other K+ channels,52–54 as the first near-atomic resolution structure of hERG 

has been determined only recently through single-particle cryo-electron microscopy. In 

particular, among the different models deposited by the authors,55 that provided with the best 

resolution (3.7 Å – PDB code: 5VA1) is today emerging as the structure of choice to perform 

molecular docking simulations, as highlighted by recent literature.44,56–62 Despite providing 

insights into the molecular determinants of drug binding, all these studies focus on small 



datasets of compounds already proved to be (or potentially be) hERG binders. In other words, 

they do not provide any useful model for discerning hERG binders from safe compounds. In 

this paper, we present the first structure-based models for predicting the hERG block potential 

of chemicals by employing a large collection of high-quality experimental bioactivity data 

available from ChEMBL63 (version 25). The models were derived by employing two popular 

software programs for drug discovery, namely GLIDE64 v.6.5 and GOLD65 v.5.2 to: i) provide 

easy-to-run and interpretable structure-based classifiers of hERG-related cardiotoxicity; ii) 

weigh the hERG structure commonly used for docking simulations as a valuable 3D model for 

discerning safe from unsafe compounds by comparing its performance with those returned by 

a homology model commonly used in the last years66,67 and another recently proposed as able 

to provide docking results in agreement with experimental Ala-scan data;44 iii) identify which 

residues are likely responsible for hERG-drug binding; iv) prompt the scientific community to 

consider new hERG structural models that, by including ligand-induced fit effects, can be used 

for more reliable docking simulations. From a more methodological point of view, the paper 

represents the first effort to develop classifiers integrating docking scores and protein-ligand 

interaction fingerprints by support vector machine (SVM) LASSO regularized models, thus 

providing a new computational workflow for a comprehensive structure-based approach in the 

context of predictive toxicology. 

Materials & methods 

Dataset construction  

17,952 activity entries were extracted from the ChEMBL63 (version 25) according to the 

Target ID (ChEMBL240) assigned to the hERG channel. To ensure the validity of the data, the 

database was mined retaining only entries with the following criteria:  i) entries annotated 

exclusively with IC50 (11,144 entries) measures, ii) data referring to assays conducted on 

human targets (“target_organism” = “Homo sapiens”), iii) data marked as direct binding 



(“assay_type” = “B”), and iv) entries free of warnings in the “data_validity_comment” field.68 

In addition, molecules with molecular weights < 200 Da or > 600 Da were removed as well as 

duplicates. The resulting dataset, hereinafter named hERG-DB, contains 8,337 entries and is 

characterized by a high structural diversity as a result of the well-known hERG promiscuity. 

This is supported by the computed Internal Diversity (ID), namely the average Tanimoto-

distance of each molecule belonging to the DB computed with respect to all the others by 

employing the Morgan radius 2 fingerprint.69 Indeed, hERG-DB returned a ID value as high as 

0.83. 

It is worth to note that hERG-DB includes IC50 measures resulting from experiments 

performed on different cell lines such as HEK and CHO. However, when the purpose is that of 

developing classifiers rather than regression models, the noise resulting from the hERG IC50 

variability can be tolerated, as confirmed by the recent literature.28,32–34 

Consistently with previous studies,70–73 different inactivity thresholds (IC50 = 1, 10, 20, 30, 

40, 50, 60, 70 and 80 μM) were used. Our training dataset was therefore composed of positive 

and negative examples: positive molecules are those that show IC50  1 μM, negative molecules 

are those with IC50 greater than the different inactivity thresholds listed above. Table S1 (see 

Supporting Information) reports the number of positive and negative samples in dependence of 

the selected thresholds. The negative set includes also those compounds whose IC50 field in 

ChEMBL shows the expression “Not a number”. As a fair comparison of classifiers requires 

the knowledge of distributions of the relative quality metrics,74 for each threshold, we trained 

100 classifiers on randomly drawn negative and positive samples in the same number. This 

choice let us train classifiers on balanced datasets and so prevent linear SVMs to converge on 

majority-class classifiers and to neglect classes of less samples. In particular, we performed 

multiple estimates of the classification performances on different external datasets: we 

randomly split the data in two subsets, one acting as a training set and the other as an external 



(validation) set, the latter including 100 compounds (50 randomly selected active and 50 

randomly selected inactive compounds) unseen by the classifier. This operation was repeated 

100 times by selecting each time different randomly selected external compounds. The 

resulting 100 performances were averaged to provide a single value of a given quality metric 

along with the relative standard deviation and allowed us to build a distribution used to compare 

the performances of the different models by statistical tests (Kolmogorov-Smirnov tests).  

Protein structures selection and preparation  

Docking simulations were performed using as protein structures: i) the recently published 

models of the hERG structure, hereinafter named by using their PDB IDs, namely 5VA155 and 

7CN1;75 ii) the homology model developed by Farid et al.66 using the crystal structure of the 

bacterial potassium channel KvAP as a template (KvAP-Homo); iii) the homology model 

recently published by Helliwell et al.67 based on the X-ray crystal structure of MthK (PDB 

code: 1LNQ)67 and providing a consistent match between experimental Ala-scan and docking 

data returned by several hERG blockers (MthK-Homo); iv) two conformational states of the 

protein extracted from Molecular Dynamics (MD) simulations performed on 5VA1 and 

proposed as the protein conformations to be used to discern blockers from non-blockers 

(5VA1_MD_b) and activators from non-activators (5VA1_MD_a) through molecular docking 

simulations.44 5VA1 and 7CN1 were prepared using the protein preparation wizard tool76 

available from Schrodinger Suite v2019–4,77 which enables to: i) add missing hydrogen atoms; 

ii) determine the optimal protonation and tautomerization states of the residues; iii) fix the 

orientation of any misoriented group; iv) perform a final energy minimization.  

Selection of five representative hERG binders  

The Canvas 4.2 module78 of Schrödinger was used to generate binary fingerprints (i.e. 

MOLPRINT2D)79,80 of all the compounds belonging to the hERG-DB. The similarity between 

the developed fingerprints was computed using the Tanimoto coefficient.81 All the compounds 



were clustered into 5 groups using the k-means clustering protocol integrated into Canvas 4.2.78 

For each cluster, the compound responsible for the lower IC50 value was selected for further 

induced-fit docking (IFD) simulations. In doing that, ligands corresponding to the following 

ID in ChEMBL were selected: CHEMBL271066 (IC50 = 6.31 nM),82 CHEMBL1257698 (IC50 

= 0.38 nM),83 CHEMBL3775456 (IC50 = 58.49 nM),84 CHEMBL3422978 (IC50 = 0.39 nM)85 

and CHEMBL2146867 (IC50 = 0.76 nM)86 (see Figure 1). 

 

Figure 1. Compounds selected from the hERG-DB for generating hERG conformations using 

IFD simulations. 

Noteworthy, the selected compounds show a molecular weight (MW) ranging from 350.46 Da 

(compound 2) to 514.66 Da (compound 1). As the majority (87.2 %) of the chemicals belonging 

to hERG-DB have a MW between 300 and 550 Da, compounds 1-5 can be reasonably 

considered as representative of the whole hERG-DB also in terms of size.  

Induced-fit docking simulations 

All the five selected compounds (Figure 1) were subjected to IFD simulations performed87 

on 5VA1.55 All the compounds were subjected to LigPrep88 to properly generate all the 



tautomers and ionization states at a pH value equal to 7.0 ± 2.0. In the initial docking step, the 

residues known to be important for binding of hERG blockers, namely F557,67,89 T623,90,91 

S624,90 V625,92 Y652,91,93 F656,93,47 and G64847 were mutated to alanine and the van der Waals 

radii of protein atoms were scaled down to 70%. A cubic having an edge of 10 Å for the inner 

box and 30 Å for the outer box and centered on the residues F557, T623, S624, V625, Y652, 

F656 and G648 was employed. Initial docking was performed using Glide standard precision64 

(SP) mode and 20 poses were generated for each ligand. In the second stage residues mutated 

in the initial docking step were restored and the structures of the residues within 5.0 Å of the 

docked ligand were refined via the Refinement module of Prime94 a tool available in the 

Schrodinger suite 2019-4. In the final redocking step, each ligand was docked again to the 

refined protein using the extra precision (XP) protocol.64 Finally, the generated poses were 

ranked using the IFD score and the resulting top-scored protein-ligand complexes were used 

for further standard docking simulations.   

Standard docking simulations 

All the compounds belonging to the hERG-DB were subjected to LigPrep88 to properly 

generate all the tautomers and ionization states at a pH value equal to 7.0 ± 2.0. Different 

stereoisomers were also produced in the case of entries whose chiral configuration was not 

defined in the hERG-DB. All the selected protein structures were employed for docking 

simulations performed using two software programs widely used in the context of drug 

discovery, namely GLIDE64 v.6.5, which is part of the Schrodinger Suite, and GOLD65 v.5.2, 

available as Cambridge Crystallographic Data Centre (CCDC) product. During the docking 

process, the receptor protein was held fixed, whereas full conformational flexibility was 

allowed for the ligands. The default Force Field OPLS_200595 and all the default settings for 

the standard precision64 (SP) protocol were used during docking simulations performed with 

GLIDE while the scoring function CHEMSCORE96 was employed for docking simulations 



performed with GOLD. Finally, a cubic grid having an edge of 30 Å for the outer box and 10 

Å for the inner box (GLIDE)64 and a spherical grid having a radius of 10 Å (GOLD)65 were 

centered on the center of mass of the residues F557, T623, S624, V625, Y652, F656 and G648.  

It is worth to note that the scoring function used by Glide (GLIDE SCORE)64 can be seen as 

a modified and expanded version of CHEMSCORE,96 herein adopted when the software 

GOLD is used. Furthermore, GOLD and GLIDE differs for the used search algorithm. Indeed, 

GLIDE employs an algorithm approximating a systematic search of positions, orientations, and 

conformations of the ligand in the receptor binding site using a series of hierarchical filters 

while GOLD uses a genetic algorithm to explore the full range of ligand conformational 

flexibility. Finally, differently from GOLD, the docking scores returned by GLIDE include 

Epik state penalties so that low-populated protonation states are penalized. 

