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ABSTRACT. In this article the authors introduce a spline Hermite quasi-interpo-
lation technique for the preprocessing operations of imputation and smoothing
of univariate time series. The constructed model is then applied for the forecast
and for the anomaly detection. In particular, for the latter case, algorithms
based on the combination of quasi-interpolation, dynamic copulas and clus-
tering have been proposed. Some numerical results are included showing the
effectiveness of the presented techniques.
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2. Introduction. A time series is a sequence of evenly spaced and ordered data
collected at different time instants. Since they may be collected for several types of
applications, there is a great variety of approaches for studying and analyzing time
series [1, 25, 30]. Usually, the initial raw data have to be prepared for an effective
exploratory analysis, hence, preprocessing techniques, such as normalization [26,
59], cleaning [38], smoothing and imputation [4, 48] are a necessary task. Time
series models are useful in understanding the underlying structure that produces
the observed data, to monitor and to have either feedback or feedforward control.
They are used for many applications such as, economic forecasting [10], process
and quality control [52], census analysis [11], network traffic anomaly detection for
railway transportation critical infrastructure [3] and many more. In particular, in
the present work we adopt a spline based Hermite quasi-interpolation operator to
preprocess and to perform forecasting and anomaly detection on both, synthetic
and real datasets.

In general, quasi-interpolation denotes an approach to construct efficient local
approximants to a given set of data or to a given function, see [41] for a general
introduction. The choice of quasi-interpolation is motivated by two main reasons. In
fact, data collected from realistic scenarios are usually affected by errors, therefore,
interpolation methods might be too stringent, beside suffering from the overfitting
phenomenon. Moreover, since quasi-interpolation relies on a local construction,
the computational cost is greatly reduced compared to global approaches such as
interpolation.

When it comes to forecasting, the new unknown values should be predicted via
historical data, hence, constructing a robust but at the same time versatile con-
tinuous model is of fundamental importance. Many time series models have been
developed exactly for this task, including ARIMA [13], neural networks [29] and
Fuzzy-neural autoregressive models [51], Garch model [28] and support vector ma-
chine based approaches [49]. Other approaches build the continuous model and
hence construct a fitting curve by using smoothing algorithms, see e.g., [17, 36].
Following the same philosophy, we adopt the Hermite quasi-interpolation operator
introduced in [42] to produce a smooth model which also gives a rather accurate
prediction in the short-run. In particular, we present two valid techniques: one pro-
duces a C?~1 smooth spline of degree d; the second one gives a C?% smooth spline of
degree d+1, with d degree of the chosen quasi-interpolant basis. Regarding anomaly
detection, the task is to identify behaviors of the data that greatly differ from the
standard trend, see [9] for a review. Anomalies are referred to particular interesting
events or suspicious data records, like in case of floods, fires, or earthquakes. Many
anomaly detection algorithms for time series are developed from outlier detection
strategies, see for example [63] and references therein. Recently, neural networks,
and hence, supervised learning, have been employed to improve the accuracy of the
obtained results, [67]. In this paper we employ the quasi-interpolation operator to
preprocess the data and hence, to produce a smooth model. Later on, an unsu-
pervised learning approach, based on dynamic copulas is described. For modelling
multiple dependencies, the use of copulas is a very powerful approach [18]. One of
the main advantages, when using copulas in time series, is that a semiparametric
approach can be chosen: while estimating the marginal distributions using non-
parametric methods, the copula itself can then be estimated parametrically using
the maximum likelihood estimation [34]. The nature of copulas can either be static
or time-variant. Time-varying copulas, or equivalently, dynamic copulas, might be
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considered as the dynamic generalizations of a Pearson correlation or Kendall’s tau
and in practice, time-varying copulas are often assumed to follow the autoregressive
moving average process (ARMA) [53].

The paper is organized as follows: on Section 3 we recall the main features of the
adopted Hermite quasi-interpolant operator; on Section 4 we formalize the model
notation and we explain the application of the proposed technique to the operations
of imputation and smoothing for time series. On Section 5 follows an application
to forecasting and in Section 6 to anomaly detection. Finally, on Section 7 we give
some conclusions.