Protein-ligand Interaction Fingerprints generation 

In the first step, a common binding site (BS) was defined for all the investigated compounds 

using a 9 Å cutoff radius from all atoms of the molecule showing the best docking score. This 

operation was performed for each model and the Interaction Fingerprints (IFs) were generated 

using the SIFt tool available from the Schrodinger suite 2019-4.77,97 Notice that IFs are binary 

1D representations encoding the presence or absence of specific interactions occurring between 

a given compound and the BS in the top-scored docking pose. In particular, for each residue 

belonging to the BS, nine types of possible interactions were considered: i) any contact; ii) 

backbone interactions; iii) side-chain interactions; iv) contacts with polar residues; v) contacts 

with hydrophobic residues; vi) formation of hydrogen bonds with H-bond acceptors of the BS; 

vii) formation of hydrogen bonds with H-bond donors of the BS; viii) contacts with aromatic 

residues; ix) contacts with charged residues. By doing so, each residue belonging to the BS was 

represented by a nine-bit long string where 1 indicates the presence of the corresponding 



ligand-residue interaction in at least one monomer, and 0 the absence of the same interaction 

in all the monomers. 

SVM and LASSO models  

We used, as a first step, the obtained docking scores (DSs) as input for training SVM 

models.98 The performance of the obtained classifiers was evaluated using different quality 

metrics to identify the protein models more useful to distinguish hERG binders from non-

binders. For those classifiers derived using IC50 = 80 µM as the inactivity threshold, the area 

under the ROC curve (AUC)99 was computed using the output scores from each SVM model 

for unseen samples. To provide a DS threshold that corresponds to the separation point between 

the two classes, the classifier outputs were computed at varying DSs in the range of the 

observed DS values with a step of 0.01 and the DS value corresponding to the change of the 

label from active to inactive was recorded. Another aim of our work was to test whether 

classification models including IFs as additional predictors outperform classifiers based on DS 

only. Linear classification methods for two-class learning enable to jointly consider 

associations between DS and the presence or absence of specific interactions in the IFs and the 

label of the molecular activity. Linear models with L1-regularization constraint (LASSO) 

classifiers handle efficiently sparse high-dimensional data structures such as input data 

consisting of DS and IFs being able to overcome overfitting issues. Models based on these data 

were trained using LASSO with the SVM learner and the sparsa solver. LASSO is a widely 

known model introduced by Tibshirani100 in which the target value is expected to be a linear 

combination of the features with an L1-penalty term added to the objective function. In order 

to represent both continuous and binary variables in a single vector on which it is possible to 

apply classification models, our data were pre-processed as follows. DS values were 

standardized (DSst) according the following transformation: 



𝐷𝑆𝑠𝑡 =  
𝐷𝑆 − 𝜇  

𝜎
 

where 𝜇 is the mean and 𝜎 is the standard deviation on the observed DSs. In the IFs the values 

-1 and 1 indicate the absence or the presence of a specific ligand-residue interaction, 

respectively. The LASSO model tries to set as many coefficients as possible to zero unless a 

certain residue is really important to drive correctly the predictions. The amount of 

regularization applied depends on a parameter that takes values in the (0,1) range and when it 

takes larger values, the L1-penalty term has a higher weight in the objective function and this 

leads to an increase in the predictor variable sparsity, namely fewer interactions will be retained 

by the model. At varying the regularization strength, a LASSO model was trained and the 

minimum classification error rate on unseen samples was used to learn the value of the 

regularization weight. All data analysis was completed in MATLAB using the Statistics and 

Machine Learning Toolbox (see Supporting Information for methodological details).  

Evaluation of the prediction performance  

To evaluate the models performance, Accuracy (ACC), Sensitivity (SE), Specificity (SP) and 

Negative Predictive Values (NPVs) were calculated as follows: 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃
 

𝑆𝐸 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑃 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 



where TP (true positives) and FN (false negatives) are the numbers of known binders predicted 

to be binders and non-binders while TN (true negatives) and FP (false positives) are the 

numbers of known non-binders predicted to be non-binders and binders, respectively. 

Results and discussion 

For the sake of clarity, a flowchart summarizing the main steps of the adopted computational 

protocol in reported in Figure 2 while in the following subsections the obtained results will be 

presented and discussed. Notice that all the quality metrics were computed by using compounds 

not included in the training phase as reported in the section “Materials & methods” and that the 

SE and SP values at varying inactivity thresholds are reported in the Supporting Information 

(Tables S2 and S3, respectively).  

 



   

Figure 2. Flowchart showing the main steps of the adopted computational workflow.  

Evaluation of the starting protein structures 

The entire hERG-DB was docked into the binding sites of 5VA1, KvAP-Homo and MthK-

Homo to assess the ability of the selected protein structures to generate predictive docking-



based classifiers. Notice that, based on mutagenesis studies,47,89–93 the protein region including 

T623, S624, V625, G648, T652, F656 and F557 can be reasonably considered as the hERG 

BS. This is supported by the evidence that this site is relatively larger when compared to the 

corresponding cavity of other K+ channels, consistently with the higher drug promiscuity 

observed in hERG.55  

In particular, as pointed out in a recent co-authored paper,14 an in-depth visual inspection 

reveals the presence of an atypical BS conformation in 5VA1 (Figure S1 in the Supporting 

Information). Based on that, 5VA1 has been widely employed as the structure of choice to 

perform molecular docking simulations.44,56–62 However, such a structural model suffers from 

two important limitations: i) it has a resolution (3.7 Å) which is too low to provide an atomic 

model of the protein; ii) the model was derived in absence of a ligand, thus totally neglecting 

the BS conformational rearrangement occurring upon ligand binding (i.e., induced-fit effects). 

At this regard, it should be noted that developing high-quality cryo-EM models accounting 

for induced fit effects is extremely challenging as the presence of a small molecule in the CC 

is able to disrupt the hERG symmetry, which is required for properly solving the protein 

structure.55,75  In other words, there is no guarantee that this structure is of sufficient quality for 

reliable docking simulations. Having said that, we performed a preliminary investigation aimed 

at testing the hypothesis, decisive for the present study, that there are significant differences 

between hERG binders and non-binders in terms of docking score (DS). More specifically, by 

using a Kolmogorov-Smirnov test, we tested the null hypothesis that binders and non-binders 

DS values come from populations with the same distribution, against the alternative hypothesis 

that they are from different distributions. Satisfactorily, very low p-values (maximum value 

equal to 4 * 10-17) were obtained for all the considered protein structures and thresholds (see 

Table S2 in the supporting information). Encouraged by these preliminary data, 54 classifiers 

were developed by using GOLD and GLIDE as software; 5VA1, MthK-Homo and KvAP-Homo 



as protein structures and nine different IC50 inactivity thresholds (see section “Materials & 

methods” for methodological details). Notice that when GLIDE was employed as a software, 

the models were derived excluding a small fraction of compounds from the hERG-DB [i.e., a 

percentage from 0.50 % (KvAP-Homo) to 3.02 % (cryo-EM) of undocked molecules].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. ACCs returned by the developed classifiers on the basis of docking scores (top) and docking scores and IFs (bottom) using GLIDE (left) 

and GOLD (right) as software programs. Notice that different inactivity thresholds (µM) were considered as described in the “materials and 

methods” section. For the sake of clarity, ACC values > 0.50 and ≤ 0.65, > 0.65 and ≤ 0.75, > 0.75 are reported in red, orange and green respectively.  

Software GLIDE GOLD 

Inactivity Threshold (µM) 1 10 20 30 40 50 60 70 80 1 10 20 30 40 50 60 70 80 

 DS based  

Starting 

Structures 

5VA1 0.62 0.63 0.64 0.65 0.67 0.67 0.69 0.70 0.70 0.58 0.59 0.58 0.57 0.60 0.60 0.59 0.59 0.59 

MthK-Homo 0.56 0.60 0.61 0.61 0.60 0.60 0.60 0.62 0.61 0.63 0.65 0.66 0.67 0.70 0.71 0.71 0.72 0.73 

KvAP -Homo 0.58 0.60 0.61 0.61 0.63 0.64 0.65 0.67 0.67 0.61 0.61 0.61 0.62 0.67 0.67 0.69 0.70 0.70 

IFD 

conformations 

5VA1-IFD-1 0.63 0.66 0.66 0.68 0.70 0.72 0.73 0.77 0.77 0.61 0.63 0.65 0.65 0.71 0.71 0.73 0.74 0.75 

5VA1-IFD-2 0.60 0.63 0.65 0.67 0.69 0.70 0.72 0.75 0.76 0.64 0.65 0.66 0.67 0.72 0.74 0.73 0.75 0.75 

5VA1-IFD-3 0.61 0.64 0.65 0.66 0.67 0.69 0.71 0.73 0.74 0.61 0.63 0.65 0.65 0.71 0.72 0.73 0.73 0.75 

5VA1-IFD-4 0.62 0.64 0.64 0.65 0.66 0.68 0.70 0.72 0.72 0.60 0.63 0.61 0.61 0.65 0.65 0.65 0.66 0.66 

5VA1-IFD-5 0.62 0.66 0.66 0.67 0.69 0.71 0.71 0.74 0.75 0.59 0.62 0.63 0.63 0.66 0.67 0.67 0.67 0.67 

MD 

conformations 

5VA1-MD-a 0.61 0.63 0.65 0.66 0.69 0.71 0.73 0.77 0.76 0.61 0.63 0.64 0.64 0.68 0.69 0.71 0.73 0.73 

5VA1-MD-b 0.60 0.63 0.64 0.65 0.67 0.68 0.71 0.75 0.75 0.59 0.61 0.62 0.62 0.66 0.67 0.68 0.69 0.70 

 7CN1 0.60 0.62 0.63 0.63 0.67 0.67 0.68 0.70 0.70 0.55 0.57 0.57 0.59 0.61 0.60 0.61 0.61 0.61 

  DS/IF based 

Starting 

Structure 

5VA1 0.62 0.66 0.67 0.68 0.69 0.71 0.73 0.76 0.76 0.61 0.63 0.65 0.65 0.70 0.70 0.71 0.72 0.72 

MthK-Homo 0.56 0.59 0.61 0.61 0.63 0.64 0.64 0.67 0.67 0.63 0.66 0.67 0.68 0.71 0.72 0.73 0.75 0.75 

KvAP -Homo 0.59 0.62 0.63 0.63 0.66 0.67 0.69 0.73 0.72 0.61 0.64 0.65 0.67 0.69 0.70 0.73 0.75 0.76 

IFD 

conformations 

5VA1-IFD-1 0.62 0.66 0.68 0.68 0.71 0.73 0.75 0.78 0.79 0.61 0.63 0.67 0.67 0.72 0.73 0.74 0.77 0.77 

5VA1-IFD-2 0.61 0.64 0.66 0.67 0.72 0.72 0.74 0.76 0.78 0.64 0.67 0.69 0.71 0.74 0.75 0.76 0.78 0.78 

5VA1-IFD-3 0.62 0.64 0.67 0.68 0.70 0.71 0.74 0.76 0.77 0.61 0.63 0.67 0.69 0.72 0.74 0.75 0.77 0.77 

5VA1-IFD-4 0.63 0.64 0.67 0.68 0.69 0.70 0.71 0.73 0.74 0.61 0.63 0.63 0.64 0.68 0.69 0.69 0.71 0.71 

5VA1-IFD-5 0.63 0.66 0.68 0.69 0.72 0.72 0.75 0.78 0.79 0.61 0.65 0.64 0.66 0.70 0.70 0.71 0.74 0.74 

MD 

conformations 

5VA1-MD-a 0.62 0.65 0.67 0.67 0.70 0.73 0.75 0.77 0.79 0.62 0.65 0.68 0.69 0.71 0.73 0.74 0.77 0.76 

5VA1-MD-b 0.61 0.65 0.66 0.66 0.70 0.70 0.73 0.76 0.77 0.59 0.64 0.66 0.67 0.69 0.69 0.70 0.74 0.75 

 7CN1 0.61 0.63 0.66 0.66 0.69 0.70 0.73 0.76 0.76 0.61 0.63 0.64 0.63 0.67 0.67 0.68 0.70 0.70 



Table 1, reporting the computed accuracies (ACC) for all the developed classifiers, clearly 

shows that 5VA1 ensures performances (ACCMAX = 0.70 ± 0.01) better than those returned by 

the homology models herein considered only if GLIDE is used as software. In particular, 

ACCMAX = 0.62 ± 0.01 and 0.67 ± 0.01 were returned by MthK-Homo (KS test p-value = 2.2 * 

10-20) and KvAP-Homo (KS test p-value = 3 * 10-6) respectively. Regarding the classifiers 

derived using GOLD, both homology models strongly outperform 5VA1 (ACCMAX = 0.60 ± 

0.01) returning an ACCMAX = 0.73 ± 0.01 (MthK-Homo KS test p-value = 4 * 10-34) and 

ACCMAX = 0.70 ± 0.01 (KvAP-Homo KS test p-value = 7 * 10-29). In other words, these data 

suggest that the selection of the protein structure to be used for docking simulations should be 

performed according to the docking software to be employed. The goodness of the classifiers 

was also assessed by computing the NPVs, a widely used metric in the context of predictive 

toxicology41,42 as it measures the ability of the model to properly classify non-toxic compounds, 

namely to minimize false negatives (i.e., hERG binders incorrectly classified as non-binders). 

The obtained data are reported in Table 2 showing that, for all the starting hERG structures, 

the trend discussed based on the computed ACCs is almost confirmed with 5VA1 providing the 

best NPV (NPVMAX = 0.70 ± 0.01) when GLIDE is used as software and the homology models 

ensuring the best performances when the software employed is GOLD with NPVMAX = 0.74 ± 

0.01 (MthK-Homo) and NPVMAX = 0.72 ± 0.01 (KvAP –Homo). 

 

 

 

 

 

 



Table 2. NPVs computed for all the developed classifiers on the basis of docking scores (top) and docking scores and IFs (bottom) using GLIDE 

(left) and GOLD (right) as software. Notice that different inactivity thresholds (µM) were considered as described in the “materials and methods” 

section. For the sake of clarity, NPV values > 0.50 and ≤ 0.65, > 0.65 and ≤ 0.75, > 0.75 are reported in red, orange and green respectively.  

Software GLIDE GOLD 

Inactivity Threshold (µM) 1 10 20 30 40 50 60 70 80 1 10 20 30 40 50 60 70 80 

 DS based  

Starting 

Structures 

5VA1 0.64 0.64 0.65 0.66 0.68 0.68 0.69 0.70 0.70 0.60 0.60 0.59 0.58 0.61 0.61 0.60 0.60 0.60 

MthK-Homo 0.58 0.61 0.62 0.62 0.60 0.61 0.61 0.63 0.61 0.64 0.66 0.67 0.68 0.71 0.72 0.72 0.73 0.74 

KvAP -Homo 0.63 0.62 0.63 0.62 0.64 0.67 0.67 0.68 0.67 0.63 0.62 0.62 0.64 0.69 0.69 0.71 0.72 0.72 

IFD 

conformations 

5VA1-IFD-1 0.65 0.68 0.69 0.70 0.72 0.75 0.76 0.78 0.79 0.61 0.64 0.66 0.66 0.72 0.72 0.74 0.75 0.77 

5VA1-IFD-2 0.61 0.63 0.65 0.67 0.70 0.72 0.73 0.75 0.76 0.65 0.66 0.67 0.69 0.73 0.75 0.76 0.76 0.77 

5VA1-IFD-3 0.61 0.64 0.65 0.66 0.68 0.70 0.70 0.72 0.73 0.61 0.63 0.65 0.66 0.71 0.72 0.73 0.74 0.75 

5VA1-IFD-4 0.64 0.65 0.66 0.66 0.68 0.70 0.71 0.73 0.73 0.61 0.64 0.62 0.63 0.66 0.66 0.66 0.67 0.67 

5VA1-IFD-5 0.63 0.68 0.68 0.69 0.72 0.73 0.74 0.75 0.77 0.60 0.63 0.64 0.63 0.67 0.68 0.67 0.68 0.68 

MD 

conformations 

5VA1-MD-a 0.64 0.65 0.68 0.68 0.73 0.74 0.76 0.79 0.79 0.62 0.64 0.66 0.66 0.70 0.71 0.73 0.75 0.75 

5VA1-MD-b 0.61 0.64 0.66 0.66 0.69 0.70 0.73 0.77 0.76 0.60 0.62 0.63 0.64 0.67 0.69 0.69 0.71 0.71 

 7CN1 0.63 0.64 0.65 0.65 0.70 0.71 0.72 0.73 0.73 0.56 0.57 0.58 0.59 0.61 0.61 0.62 0.62 0.62 

  DS/IF based 

Starting 

Structures 

5VA1 0.64 0.67 0.68 0.70 0.72 0.73 0.74 0.77 0.77 0.64 0.66 0.68 0.67 0.73 0.73 0.74 0.75 0.75 

MthK-Homo 0.58 0.61 0.63 0.63 0.64 0.64 0.65 0.67 0.66 0.64 0.67 0.68 0.69 0.72 0.73 0.75 0.76 0.77 

KvAP -Homo 0.60 0.63 0.64 0.64 0.67 0.68 0.70 0.72 0.72 0.62 0.64 0.66 0.67 0.69 0.70 0.73 0.75 0.76 

IFD 

conformations 

5VA1-IFD-1 0.63 0.67 0.69 0.70 0.74 0.75 0.77 0.80 0.80 0.61 0.64 0.67 0.68 0.74 0.74 0.75 0.78 0.78 

5VA1-IFD-2 0.61 0.64 0.67 0.68 0.72 0.73 0.75 0.77 0.78 0.65 0.68 0.71 0.73 0.76 0.77 0.78 0.79 0.79 

5VA1-IFD-3 0.63 0.65 0.67 0.68 0.70 0.71 0.74 0.76 0.77 0.61 0.63 0.67 0.70 0.73 0.74 0.76 0.77 0.78 

5VA1-IFD-4 0.64 0.64 0.68 0.69 0.71 0.72 0.73 0.75 0.76 0.62 0.65 0.65 0.66 0.69 0.71 0.72 0.73 0.73 

5VA1-IFD-5 0.64 0.67 0.69 0.71 0.75 0.74 0.77 0.79 0.80 0.63 0.65 0.66 0.68 0.71 0.71 0.73 0.75 0.75 

MD 

conformations 

5VA1-MD-a 0.64 0.66 0.68 0.68 0.72 0.75 0.77 0.80 0.81 0.63 0.65 0.68 0.69 0.72 0.73 0.75 0.79 0.77 

5VA1-MD-b 0.63 0.66 0.67 0.68 0.73 0.73 0.76 0.77 0.79 0.61 0.65 0.68 0.69 0.72 0.72 0.73 0.76 0.76 

7CN1 0.62 0.64 0.67 0.68 0.72 0.73 0.76 0.79 0.79 0.62 0.63 0.65 0.64 0.68 0.68 0.69 0.71 0.72 

 



Although encouraging in terms of performance, these models were developed based on the DSs 

only (hereinafter named DS-based models), a strategy commonly employed for developing 

structure-based classifiers.41,42 However, in addition to providing a score estimating the binding 

affinity, molecular docking simulations predict the conformation as well as the position and 

orientation of a given ligand (usually referred to as pose) in the target cavity. This piece of 

information was recently proved to be crucial to overcoming DS deficiencies in Virtual 

Screening campaigns.101–103 These evidences prompted us to develop classifiers integrating the 

information provided by both scoring and posing by taking into account the IFs, namely 1D 

representations of the ligand-protein interactions occurring in the top-scored docking poses. To 

this aim, classification models based on sparse high-dimensional data structures consisting of 

DSs and IFs (hereinafter called DS/IF based models), were trained by using Linear models with 

L1-regularization constraint (LASSO) with the SVM learner and the sparsa solver (see the 

section Materials & Methods for details). A comparative analysis based on KS tests on the 

distributions of ACC and NPV values was performed to establish whether DS/IF based models 

outperform DS based ones. Interestingly, the IFs integration allowed obtaining significantly 

better performances in terms of both ACC (Table 1) and NPV (Table 2) irrespective of the 

used starting structure. A meaningful example is given by the classifier returned by 5VA1 when 

GLIDE is used as software and 80 µM as inactivity threshold returning ACC (0.76 ± 0.01) and 

NPV (0.77 ± 0.01) values significantly higher (KS-test p-values equal to 1.6*10-17 and 4.6*10-

18 for the comparison of ACC and NPV respectively) than those of the corresponding DS-based 

model (ACC and NPV = 0.70 ± 0.01). Such an improvement is even more evident when 

docking simulations are performed on 5VA1 with GOLD, as apparent for instance looking at 

the ACC and NPV values returned when 80 µM is used as inactivity threshold (0.72 vs. 0.59 - 

KS-test p-value 1.1*10-35 - and 0.75 vs. 0.60 - KS-test p-value 4.6*10-31). These data, taken as 

a whole, suggest that developing DS/IF-based models can be a winning strategy to develop 



highly performing classifiers based on docking simulations on the considered hERG starting 

structures.  

Impact of ligand-induced fit effects on model performance   

As mentioned above, 5VA1 was derived in absence of a ligand, hence no information about 

the putative BS conformational rearrangement occurring upon ligand binding can be derived 

from such a structural model. Computational strategies such as IFD and MD simulations are 

recognized tools for overcoming this limitation, being able to provide a prediction of the BS 

conformation required for ligand binding. Keeping this in mind, we generated five new hERG 

conformations by performing IFD simulations of five representative and highly affine binders 

on the 5VA1 structure. The resulting top-scored docking poses are depicted in Figure 3.  