3. B-spline Hermite quasi-interpolation. Quasi-interpolation is a technique
that allows to construct a local approximant by keeping low the computational
cost and the needed degrees of freedom. Generally, the common way to express a
univariate spline quasi-interpolant (QI) d-degree approximation reads as,

N—-1
Qa f() =D X()Bjal), (1)
j=—d
where B 4 are d-degree B-splines assumed to be defined on an extended knot vector
U

™= {T—d,n-;TN-Q—d}a TjSTj.H,
and spanning the space,
Sg = <B—d,d, ey BN—l,d>-

The spline space S7 is constructed such that 79 := a and 7y := b with [a, b] interval
where the function f is defined. The local linear functionals A; in (1) can be com-
puted by using several methodologies, such as differential [16, 15], integral methods
[58, 56] , and discrete approaches [41, 57]. In the present work we adopt the Hermite
QI developed in [42], which is derived from an associated BS method, used in the
context of Ordinary Differential Equations (ODEs). The BS methods are a specific
class of linear multistep methods for which the construction of a Hermite spline
interpolation scheme can be carried out locally by using the produced numerical
solution and its numerical derivative at the mesh breakpoints. These sites are used
as collocation points and define the knots of the constructed spline, see [44, 45] for
further details. Therefore, the QI scheme needs only the knowledge of f and f’ at
the knots. It is proved that it is a projector in the space of C?~! splines of degree
d and that it has optimal approximation order d + 1 on quasi-uniform meshes for
f e C™([a,b]).

When dealing with numerical methods for ODEs, the unknown function values
and its derivative values at some mesh points are provided as input data. In the
current framework, however, f’ values are not available. Hence, we rely on the
variant QI scheme, introduced in [43] to produce numerical quadrature formulas,
where the derivative information are approximated by using a symmetric finite
difference scheme. In particular, the derivative values at the knots are computed as

' ~T'f,

where £/ := (f'(to) ..., f'(tn) ", £ := (f(to),..., f(ty)) T, and T is a (£+1)-banded
matrix, of dimension (V4 1) x (N +1). The integer ¢ is chosen to be equal to d+ 1
when d is odd, and it is equal to d+ 2 when d is even. For the effective computation
of the A; functionals, in general settings, we refer to [8]. Although the variant QI
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is not a projector on Sj, it keeps the same approximation order of the original
QI. Moreover, it exhibits super-optimal convergence properties when degree even
is employed either on uniform or not-uniform meshes, for the treatment of singular
integrals, see [20, 22].

In all the experiments we chose d = 2, coincident auxiliary knots and coefficients
Aj in Eq.(1) provided in [42], Table 2.

4. Model settings and preprocessing. In the present work we deal with time
series that can be defined as stochastic processes, i.e., a collection of random vari-
ables {x;}, indexed over the time ¢. In particular, ¢ is a discrete variable sampled
at m time instants in a time domain [T7, T3] € R:

{tj,jil,...,m}.

We shall refer to the observed values of the stochastic process at every t; as the set
of realizations:

{xj,jzl,...,m}.

The realizations are, in general, noisy observations of an underlying smooth function

f():
.I‘j:f(tj)—F&‘j =1 ...,m,

where Vj,e; are independently distributed residuals with mean zero and constant
variance.

We propose a uniform approach in estimating the function f(t) and performing
preprocessing operations such as imputation and smoothing by using the QI operator
introduced in Section 3.

4.1. Imputation. The imputation process refers to estimate eventually missing
values. Common techniques to deal with this issue include interpolation, moving
average, decomposition and linear regression methods. For a practical overview and
implementation in R-CRAN, we refer to [47].