 

Figure 3. Top-scored docking poses returned by IFD simulations performed on five 

representative hERG binders: A) CHEMBL271066, B) CHEMBL1257698, C) 

CHEMBL3775456, D) CHEMBL3422978 and E) CHEMBL2146867. Ligands and 

important residues are rendered as sticks, whereas the protein is represented as a cartoon. 

H-bonds are represented by dotted black lines, whereas the pi-stacking interactions and salt 

bridge interactions are itemized by a blue and red line respectively. For the sake of clarity, 

only polar hydrogen atoms are shown.  

 



 

The obtained protein conformations were named 5VA1-IFD-x where x refers to the ligand 

used in the IFD simulation according to the labelling shown in Figure 1. In addition, we also 

employed: i) two conformations resulting from MD simulations performed on 5VA1 strongly 

agreeing with mutagenesis data and recently published by Dickson et al.,44 as allowing 

discrimination of blockers vs. non-blockers (5VA1-MD-b) and activators vs. non-activators 

(5VA1-MD-a); ii) an hERG model published at the time of writing the present paper and 

obtained through electron microscopy in the presence of the known blocker astemizole (PDB 

code 7CN1).75 All these BS conformations, depicted in Figure S2, were therefore employed to 

derive 288 (144 DS-based and 144 DS/IF-based) classifiers by taking into account again nine 

different IC50 inactivity thresholds and GLIDE and GOLD as software. The obtained ACC and 

NPV values are reported in Table 1 and Table 2 respectively. Interestingly, the use of both 

IFD and MD based protein conformations allowed obtaining much more performing classifiers 

than the starting 5VA1 model. Of note is the improvement observed in the DS-based classifiers: 

all the new conformations provide higher ACC and NPV values for inactivity thresholds ≥ 50 

µM in the case of GLIDE used as software and for all the inactivity thresholds when GOLD is 

employed. Notably, 7CN1 was responsible for performances in line with those returned by 

5VA1, in agreement with the picture emerged from a three-dimensional comparison of the two 

structures (data not shown) indicating la presence of very similar binding pockets.  

In other words, albeit obtained by using electron microscopy experiments performed in the 

presence of a blocker, this protein conformation is outperformed by those derived by 

computational procedures as IFD and MD. More specifically, the best performances are 

ensured by 5VA1-IFD-1 (ACCMAX = 0.77 ± 0.01 and NPVMAX = 0.79 ± 0.01) and 5VA1-MD-

a (ACCMAX = 0.77 ± 0.01 and NPVMAX = 0.79 ± 0.01) if the software employed is GLIDE; as 

well as 5VA1-IFD-1 and 5VA1-IFD-2 (ACCMAX = 0.75 ± 0.01 and NPVMAX = 0.77 ± 0.01 for 



both) when GOLD is used. Noteworthy, the homology models used as starting structures are 

also outperformed by most of the IFD and MD conformations. As far as the DS/IF-based 

classifiers are concerned, such a trend is confirmed with the best performances returned by 

5VA1-IFD-1 (ACCMAX = 0.79 ± 0.01 and NPVMAX = 0.80 ± 0.01), 5VA1-IFD-5 (ACCMAX = 

0.79 ± 0.01 and NPVMAX = 0.80 ± 0.01) and 5VA1-MD-a (ACCMAX = 0.79 ± 0.01 and NPVMAX 

= 0.81 ± 0.01) after using GLIDE and 5VA1-IFD-2 (ACCMAX=0.78 ± 0.01  and NPVMAX = 

0.79 ± 0.01) when GOLD is employed. Notice that significantly worst performances were 

returned by both 5VA1 and 7CN1 structures. Noteworthy, as already observed for the starting 

structures, also for the 5VA1-IFD-x protein conformations, DS/IF-based models (ACCMAX = 

0.79 ± 0.01 and 0.78 ± 0.01 using GLIDE and GOLD respectively) outperform DS-based ones 

(ACCMAX = 0.77 ± 0.01 - KS-test p-value = 0.07 - and 0.75 ± 0.01 - KS-test p-value = 0.004) 

using GLIDE and GOLD respectively) in terms of ACC.  

Selection of the best performing hERG conformation 

The picture emerged from the discussed data suggests that the best performing classifiers are 

those developed accounting for ligand-induced fit effects. However, based on the considered 

quality metrics, it is still hard to select the best BS conformation to be used for docking 

simulations. To make a final selection, we also computed the area under the roc curve (AUC) 

for all the classifiers developed using IC50 = 80 µM as inactivity threshold, being those ensuring 

the greatest performances irrespective of the considered software programme and methodology 

(DS and DS/IF based). Figures 4 reports a plot of the computed AUC values for the different 

protein conformations.  



 

Figure 4. 2D plot reporting the AUC values computed for the classifiers developed using IC50 

= 80 µM as inactivity threshold and A) GLIDE and B) GOLD as software programs.   

Remarkably, DS/IF based models significantly outperform DS based ones (KS p-values < 0.05) 

irrespective of the employed protein conformation and software program with the best 

performances obtained by 5VA1-IFD-1 (AUC = 0.86 ± 0.01), 5VA1-IFD-5 (AUC = 0.86 ± 

0.01) and 5VA1-MD-a (AUC = 0.85 ± 0.01) when GLIDE is used and 5VA1-IFD-2 (AUC = 

0.85 ± 0.01), 5VA2-IFD-3 (AUC = 0.85 ± 0.01) and 5VA1-MD-a (AUC = 0.84 ± 0.01) if GOLD 

is employed. Furthermore, when conformations accounting for ligand induced-fit effects are 

taken into account, satisfactory AUC values are computed even without the IFs integration 

with the best performances ensured by 5VA1-IFD-1 (AUC = 0.84 ± 0.01) when using GLIDE 

and both 5VA1-IFD-1 (AUC = 0.83 ± 0.01) and 5VA1-IFD-2 (AUC = 0.83 ± 0.01) in the case 

of GOLD employed as software program. Noteworthy, although from a methodological point 

of view it should remarked that the IF integration allows obtaining better performances, models 

based on DS only should be preferred from a practical point of view, especially when developed 



using highly performing hERG protein models such as 5VA1-IFD-1. Indeed, DS-based 

classifiers are characterized by higher interpretability than DS/IF ones and can be employed by 

interested users by simply comparing the docking scores returned by the chemicals of interest 

with the DS thresholds reported in Table 3. 

Table 3. DS thresholds for all the DS based models developed using 80 µM as IC50 inactivity 

threshold. Notice that the DSs are expressed by kcal/mol and kJ/mol, as returned by the 

software programs GLIDE and GOLD respectively.   

hERG 

conformation 

GLIDE GOLD 

DS threshold 

(kcal/mol) 

Standard 

Deviation 

DS threshold 

(kJ/mol) 

Standard 

Deviation 

5VA1 -6.012 ±0.003 -25.989 ±0.023 

MthK-Homo -5.140 ±0.003 -30.792 ±0.016 

KvAP -Homo -5.659 ±0.003 -28.162 ±0.012 

5VA1-IFD-1 -8.967 ±0.004 -37.444 ±0.011 

5VA1-IFD-2 -7.790 ±0.004 -34.812 ±0.016 

5VA1-IFD-3 -8.131 ±0.004 -34.713 ±0.013 

5VA1-IFD-4 -7.063 ±0.004 -28.768 ±0.015 

5VA1-IFD-5 -7.068 ±0.003 -30.002 ±0.013 

5VA1-MD-a -8.472 ±0.003 -37.384 ±0.019 

5VA1-MD-b -8.349 ±0.003 -34.376 ±0.013 

7CN1 -6.010 ±0.004 -28.807 ±0.019 

 

Noteworthy, based on the discussed data, 5VA1-IFD-1 can be reasonably considered as the 

hERG conformation of choice for reliable docking simulations and for this reason was made 

available, along with the other 5VA1-IFD conformations, in the supporting information as .pdb 

file. Remarkably, 5VA1-IFD-1 is also the conformation returning the highest BS volume 

(789.56 Å3) as reported in Table S5. Building on that, it is reasonable to speculate that the 

larger the hERG BS, the higher is the ability, during the performed docking simulations, to 

properly accommodate compounds with very different shapes and sizes as those belonging to 

the hERG-DB. 

IF-based analysis  



Encouraged by the ability of the computed IFs to improve classifiers’ performance, we 

conducted an in-depth IFs analysis aimed to get insights into the structural basis for high 

affinity hERG drug binding. In order to identify key protein-ligand interactions, the 

distributions of the IC50 values of compounds interacting/non-interacting with a specific 

residue (1/0 in the interaction fingerprint respectively) were investigated by using KS tests that 

allowed us to identify those interactions responsible for a significantly lower value of IC50. In 

particular, we performed the test 100 times for each residue on compounds randomly drawn 

from the entire set of molecules in order to distinguish general findings not specific for subsets 

of molecules. We focused our attention on the IFs returned by the best performing 

conformation, namely 5VA1-IFD-1. Table 4 shows the residues sorted by the number of 

occurrences of significant KS test p-values (p < 0.05) in the 100 trials (the occurrence is shown 

in square brackets). The interested reader is referred to Table S6 for data returned by all the 

hERG protein models. In particular, as evident in Table 4, some interactions established with 

the side chains of F557 (hydrophobic and aromatic), M651 (hydrophobic), I655 (hydrophobic), 

and F656 (hydrophobic and aromatic) were predicted to be crucial, being detected with the 

highest number of occurrences of significant p-values irrespective of the employed software 

program. Noteworthy, the obtained data are in agreement with experimental findings, mostly 

based on Alanine-scanning mutagenesis. F656, for instance, was proved to be crucial for the 

blocking ability of cisapride by Chen et al.104 while several mutagenesis studies67,89 emphasised 

the importance of F557 in the hERG recognition of different drugs. Finally, Kudaibergenova 

et al. in a paper published in 2020 and reporting experimental data returned by a mutant (i.e., 

M651T),105 put forward, for the first time, M651 as another key residue for hERG drug binding.  

 

 

 



Table 4. Interactions responsible for a lower IC50 

based on a KS test performed on the IFs returned 

by 5VA1-IFD-1.  