We apply the QI operator to the data (t;,2;) with j index of known values. To
approximate the first derivative, we use the mean value of backward and forward
differences, when both are available. Otherwise, for extreme points, we use only
either one of the two. Once the QI spline s is computed, the missing realization x,
is estimated as, x, := s(t,), where t, refers to the 2" time instant associated to
the 2" missing realization. Note that the spline s is computed without taking into
account the seasonality, i.e., periodicity of the data.

The algorithm has been tested on the “tsAirgap” time series dataset which con-
sists of a complete series of 144 rows and an incomplete version with 13 missing
values. The tsAirgap series represents the monthly totals of international airline
passengers from 1949 to 1960, see [6]. The obtained results are displayed in Fig.1.
We note that they are consistent with interpolation based strategies.

IThe dataset can be downloaded at https://github.com/SteffenMoritz/imputeTS/tree/
master/data
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FIGURE 1. Results on “tsAirgap”: the dots in blue are the known
data, the magenta diamonds the missing values and the yellow
squares are the imputed values.

4.2. Smoothing. One of the first steps that can be applied during preprocessing
a time series is a smoothing technique. In general, smoothing out the irregular
roughness can help to better identify patterns or trends.

A very simple approach to accomplish this task is to employ a moving average
smoother,

k
yi=> ax; (2)

i=—k

k
; 1 .
where in general a{) = CTSEL ;k al’ =1, {x,} is the set of the realizations and

the integer k is the window size.

When the data can be assumed to fluctuate around a steady mean value, i.e.,
there is no trend or consistent pattern of growth, then a single exponential smoothing
can be a preferable choice,

i‘j+1 =ax; + (1 - Oz)(i‘j. (3)

In Eq.(3) each new smoothed value #;41 is computed as the weighted average
of the current observation x; and the previous smoothed observation Z;, while «
is the smoothing constant and its value is chosen according to which observation
should be weighted more.

Although this technique is a smoothing method, it is principally used for short
run forecasting as it is equivalent to the use of an autoregressive integrated moving
average (ARIMA) model with no constant and with parameters:

- order p =0,
- finite difference order equal to 1,
- moving average order ¢ = 1.
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When the data show a trend but no seasonality, then it is common to apply a

double exponential smoother,

Bjp1 = axj+ (1 —a) (@5 — b))

bjt1 = B(Zj+1 — ;) + (1 = B)by, (4)
where 0 < @ < 1 and 0 < 8 < 1. From Eq.(4) we notice that the new smoothed
value Z;41 is computed via a single exponential smoother, while the smoothed
trend. i.e., the variable b, is computed via a single exponential smoother on the
first differences. This technique is equivalent to an ARIMA model as well, but with
parameters p = 0, ¢ = 2 and second order finite differences. Both models, (3)-(4)
are strongly dependent on the choice of the smoothing factors o and 8 that can be
obtained via non-linear optimization techniques, such as the Marquardt algorithm.
Moreover, several choices can be made for the initialization values, i.e., 1 and b;.
For more details we refer to [36, 60].
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F1GURE 2. Three random walk patterns are generated. The qua-
dratic continuous model s is computed by the smoothing technique
QIH-LSQ(15,15,1,1).

Other common techniques include, Kernel methods [66], lowess [12] and smooth-
ing splines methods. The latter ones can be generally expressed as,

argmin 3 (o, (6, +7 [ (5" (0)* . (5)

where primes denote differentiation. It can be shown that (5) has an explicit, finite-
dimensional, unique minimizer which is a natural cubic spline with a knot at each
t;, see [27]. Note that Eq.(5) denotes a spline regression model with a penalization
term which controls the uniformity, in terms of parameterization speed, of the
achieved representation. Moreover, the degree of smoothness is controlled by the
hyper-parameter v > 0, see [31, 60] for additional details.