GLIDE GOLD 

557_aromatic[100] 

557_contact[100] 

557_hydrophobic[100] 

557_sidechain[100] 

649_backbone[100] 

655_contact[100] 

655_hydrophobic[100] 

655_sidechain[100] 

656_backbone[100] 

649_contact[98] 

651_hydrophobic[98] 

651_sidechain[98] 

652_backbone[93] 

656_contact[91] 

651_backbone[89] 

656_aromatic[89] 

656_hydrophobic[89] 

656_sidechain[89] 

651_contact[89] 

652_aromatic[32] 

652_hydrophobic[32] 

652_sidechain[32] 

649_polar[28] 

649_sidechain[28] 

653_hydrophobic[25] 

653_sidechain[25] 

655_backbone[14] 

653_contact[9] 

553_backbone[7] 

553_contact[7] 

623_backbone[5] 

554_contact[100] 

557_aromatic[100] 

557_contact[100] 

557_hydrophobic[100] 

557_sidechain[100] 

648_contact[100] 

648_sidechain[100] 

649_polar[100] 

649_sidechain[100] 

651_backbone[100] 

651_contact[100] 

655_contact[100] 

655_hydrophobic[100] 

655_sidechain[100] 

656_aromatic[100] 

656_backbone[100] 

656_contact[100] 

656_hydrophobic[100] 

656_sidechain[100] 

554_hydrophobic[99] 

554_sidechain[99] 

649_backbone[99] 

649_contact[99] 

655_backbone[99] 

652_backbone[98] 

651_hydrophobic[78] 

651_sidechain[78] 

659_contact[66] 

659_hydrophobic[66] 

659_sidechain[66] 

553_backbone[28] 

553_contact[28] 

650_contact[ 1] 

 

Conclusions  

In this work, we trained the first structure-based models of hERG-related cardiotoxicity based 

on: bioactivity data reported in ChEMBL (version 25) and both docking scores and protein-



ligand interaction fingerprints returned by the software programs GLIDE and GOLD for 

different protein structures used as hERG structural models, including those recently obtained 

through cryo-electron microscopy (PDB codes: 5VA155 and 7CN175). A total of 396 models 

were built based on Support Vector Machine and LASSO regularized Support Vector Machine 

and evaluated using different quality metrics (i.e, ACC, NPV and AUC). Remarkably, some 

models returned performances comparable to ligand-based classifiers 29,33,35–37, whose usage is 

often limited by their restricted applicability domain and low interpretability. Finally, based on 

a comparative analysis of all the derived classifiers we concluded that the integration of 

docking scores and molecular interaction fingerprints is a winning strategy to maximize model 

performance, as the proposed method outperforms that based on docking scores only. 

Importantly, much more reliable docking-based predictions are obtained using a new protein 

conformation returned by IFD simulations (made available in the Supporting Information as 

.pdb file) instead of the cryo-EM model as it is (i.e., PDB code: 5VA155), which is the usual 

practice.44,56–62 From a methodological point of view, the study represents the first attempt to 

incorporate the information provided by docking poses in structure-based classifiers by using 

a  LASSO SVM regularized strategy  thus providing a new computational workflow to be used 

in the context of predictive toxicology. 

Conflict of interest  

The authors declare that they have no conflict of interest.  

Supporting Information 

Supporting information available: 

It includes some details on data processing; the top views of the BS of all the employed protein 

models; the number of active and inactive compounds as a consequence of the selected activity 



and inactivity thresholds; the Kolmogorov-Smirnov test P-values summarizing the difference 

in docking score distributions between hERG binders and non-binders; the SE and SP of all the 

developed models; the BS volumes (Å3) of all the used hERG models; the interactions 

responsible for a lower IC50 based on a KS test performed on the IFs returned by all the 

considered protein models; the list of the compounds belonging to the hERG-DB, including 

SMILES strings and corresponding IC50 values; the results of the performed docking 

simulations including docking scores and molecular interaction fingerprints; the 5VA1-IFD-1, 

5VA1-IFD-2, 5VA1-IFD-3, 5VA1-IFD-4, and 5VA1-IFD-5 conformations as .pdb files;  

Data and Software Availability  

The following data are made available in the supporting information: 

List of the compounds belonging to the hERG-DB, including SMILES strings and 

corresponding IC50 values (hERG-DB.xlsx); results of the performed docking simulations 

including docking scores and molecular interaction fingerprints (results_glide.zip and 

results_gold.zip); 5VA1-IFD-1, 5VA1-IFD-2, 5VA1-IFD-3, 5VA1-IFD-4, and 5VA1-IFD-5 

conformations as .pdb files (5VA1_IFD-pdb.zip).  

Acknowledgements 

We are grateful to Dr. Ramy Farid and Dr. Christopher E. Dempsey for sending us the .pdb 

files of the hERG homology models used in this study.  

References  

 (1)  Vandenberg, J. I.; Perry, M. D.; Perrin, M. J.; Mann, S. A.; Ke, Y.; Hill, A. P. HERG K(+) Channels: Structure, 

Function, and Clinical Significance. Physiol Rev 2012, 92, 1393–1478. https://doi.org/10.1152/physrev.00036.2011. 

(2)  Farzam, K.; Tivakaran, V. S. QT Prolonging Drugs. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2021. 

(3)  Priest, B. T.; Bell, I. M.; Garcia, M. L. Role of HERG Potassium Channel Assays in Drug Development. Channels 

(Austin) 2008, 2, 87–93. https://doi.org/10.4161/chan.2.2.6004. 



(4)  Redfern, W. S.; Carlsson, L.; Davis, A. S.; Lynch, W. G.; MacKenzie, I.; Palethorpe, S.; Siegl, P. K. S.; Strang, I.; 

Sullivan, A. T.; Wallis, R.; Camm, A. J.; Hammond, T. G. Relationships between Preclinical Cardiac 

Electrophysiology, Clinical QT Interval Prolongation and Torsade de Pointes for a Broad Range of Drugs: Evidence 

for a Provisional Safety Margin in Drug Development. Cardiovascular Research 2003, 58, 32–45. 

https://doi.org/10.1016/S0008-6363(02)00846-5. 

(5)  Nachimuthu, S.; Assar, M. D.; Schussler, J. M. Drug-Induced QT Interval Prolongation: Mechanisms and Clinical 

Management. Therapeutic Advances in Drug Safety 2012, 3, 241–253. https://doi.org/10.1177/2042098612454283. 

(6)  Olasińska-Wiśniewska, A.; Olasiński, J.; Grajek, S. Cardiovascular Safety of Antihistamines. Postepy Dermatol 

Alergol 2014, 31, 182–186. https://doi.org/10.5114/pdia.2014.43191. 

(7)  Lazzara, R. Antiarrhythmic Drugs and Torsade de Pointes. European Heart Journal 1993, 14, 88–92. 

https://doi.org/10.1093/eurheartj/14.suppl_H.88. 

(8)  Chohan, P. S.; Mittal, R.; Javed, A. Antipsychotic Medication and QT Prolongation. Pak J Med Sci 2015, 31, 1269–

1271. https://doi.org/10.12669/pjms.315.8998. 

(9)  Traebert, M.; Dumotier, B. Antimalarial Drugs: QT Prolongation and Cardiac Arrhythmias. Expert Opin Drug Saf 

2005, 4, 421–431. https://doi.org/10.1517/14740338.4.3.421. 

(10)  Mason, J. W. Antimicrobials and QT Prolongation. Journal of Antimicrobial Chemotherapy 2017, 72, 1272–1274. 

https://doi.org/10.1093/jac/dkw591. 

(11)  Keller, G. A.; Di Girolamo, G. Prokinetic Agents and QT Prolongation: A Familiar Scene with New Actors. Curr 

Drug Saf 2010, 5, 73–78. https://doi.org/10.2174/157488610789869166. 

(12)  Onakpoya, I. J.; Heneghan, C. J.; Aronson, J. K. Post-Marketing Withdrawal of 462 Medicinal Products Because of 

Adverse Drug Reactions: A Systematic Review of the World Literature. BMC Med 2016, 14, 10. 

https://doi.org/10.1186/s12916-016-0553-2. 

(13)  FDA Talk Paper T97-3 dated 13 January 1997  

(14)  Cavalluzzi, M. M.; Imbrici, P.; Gualdani, R.; Stefanachi, A.; Mangiatordi, G. F.; Lentini, G.; Nicolotti, O. Human 

Ether-à-Go-Go-Related Potassium Channel: Exploring SAR to Improve Drug Design. Drug Discov Today 2020, 25, 

344–366. https://doi.org/10.1016/j.drudis.2019.11.005. 

(15)  Committee for Medicinal Products for Human Use. ICH note for guidance on the clinical evaluation of QT/QTc  

interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs (ICH E14) (CHMP/ICH/2/04). 

EMEA, London, November 2005. Available at           

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002879.pdf 

(16)  Food and Drug Administration, HHS. International Conference on Harmonisation; Guidance on S7B Nonclinical 

Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human 

Pharmaceuticals; Availability. Notice. Fed Regist 2005, 70, 61133–61134. 



(17)  Yu, H.; Li, M.; Wang, W.; Wang, X. High Throughput Screening Technologies for Ion Channels. Acta Pharmacol 

Sin 2016, 37, 34–43. https://doi.org/10.1038/aps.2015.108. 

(18)  Amberg, A. In Silico Methods. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Vogel, H. 

G., Maas, J., Hock, F. J., Mayer, D., Eds.; Springer: Berlin, Heidelberg, 2013; pp 1273–1296. 

https://doi.org/10.1007/978-3-642-25240-2_55. 

(19)  Villoutreix, B. O.; Taboureau, O. Computational Investigations of HERG Channel Blockers: New Insights and 

Current Predictive Models. Adv Drug Deliv Rev 2015, 86, 72–82. https://doi.org/10.1016/j.addr.2015.03.003. 

(20)  Jing, Y.; Easter, A.; Peters, D.; Kim, N.; Enyedy, I. J. In Silico Prediction of HERG Inhibition. Future Med Chem 

2015, 7, 571–586. https://doi.org/10.4155/fmc.15.18. 

(21)  Braga, R. C.; Alves, V. M.; Silva, M. F. B.; Muratov, E.; Fourches, D.; Tropsha, A.; Andrade, C. H. Tuning HERG 

out: Antitarget QSAR Models for Drug Development. Curr Top Med Chem 2014, 14, 1399–1415. 

(22)  Seierstad, M.; Agrafiotis, D. K. A QSAR Model of HERG Binding Using a Large, Diverse, and Internally Consistent 

Training Set. Chem Biol Drug Des 2006, 67, 284–296. https://doi.org/10.1111/j.1747-0285.2006.00379.x. 

(23)  Tan, Y.; Chen, Y.; You, Q.; Sun, H.; Li, M. Predicting the Potency of HERG K+ Channel Inhibition by Combining 

3D-QSAR Pharmacophore and 2D-QSAR Models. J Mol Model 2012, 18, 1023–1036. 

https://doi.org/10.1007/s00894-011-1136-y. 

(24)  Ekins, S.; Crumb, W. J.; Sarazan, R. D.; Wikel, J. H.; Wrighton, S. A. Three-Dimensional Quantitative Structure-

Activity Relationship for Inhibition of Human Ether-a-Go-Go-Related Gene Potassium Channel. J Pharmacol Exp 

Ther 2002, 301, 427–434. https://doi.org/10.1124/jpet.301.2.427. 

(25)  Kratz, J. M.; Schuster, D.; Edtbauer, M.; Saxena, P.; Mair, C. E.; Kirchebner, J.; Matuszczak, B.; Baburin, I.; Hering, 

S.; Rollinger, J. M. Experimentally Validated HERG Pharmacophore Models as Cardiotoxicity Prediction Tools. J. 

Chem. Inf. Model. 2014, 54, 2887–2901. https://doi.org/10.1021/ci5001955. 

(26)  Cavalli, A.; Poluzzi, E.; De Ponti, F.; Recanatini, M. Toward a Pharmacophore for Drugs Inducing the Long QT 

Syndrome:  Insights from a CoMFA Study of HERG K+ Channel Blockers. J. Med. Chem. 2002, 45, 3844–3853. 

https://doi.org/10.1021/jm0208875. 

(27)  Yamakawa, Y.; Furutani, K.; Inanobe, A.; Ohno, Y.; Kurachi, Y. Pharmacophore Modeling for HERG Channel 

Facilitation. Biochemical and Biophysical Research Communications 2012, 418, 161–166. 

https://doi.org/10.1016/j.bbrc.2011.12.153. 

(28)  Wang, S.; Sun, H.; Liu, H.; Li, D.; Li, Y.; Hou, T. ADMET Evaluation in Drug Discovery. 16. Predicting HERG 

Blockers by Combining Multiple Pharmacophores and Machine Learning Approaches. Mol Pharm 2016, 13, 2855–

2866. https://doi.org/10.1021/acs.molpharmaceut.6b00471. 

(29)  Ryu, J. Y.; Lee, M. Y.; Lee, J. H.; Lee, B. H.; Oh, K.-S. DeepHIT: A Deep Learning Framework for Prediction of 

HERG-Induced Cardiotoxicity. Bioinformatics 2020, 36, 3049–3055. https://doi.org/10.1093/bioinformatics/btaa075. 



(30)  Wang, Y.; Huang, L.; Jiang, S.; Wang, Y.; Zou, J.; Fu, H.; Yang, S. Capsule Networks Showed Excellent Performance 

in the Classification of HERG Blockers/Nonblockers. Front. Pharmacol. 2020, 10. 

https://doi.org/10.3389/fphar.2019.01631. 

(31)  Konda, L. S. K.; Keerthi Praba, S.; Kristam, R. HERG Liability Classification Models Using Machine Learning 

Techniques. Computational Toxicology 2019, 12, 100089. https://doi.org/10.1016/j.comtox.2019.100089. 

(32)  Choi, K.-E.; Balupuri, A.; Kang, N. S. The Study on the HERG Blocker Prediction Using Chemical Fingerprint 

Analysis. Molecules 2020, 25, 2615. https://doi.org/10.3390/molecules25112615. 

(33)  Braga, R. C.; Alves, V. M.; Silva, M. F. B.; Muratov, E.; Fourches, D.; Lião, L. M.; Tropsha, A.; Andrade, C. H. 

Pred-HERG: A Novel Web-Accessible Computational Tool for Predicting Cardiac Toxicity. Mol Inform 2015, 34, 

698–701. https://doi.org/10.1002/minf.201500040. 

(34)  Czodrowski, P. HERG Me Out. J. Chem. Inf. Model. 2013, 53, 2240–2251. https://doi.org/10.1021/ci400308z. 

(35)  Liu, M.; Zhang, L.; Li, S.; Yang, T.; Liu, L.; Zhao, J.; Liu, H. Prediction of HERG Potassium Channel Blockage 

Using Ensemble Learning Methods and Molecular Fingerprints. Toxicology Letters 2020, 332, 88–96. 

https://doi.org/10.1016/j.toxlet.2020.07.003. 

(36)  Zhang, Y.; Zhao, J.; Wang, Y.; Fan, Y.; Zhu, L.; Yang, Y.; Chen, X.; Lu, T.; Chen, Y.; Liu, H. Prediction of HERG 

K+ Channel Blockage Using Deep Neural Networks. Chem Biol Drug Des 2019, 94, 1973–1985. 

https://doi.org/10.1111/cbdd.13600. 

(37)  Lee, H.-M.; Yu, M.-S.; Kazmi, S. R.; Oh, S. Y.; Rhee, K.-H.; Bae, M.-A.; Lee, B. H.; Shin, D.-S.; Oh, K.-S.; Ceong, 

H.; Lee, D.; Na, D. Computational Determination of HERG-Related Cardiotoxicity of Drug Candidates. BMC 

Bioinformatics 2019, 20, 250. https://doi.org/10.1186/s12859-019-2814-5. 

(38)  Gadaleta, D.; Mangiatordi, G. F.; Catto, M.; Carotti, A.; Nicolotti, O. Applicability Domain for QSAR Models: Where 

Theory Meets Reality. IJQSPR 2016, 1, 45–63. https://doi.org/10.4018/IJQSPR.2016010102. 

(39)  Mansouri, K.; Abdelaziz, A.; Rybacka, A.; Roncaglioni, A.; Tropsha, A.; Varnek, A.; Zakharov, A.; Worth, A.; 

Richard, A. M.; Grulke, C. M.; Trisciuzzi, D.; Fourches, D.; Horvath, D.; Benfenati, E.; Muratov, E.; Wedebye, E. 

B.; Grisoni, F.; Mangiatordi, G. F.; Incisivo, G. M.; Hong, H.; Ng, H. W.; Tetko, I. V.; Balabin, I.; Kancherla, J.; 

Shen, J.; Burton, J.; Nicklaus, M.; Cassotti, M.; Nikolov, N. G.; Nicolotti, O.; Andersson, P. L.; Zang, Q.; Politi, R.; 

Beger, R. D.; Todeschini, R.; Huang, R.; Farag, S.; Rosenberg, S. A.; Slavov, S.; Hu, X.; Judson, R. S. CERAPP: 

Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 2016, 124, 1023–1033. 

https://doi.org/10.1289/ehp.1510267. 

(40)  Mansouri, K.; Kleinstreuer, N.; Abdelaziz, A. M.; Alberga, D.; Alves, V. M.; Andersson, P. L.; Andrade, C. H.; Bai, 

F.; Balabin, I.; Ballabio, D.; Benfenati, E.; Bhhatarai, B.; Boyer, S.; Chen, J.; Consonni, V.; Farag, S.; Fourches, D.; 

Garc,  ía-S. A. T.; Gramatica, P.; Grisoni, F.; Grulke, C. M.; Hong, H.; Horvath, D.; Hu, X.; Huang, R.; Jeliazkova, 

N.; Li, J.; Li, X.; Liu, H.; Manganelli, S.; Mangiatordi, G. F.; Maran, U.; Marcou, G.; Martin, T.; Muratov, E.; Nguyen, 

D.-T.; Nicolotti, O.; Nikolov, N. G.; Norinder, U.; Papa, E.; Petitjean, M.; Piir, G.; Pogodin, P.; Poroikov, V.; Qiao, 



X.; Richard, A. M.; Roncaglioni, A.; Ruiz, P.; Rupakheti, C.; Sakkiah, S.; Sangion, A.; Schramm, K.-W.; Selvaraj, 

C.; Shah, I.; Sild, S.; Sun, L.; Taboureau, O.; Tang, Y.; Tetko, I. V.; Todeschini, R.; Tong, W.; Trisciuzzi, D.; Tropsha, 

A.; Van, D. D. G.; Varnek, A.; Wang, Z.; Wedebye, E. B.; Williams, A. J.; Xie, H.; Zakharov, A. V.; Zheng, Z.; 

Judson, R. S. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environmental Health 

Perspectives 2020, 128, 027002. https://doi.org/10.1289/EHP5580. 

(41)  Trisciuzzi, D.; Alberga, D.; Leonetti, F.; Novellino, E.; Nicolotti, O.; Mangiatordi, G. F. Molecular Docking for 

Predictive Toxicology. In Computational Toxicology: Methods and Protocols; Nicolotti, O., Ed.; Methods in 

Molecular Biology; Springer New York: New York, NY, 2018; pp 181–197. https://doi.org/10.1007/978-1-4939-

7899-1_8. 

(42)  Trisciuzzi, D.; Alberga, D.; Mansouri, K.; Judson, R.; Cellamare, S.; Catto, M.; Carotti, A.; Benfenati, E.; Novellino, 

E.; Mangiatordi, G. F.; Nicolotti, O. Docking-Based Classification Models for Exploratory Toxicology Studies on 

High-Quality Estrogenic Experimental Data. Future Med Chem 2015, 7, 1921–1936. 

https://doi.org/10.4155/fmc.15.103. 

(43)  Luo, F.; Gu, J.; Chen, L.; Xu, X. Molecular Docking and Molecular Dynamics Studies on the Structure-Activity 

Relationship of Fluoroquinolone for the HERG Channel. Mol Biosyst 2014, 10, 2863–2869. 

https://doi.org/10.1039/c4mb00396a. 

(44)  Dickson, C. J.; Velez-Vega, C.; Duca, J. S. Revealing Molecular Determinants of HERG Blocker and Activator 

Binding. J. Chem. Inf. Model. 2020, 60, 192–203. https://doi.org/10.1021/acs.jcim.9b00773. 

(45)  Koulgi, S.; Jani, V.; Nair, V.; Saini, J. S.; Phukan, S.; Sonavane, U.; Joshi, R.; Kamboj, R.; Palle, V. Molecular 

Dynamics of HERG Channel: Insights into Understanding the Binding of Small Molecules for Detuning 

Cardiotoxicity. Journal of Biomolecular Structure and Dynamics 2021, 0, 1–17. 

https://doi.org/10.1080/07391102.2021.1875883. 