In the present paper we introduce two novel strategies based on the application
of quasi-interpolation. Here we proceed with the description. In the first technique,
denoted as QIH-LSQ(k,, kpz,ds, dps), we quasi-interpolate the available realiza-
tions and we approximate the first derivative by using second order centered finite
differences. Since the realizations are uniformly distributed, in our experiments,
the derivatives approximation is carried out by using a constant step size h = 0.1,



QUASI-INTERPOLATION FOR TIME SERIES 3673

timeseries 1 timeseries 2 timeseries 3
o + complete TS 200 « complete TS -
ol v — smosthed TS — smOOthed TS .
100 50
0
5 50 00
-100 5
0
-150 0
50 -200
-0
~:’ +  complete TS -250
~100 o — smoothed TS ~100 . .
0 25 0 75 100 125 150 175 200 0 B 0 75 100 125 150 175 200 0 25 0 T35 100 125 150 175 200
time time time
FiGurRE 3. The same time series are now approximated
with the quadratic continuous model obtained by using QIH-
LSQ(10,10,2,2).
timeseries 1 timeseries 2 timeseries 3
o + complete TS 200 + complete TS -
gl — smootied TS — smoothed TS .
.
100 150 .
0
- 0 100
-100 50
0
-150 0
50 . . -200
o 0‘. -0
~:' o complete TS -250
00 o — smoothed TS -100 . .
0 % s 75 W00 125 150 175 200 0 B 0 7500 125 150 175 200 0 B 0 T3 W0 125 150 175 200
time. time time
FIGURE 4. Given the original three random walk patterns, the
use of QIH-I-LSQ(15,15,1,1) produces a cubic smooth continuous
model s.
timeseries 1 timeseries 2 timeseries 3
’0. + complete TS 200 « complete TS -
gl — smosthed TS — smoathed TS, .
100 *
0
50 -0
-100
0
-150
50 CO . -200
e
~:’ +  complete TS -250
100 o = smoothed TS
0 25 0 75 100 125 150 175 200 0 B 0 75 100 125 150 175 200 0 25 0 T35 100 125 150 175 200
time time time

FIGURE 5. We see a cubic, smooth continuous model s gener-
ated with QIH-I-LSQ(10,10,2,2) approximating the random walk
dataset.
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empirically chosen. When the data are very noisy, the realizations can be denoised
either by using a standard moving average technique or by computing the coef-
ficients agj ) in Eq.(2) by adopting a centered least squares approximation with a
polynomial of a given degree. A similar denoising approach is used on the first
derivative after its approximation is achieved by using the denoised realizations.
Resulting, hence in a double regularization effect.

This method depends on four parameters:

® k., kp,: windows sizes in formula (2) for the realizations and their derivatives,
respectively;
e d,, dp,: degrees of the least squares approximations.

The second technique, denoted as QIH-I-LSQ(k,, kpz, ds, dpz ), is based on the
application of the QI on both, the first and second derivatives which are approxi-
mated by a second order centered finite differences scheme. As first step, we com-
pute the QI Hermite spline s’ to construct a continuous approximation of the first
derivative f’. Secondly,

t
s(t) :z/ "(2)dz — Z/ dz —z; |, (6)
t1
where the integration constant is chosen as:
I
—Z/ s'(2)dz — x;
m j:1 t1

Lemma 4.1. Given a set of realizations {x:}, if the underneath smooth model s(t)
is constructed by using the introduced QI operator and formula (6), then

1 & 1 &
%ZS(“) = Ez_:mj
i=1 Jj=1

Proof. By using expression (6) and explicitly writing down the arithmetic mean for
s(t), it results that:

m t;

;ZS Z/t 2)dz — ;jzl/tl §'(2)dz — x;

:l i/tis dz——ZZ/ dz+—ZZscj
m =1 =1 j5=1 =1 j=1

1 m t; m t; m
== Z/ 5’(z)d,272/ sl(z)derZ:cj
m o\ Jh j=171 j=1
1 m
Jj=1

O

The first technique QIH-LSQ produces a smooth spline s(¢) by only using the
realizations and the approximated f’ values. The second procedure QIH-I-LSQ uses
the QIH on approximate values for f’ to produce a smooth model s’ and then uses
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an integral representation to derive the final smooth model s. The realizations and
the derivatives can be denoised by adopting the same strategy used in QIH-LSQ.
The parameters for the approximation of the second derivative are chosen equal to
the ones of the first derivative for a better computational efficiency.