(46)  Hosaka, Y.; Iwata, M.; Kamiya, N.; Yamada, M.; Kinoshita, K.; Fukunishi, Y.; Tsujimae, K.; Hibino, H.; Aizawa, 

Y.; Inanobe, A.; Nakamura, H.; Kurachi, Y. Mutational Analysis of Block and Facilitation of HERG Current by a 

Class III Anti-Arrhythmic Agent, Nifekalant. Channels (Austin) 2007, 1, 198–208. https://doi.org/10.4161/chan.4691. 

(47)  Melgari, D.; Zhang, Y.; El Harchi, A.; Dempsey, C. E.; Hancox, J. C. Molecular Basis of HERG Potassium Channel 

Blockade by the Class Ic Antiarrhythmic Flecainide. Journal of Molecular and Cellular Cardiology 2015, 86, 42–53. 

https://doi.org/10.1016/j.yjmcc.2015.06.021. 

(48)  Vandenberg, J. I.; Perozo, E.; Allen, T. W. Towards a Structural View of Drug Binding to HERG K+ Channels. 

Trends in Pharmacological Sciences 2017, 38, 899–907. https://doi.org/10.1016/j.tips.2017.06.004. 

(49)  Liu, X.; Limberis, J. T.; Su, Z.; Houseman, K.; Diaz, G. J.; Gintant, G. A.; Cox, B. F.; Martin, R. L. Characterization 

of A-935142, a HERG Enhancer, in the Presence and Absence of Standard HERG Blockers. Life Sci 2012, 90, 607–

611. https://doi.org/10.1016/j.lfs.2012.02.017. 



(50)  Yu, Z.; Klaasse, E.; Heitman, L. H.; Ijzerman, A. P. Allosteric Modulators of the HERG K(+) Channel: Radioligand 

Binding Assays Reveal Allosteric Characteristics of Dofetilide Analogs. Toxicol Appl Pharmacol 2014, 274, 78–86. 

https://doi.org/10.1016/j.taap.2013.10.024. 

(51)  Kalyaanamoorthy, S.; Barakat, K. H. Development of Safe Drugs: The HERG Challenge. Med Res Rev 2018, 38, 

525–555. https://doi.org/10.1002/med.21445. 

(52)  Dempsey, C. E.; Wright, D.; Colenso, C. K.; Sessions, R. B.; Hancox, J. C. Assessing HERG Pore Models As 

Templates for Drug Docking Using Published Experimental Constraints: The Inactivated State in the Context of Drug 

Block. J Chem Inf Model 2014, 54, 601–612. https://doi.org/10.1021/ci400707h. 

(53)  Kalyaanamoorthy, S.; Barakat, K. H. Binding Modes of HERG Blockers: An Unsolved Mystery in the Drug Design 

Arena. Expert Opin Drug Discov 2018, 13, 207–210. https://doi.org/10.1080/17460441.2018.1418319. 

(54)  Rajamani, R.; Tounge, B. A.; Li, J.; Reynolds, C. H. A Two-State Homology Model of the HERG K+ Channel: 

Application to Ligand Binding. Bioorganic & Medicinal Chemistry Letters 2005, 15, 1737–1741. 

https://doi.org/10.1016/j.bmcl.2005.01.008. 

(55)  Wang, W.; MacKinnon, R. Cryo-EM Structure of the Open Human Ether-à-Go-Go-Related K+ Channel HERG. Cell 

2017, 169, 422-430.e10. https://doi.org/10.1016/j.cell.2017.03.048. 

(56)  Kalyaanamoorthy, S.; Lamothe, S. M.; Hou, X.; Moon, T. C.; Kurata, H. T.; Houghton, M.; Barakat, K. H. A 

Structure-Based Computational Workflow to Predict Liability and Binding Modes of Small Molecules to HERG. 

Scientific Reports 2020, 10, 16262. https://doi.org/10.1038/s41598-020-72889-5. 

(57)  Munawar, S.; Vandenberg, J. I.; Jabeen, I. Molecular Docking Guided Grid-Independent Descriptor Analysis to Probe 

the Impact of Water Molecules on Conformational Changes of HERG Inhibitors in Drug Trapping Phenomenon. 

International Journal of Molecular Sciences 2019, 20, 3385. https://doi.org/10.3390/ijms20143385. 

(58)  Gualdani, R.; Cavalluzzi, M. M.; Tadini-Buoninsegni, F.; Convertino, M.; Gailly, P.; Stary-Weinzinger, A.; Lentini, 

G. Molecular Insights into HERG Potassium Channel Blockade by Lubeluzole. CPB 2018, 45, 2233–2245. 

https://doi.org/10.1159/000488169. 

(59)  Zadorozhnii, P. V.; Kiselev, V. V.; Kharchenko, A. V. In Silico Toxicity Evaluation of Salubrinal and Its Analogues. 

European Journal of Pharmaceutical Sciences 2020, 155, 105538. https://doi.org/10.1016/j.ejps.2020.105538. 

(60)  Wan, H.; Selvaggio, G.; Pearlstein, R. A. Toward in Vivo-Relevant HERG Safety Assessment and Mitigation 

Strategies Based on Relationships between Non-Equilibrium Blocker Binding, Three-Dimensional Channel-Blocker 

Interactions, Dynamic Occupancy, Dynamic Exposure, and Cellular Arrhythmia. PLOS ONE 2020, 15, e0234946. 

https://doi.org/10.1371/journal.pone.0234946. 

(61)  Schewe, M.; Sun, H.; Mert, Ü.; Mackenzie, A.; Pike, A. C. W.; Schulz, F.; Constantin, C.; Vowinkel, K. S.; Conrad, 

L. J.; Kiper, A. K.; Gonzalez, W.; Musinszki, M.; Tegtmeier, M.; Pryde, D. C.; Belabed, H.; Nazare, M.; Groot, B. L. 

de; Decher, N.; Fakler, B.; Carpenter, E. P.; Tucker, S. J.; Baukrowitz, T. A Pharmacological Master Key Mechanism 



That Unlocks the Selectivity Filter Gate in K+ Channels. Science 2019, 363 (6429), 875–880. 

https://doi.org/10.1126/science.aav0569. 

(62)  Al-Moubarak, E.; Sharifi, M.; Hancox, J. C. In Silico Exploration of Interactions Between Potential COVID-19 

Antiviral Treatments and the Pore of the HERG Potassium Channel—A Drug Antitarget. Frontiers in Cardiovascular 

Medicine 2021, 8, 344. https://doi.org/10.3389/fcvm.2021.645172. 

(63)  Davies, M.; Nowotka, M.; Papadatos, G.; Dedman, N.; Gaulton, A.; Atkinson, F.; Bellis, L.; Overington, J. P. 

ChEMBL Web Services: Streamlining Access to Drug Discovery Data and Utilities. Nucleic Acids Res 2015, 43 (W1), 

W612–W620. https://doi.org/10.1093/nar/gkv352. 

(64)  Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; 

Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: A New Approach for Rapid, Accurate Docking 

and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. 

https://doi.org/10.1021/jm0306430. 

(65)  Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and Validation of a Genetic Algorithm for 

Flexible Docking. J. Mol. Biol. 1997, 267, 727–748. https://doi.org/10.1006/jmbi.1996.0897. 

(66)  Farid, R.; Day, T.; Friesner, R. A.; Pearlstein, R. A. New Insights about HERG Blockade Obtained from Protein 

Modeling, Potential Energy Mapping, and Docking Studies. Bioorganic & Medicinal Chemistry 2006, 14, 3160–

3173. https://doi.org/10.1016/j.bmc.2005.12.032. 

(67)  Helliwell, M. V.; Zhang, Y.; Harchi, A. E.; Du, C.; Hancox, J. C.; Dempsey, C. E. Structural Implications of HERG 

K+ Channel Block by a High-Affinity Minimally Structured Blocker. J. Biol. Chem. 2018, 293, 7040–7057. 

https://doi.org/10.1074/jbc.RA117.000363. 

(68)  Alberga, D.; Trisciuzzi, D.; Montaruli, M.; Leonetti, F.; Mangiatordi, G. F.; Nicolotti, O. A New Approach for Drug 

Target and Bioactivity Prediction: The Multifingerprint Similarity Search Algorithm (MuSSeL). J Chem Inf Model 

2019, 59, 586–596. https://doi.org/10.1021/acs.jcim.8b00698. 

(69)  Benhenda, M. ChemGAN Challenge for Drug Discovery: Can AI Reproduce Natural Chemical Diversity? 

arXiv:1708.08227 2017. 

(70)  Cai, C.; Guo, P.; Zhou, Y.; Zhou, J.; Wang, Q.; Zhang, F.; Fang, J.; Cheng, F. Deep Learning-Based Prediction of 

Drug-Induced Cardiotoxicity. J Chem Inf Model 2019, 59, 1073–1084. https://doi.org/10.1021/acs.jcim.8b00769. 

(71)  Li, X.; Zhang, Y.; Li, H.; Zhao, Y. Modeling of the HERG K+ Channel Blockage Using Online Chemical Database 

and Modeling Environment (OCHEM). Mol Inform 2017, 36. https://doi.org/10.1002/minf.201700074. 

(72)  Siramshetty, V. B.; Chen, Q.; Devarakonda, P.; Preissner, R. The Catch-22 of Predicting HERG Blockade Using 

Publicly Accessible Bioactivity Data. J Chem Inf Model 2018, 58, 1224–1233. 

https://doi.org/10.1021/acs.jcim.8b00150. 



(73)  Bains, W.; Basman, A.; White, C. HERG Binding Specificity and Binding Site Structure: Evidence from a Fragment-

Based Evolutionary Computing SAR Study. Progress in Biophysics and Molecular Biology 2004, 86, 205–233. 

https://doi.org/10.1016/j.pbiomolbio.2003.09.001. 

(74)  Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 

2006, 7, 1–30. 

(75)  Asai, T.; Adachi, N.; Moriya, T.; Oki, H.; Maru, T.; Kawasaki, M.; Suzuki, K.; Chen, S.; Ishii, R.; Yonemori, K.; 

Igaki, S.; Yasuda, S.; Ogasawara, S.; Senda, T.; Murata, T. Cryo-EM Structure of K+-Bound HERG Channel 

Complexed with the Blocker Astemizole. Structure 2021, 29, 203-212.e4. https://doi.org/10.1016/j.str.2020.12.007. 

(76)  Protein Preparation Wizard. Schrödinger, LLC. New York, NY: Epik; 2019 

(77)  Schrödinger Release 2019-4: Schrödinger, LLC, New York, NY, 2019. 

(78)  Canvas, Schrödinger, LLC, New York, NY, 2019. 

(79)  Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Molecular Similarity Searching Using Atom Environments, 

Information-Based Feature Selection, and a Naïve Bayesian Classifier. J. Chem. Inf. Comput. Sci. 2004, 44, 170–178. 

https://doi.org/10.1021/ci034207y. 

(80)  Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Similarity Searching of Chemical Databases Using Atom 

Environment Descriptors (MOLPRINT 2D):  Evaluation of Performance. J. Chem. Inf. Comput. Sci. 2004, 44, 1708–

1718. https://doi.org/10.1021/ci0498719. 

(81)  Willett, P.; Barnard, J. M.; Downs, G. M. Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 1998, 38, 983–

996. https://doi.org/10.1021/ci9800211. 

(82)  Micheli, F.; Bonanomi, G.; Braggio, S.; Capelli, A. M.; Celestini, P.; Damiani, F.; Fabio, R. D.; Donati, D.; Gagliardi, 

S.; Gentile, G.; Hamprecht, D.; Petrone, M.; Radaelli, S.; Tedesco, G.; Terreni, S.; Worby, A.; Heidbreder, C. New 

Fused Benzazepine as Selective D3 Receptor Antagonists. Synthesis and Biological Evaluation. Part One: [H]-Fused 

Tricyclic Systems. Bioorganic & Medicinal Chemistry Letters 2008, 18, 901–907. 

https://doi.org/10.1016/j.bmcl.2007.12.066. 

(83)  Brugel, T. A.; Smith, R. W.; Balestra, M.; Becker, C.; Daniels, T.; Hoerter, T. N.; Koether, G. M.; Throner, S. R.; 

Panko, L. M.; Folmer, J. J.; Cacciola, J.; Hunter, A. M.; Liu, R.; Edwards, P. D.; Brown, D. G.; Gordon, J.; Ledonne, 

N. C.; Pietras, M.; Schroeder, P.; Sygowski, L. A.; Hirata, L. T.; Zacco, A.; Peters, M. F. Discovery of 8-

Azabicyclo[3.2.1]Octan-3-Yloxy-Benzamides as Selective Antagonists of the Kappa Opioid Receptor. Part 1. 

Bioorganic & Medicinal Chemistry Letters 2010, 20, 5847–5852. https://doi.org/10.1016/j.bmcl.2010.07.113. 

(84)  He, S.; Dobbelaar, P. H.; Guo, L.; Ye, Z.; Liu, J.; Jian, T.; Truong, Q.; Shah, S. K.; Du, W.; Qi, H.; Bakshi, R. K.; 

Hong, Q.; Dellureficio, J. D.; Sherer, E.; Pasternak, A.; Feng, Z.; Reibarkh, M.; Lin, M.; Samuel, K.; Reddy, V. B.; 

Mitelman, S.; Tong, S. X.; Chicchi, G. G.; Tsao, K.-L.; Trusca, D.; Wu, M.; Shao, Q.; Trujillo, M. E.; Fernandez, G.; 

Nelson, D.; Bunting, P.; Kerr, J.; Fitzgerald, P.; Morissette, P.; Volksdorf, S.; Eiermann, G. J.; Li, C.; Zhang, B. B.; 

Howard, A. D.; Zhou, Y.-P.; Nargund, R. P.; Hagmann, W. K. SAR Exploration at the C-3 Position of Tetrahydro-β-



Carboline Sstr3 Antagonists. Bioorganic & Medicinal Chemistry Letters 2016, 26, 1529–1535. 

https://doi.org/10.1016/j.bmcl.2016.02.022. 

(85)  Singh, S. B.; Kaelin, D. E.; Wu, J.; Miesel, L.; Tan, C. M.; Meinke, P. T.; Olsen, D. B.; Lagrutta, A.; Wei, C.; Peng, 

X.; Wang, X.; Fukuda, H.; Kishii, R.; Takei, M.; Shibata, T.; Ohata, K.; Takano, H.; Kurasaki, H.; Takeuchi, T.; 

Nishimura, A.; Fukuda, Y. Structure Activity Relationship of Substituted 1,5-Naphthyridine Analogs of 

Oxabicyclooctane-Linked Novel Bacterial Topoisomerase Inhibitors as Broad-Spectrum Antibacterial Agents (Part-

4). Bioorganic & Medicinal Chemistry Letters 2015, 25, 2409–2415. https://doi.org/10.1016/j.bmcl.2015.04.002. 

(86)  Tang, H.; Walsh, S. P.; Yan, Y.; de Jesus, R. K.; Shahripour, A.; Teumelsan, N.; Zhu, Y.; Ha, S.; Owens, K. A.; 

Thomas-Fowlkes, B. S.; Felix, J. P.; Liu, J.; Kohler, M.; Priest, B. T.; Bailey, T.; Brochu, R.; Alonso-Galicia, M.; 

Kaczorowski, G. J.; Roy, S.; Yang, L.; Mills, S. G.; Garcia, M. L.; Pasternak, A. Discovery of Selective Small 

Molecule ROMK Inhibitors as Potential New Mechanism Diuretics. ACS Med. Chem. Lett. 2012, 3, 367–372. 

https://doi.org/10.1021/ml3000066. 

(87)  Induced Fit Docking Protocol; Glide, Schrödinger, LLC, New York, NY, 2019. 

(88)  LigPrep, Schrödinger, LLC, New York, NY, 2019. 

(89)  Saxena, P.; Zangerl-Plessl, E.-M.; Linder, T.; Windisch, A.; Hohaus, A.; Timin, E.; Hering, S.; Stary-Weinzinger, A. 

New Potential Binding Determinant for HERG Channel Inhibitors. Scientific Reports 2016, 6, 24182. 

https://doi.org/10.1038/srep24182. 

(90)  Kamiya, K.; Niwa, R.; Morishima, M.; Honjo, H.; Sanguinetti, M. C. Molecular Determinants of HERG Channel 

Block by Terfenadine and Cisapride. Journal of Pharmacological Sciences 2008, 108, 301–307. 

https://doi.org/10.1254/jphs.08102FP. 

(91)  Cernuda, B.; Fernandes, C. T.; Allam, S. M.; Orzillo, M.; Suppa, G.; Chang, Z. C.; Athanasopoulos, D.; Buraei, Z. 

The Molecular Determinants of R-Roscovitine Block of HERG Channels. 

(92)  Sănchez-Chapula, J. A.; Ferrer, T.; Navarro-Polanco, R. A.; Sanguinetti, M. C. Voltage-Dependent Profile of 

HumanEther-a-Go-Go-Related Gene Channel Block Is Influenced by a Single Residue in the S6 Transmembrane 

Domain. Mol Pharmacol 2003, 63, 1051–1058. https://doi.org/10.1124/mol.63.5.1051. 

(93)  Linder, T.; Bernsteiner, H.; Saxena, P.; Bauer, F.; Erker, T.; Timin, E.; Hering, S.; Stary-Weinzinger, A. Drug 

Trapping in HERG K+ Channels: (Not) a Matter of Drug Size? Med. Chem. Commun. 2016, 7, 512–518. 

https://doi.org/10.1039/C5MD00443H. 

(94)  Prime, Schrödinger, LLC, New York, NY, 2019. 

(95)  Banks, J. L.; Beard, H. S.; Cao, Y.; Cho, A. E.; Damm, W.; Farid, R.; Felts, A. K.; Halgren, T. A.; Mainz, D. T.; 

Maple, J. R.; Murphy, R.; Philipp, D. M.; Repasky, M. P.; Zhang, L. Y.; Berne, B. J.; Friesner, R. A.; Gallicchio, E.; 

Levy, R. M. Integrated Modeling Program, Applied Chemical Theory (IMPACT). J Comput Chem 2005, 26, 1752–

1780. https://doi.org/10.1002/jcc.20292. 



(96)  Baxter, C. A.; Murray, C. W.; Clark, D. E.; Westhead, D. R.; Eldridge, M. D. Flexible Docking Using Tabu Search 

and an Empirical Estimate of Binding Affinity. Proteins 1998, 33, 367–382. 

(97)  Deng, Z.; Chuaqui, C.; Singh, J. Structural Interaction Fingerprint (SIFt): A Novel Method for Analyzing Three-

Dimensional Protein-Ligand Binding Interactions. J Med Chem 2004, 47, 337–344. 

https://doi.org/10.1021/jm030331x. 

(98)  Cortes, C.; Vapnik, V. Support-Vector Networks. Mach Learn 1995, 20, 273–297. 

https://doi.org/10.1007/BF00994018. 

(99)  Bradley, A. P. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern 

Recognition 1997, 30, 1145–1159. https://doi.org/10.1016/S0031-3203(96)00142-2. 

(100)  Tibshirani, R. Regression Shrinkage and Selection via the Lasso: A Retrospective. Journal of the Royal Statistical 

Society: Series B (Statistical Methodology) 2011, 73, 273–282. https://doi.org/10.1111/j.1467-9868.2011.00771.x. 

(101)  Kumar, A.; Zhang, K. Y. J. Application of Shape Similarity in Pose Selection and Virtual Screening in 

CSARdock2014 Exercise. J. Chem. Inf. Model. 2016, 56, 965–973. https://doi.org/10.1021/acs.jcim.5b00279. 

(102)  Ha, E. J.; Lwin, C. T.; Durrant, J. D. LigGrep: A Tool for Filtering Docked Poses to Improve Virtual-Screening Hit 

Rates. Journal of Cheminformatics 2020, 12, 69. https://doi.org/10.1186/s13321-020-00471-2. 

(103)  Delre, P.; Caporuscio, F.; Saviano, M.; Mangiatordi, G. F. Repurposing Known Drugs as Covalent and Non-Covalent 

Inhibitors of the SARS-CoV-2 Papain-Like Protease. Front. Chem. 2020, 8. 

https://doi.org/10.3389/fchem.2020.594009. 

(104)  Chen, J.; Seebohm, G.; Sanguinetti, M. C. Position of Aromatic Residues in the S6 Domain, Not Inactivation, Dictates 

Cisapride Sensitivity of HERG and Eag Potassium Channels. Proc Natl Acad Sci U S A 2002, 99, 12461–12466. 

https://doi.org/10.1073/pnas.192367299. 

(105)  Kudaibergenova, M.; Guo, J.; Khan, H. M.; Zahid, F.; Lees-Miller, J.; Noskov, S. Yu.; Duff, H. J. Allosteric Coupling 

Between Drug Binding and the Aromatic Cassette in the Pore Domain of the HERG1 Channel: Implications for a 

State-Dependent Blockade. Front Pharmacol 2020, 11, 914. https://doi.org/10.3389/fphar.2020.00914. 

 

 

 

 

 

 

 



 For table of content only 

 

  

 

 

  

  

  

  

  

 

  

 

 

 