In the next test we apply the proposed two techniques to a random-walk dataset,
generated with the function sim_randomwalk from the Python library tsmoothie?.
In Figure 2 we applied QIH-LSQ with parameters k, = kp, = 15 and d, = dp, = 1,
while in Figure 3, the QIH-LSQ is used with parameters k, = kp, = 10 and
dy = dp; = 2. We see how raising the degree helps to better delineate the shape
of the regularized continuous model. In Figure 4 we adopted QIH-I-LSQ with
parameters k, = kp, = 15 and linear degree, while in Figure 5 the QIH-I-L.SQ
is used with parameters k, = kp, = 10 and second degree. We notice how the
use of integration in Eq.(6) produces a smoother spline compared to simply using
QIH-LSQ. Also, the values for k, and kp, can be different; in this example they are
set equal, as using different types of combination did not produce any significant
change.

5. Forecasting. Time series forecasting is a technique used to predict future values
by using the information given by the continuous model based on the previous
available data. The smoothing models described in Section 4.2 can be employed as
well for this task.

We perform forecasting on two benchmarks datasets reporting the comparison
with the simple and double exponential smoothing techniques, described in Section
4.2.

The first dataset contains sheep livestock population in Asia from 1961 to 2007.
The time series consists of a total of 38 values, where the last 7 are considered
unknown and hence, predicted. The forecasting task is achieved by using QIH-LSQ
with parameters k, = 0,kp, = 4,d, = 1,dp, = 0 and QIH-I-LSQ(0,1,0,0). The
results are shown in Figure 6, where also the comparisons with single exponential
smoothing (SES) with o« = 0.8 and double exponential smoothing (DES) with
parameters a = 0.8 and 8 = 0.8 are reported. The choice for the setting values
for the used parameters was empirically made. From the figure it is clear how
the quasi-interpolation follows quite accurately the shape of the distribution of the
data, while SES and DES seem affected by some delay. When it comes to forecast
the data from year 2000 to 2007, QIH-LSQ and QIH-I-L.SQ perform alike to DES;
SES, at least for this example, achieved a rather poor accuracy. Just analyzing the
predictive power of the proposed techniques, we see in Table 1, that QIH-LSQ and
QIH-I-LSQ achieved the lowest normalized root mean square error (NRMSE). The
considered example is a challenging one, especially for the first unknown values,
where we can clearly observe a trend variation. First order methods such as SES
or DES, and Hermite type methods, where the derivative, i.e., the direction, of the
last observation is preserved, cannot accurately estimate the effective initial change.
Hence, the observed behavior is expected, in practise.

Only analyzing the predictive accuracy, i.e., the preservation of the real values, of
the model can have serious limitation under statistical point of view, see e.g., [54].
Therefore, we also included additional tests that can be significant in assessing the
goodness of the produced model s. In particular, we performed the two-sample
Kolmogorov-Smirnov test (KS-Test) and the Theil’s statistics. The KS-Test [32]

2https://github.com/cerlymarco/tsmoothie
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FIGURE 6. Smoothing and forecast of livestock, sheep in
Asia. Comparison of SES, DES, QIH-LSQ(0,4,1,0) and QIH-I-
LSQ(0, 1,0, 0).

allows to test the ‘null hypothesis’ (Hy), i.e., if the two considered distributions
(the original one and the produced one) are equal or not. It consists of two output
values: statistic and p-value. If the first output is greater than a critical value
D (cf. e.g., [55]), then the two considered distributions are different. For n = 7
samples and significance 0.05, D ~ 0.857. The more the value for statistic is close
to D the more likely Hy cannot hold. Moreover, if the p-value is less than a certain
threshold of significance, then, the Hy can be ‘rejected’, hence, the two distributions
are very likely different. Looking at the results of Table 1, intermediate columns,
we see how the SES model has the highest statistic and, at the same time, a very
small p-value. The Hy would be rejected for p-value< 0.05. In the SES case, the
p-value is very small but still above the threshold, hence, to be precise we would
not be able to reject the null hypothesis. All the other models perform alike. The
second chosen statistics is the Us Theil’s uncertainty coefficient [65]. If Uy > 1,
then, the considered model is worse than employing a naive forecasting method.
The coefficient Us measures the quality of the considered model. Observing the
results collected in Table 1, last column, it is clear that SES and DES equivalently
fail to produce a good fitting model, while the best quality fit, for this example, is
provided by QIH-LSQ. We also computed the U; Theil’s coefficient [64], but in this
case, all the methods achieved comparable results.

The second dataset consists in Synthetic Aperture Radar (SAR) Persistent Scat-
terer data (PS), which were provided by Planetek-Italia Srl. The PS are time series
in which each value measures the millimetric displacement of the ground every
six days of an an area in Emilia Romagna within Modena and Bologna province
territory. Generally, as told by the domain expert, this type of time series are not
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NRMSE KS-Test Theil’s
statistic \ p-value | Us
SES 1.20 0.71 0.053 1.47
DES 0.63 0.43 0.58 0.998
QIH-LSQ 0.59 0.43 0.42 0.69
QIH-I-LSQ 0.60 0.43 0.42 0.76
TABLE 1. Statistics ran on the results for the livestock sheep
dataset.
+ 0QIH-LS0Q(5,10,3,1)
0 R —& (QlH-1-L50(5,10,2,2)

- PS5

0 S0 100 150 200 20

FIGURE 7. PS time series regularized with QIH-LSQ(5,10,2,1)
and QIH-I-LSQ(5,10,1,1).

NRMSE KS-Test Theil’s
statistic ‘ p-value | Uz
SES 0.93 0.625 0.087 1.129
DES 0.99 0.625 0.087 0.84
QIH-LSQ 0.98 0.625 0.087 0.86
QIH-I-LSQ 1.10 0.5 0.282 0.749

TABLE 2. Statistics ran on the results for PS time series.

stationary and they are affected by noise, hence a regularization process is necessary
before conducting any analysis of the series.

In Figure 7 we show one PS time series consisting of 271 time instants, which
has been regularized by adopting the QIH-LSQ, with parameters k, = 5, kp, = 10,
d; = 2 and dp, = 1 (magenta curve and diamond shape markers), or by using
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QIH-I-LSQ with parameters k, = 5, kp, = 10, d, = 1 and dp, = 1 (blue curve and
bullets), on the first 263 points employed as training set. Secondly, a forecasting
analysis is performed on the last 8 points of the series. The results are shown in

the Figure 8 where a zoom in of the last 8 points and the comparisons with SES
(a =0.8) and DES (« = 0.8, 8 = 0.2) can be seen.
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FIGURE 8. Zoom in of the forecasting task performed on the last
8 PS values. Results obtained with QIH-LSQ(5,10,2,1), QIH-I-
LSQ(5,10,1,1) SES and DES.

From the picture it is clear that all the methods perform similarly when it comes
to the forecasting task. Looking at the statistics reported in Table 2, we see how
the NRMSE is quite high for all the considered approaches, assessing that somehow,
none of them achieve a good predictive accuracy. However, the KS-Test highlights
how SES, DES and QIH-LSQ provide a continuous model that is quite different
from the original TS (the critical value D = 0.75, for n = 8 samples and significance
equals to 0.05). While, QIH-I-LSQ), also according to Us Theil’s coefficient, gives
the best fit among the considered techniques.

We also tested the forecast algorithms on other time series present in the dataset
of Persistent Scatterer obtaining results in line with the example shown here.

6. Anomaly detection. Anomaly detection, sometimes referred to as outliers or
novelties detection, is the task to identify those observations that somehow deviate
from what could be considered the standard behavior of the analyzed distribution.
Unsupervised techniques do not need labeled test datasets and they assume that
anomalies will occur as sporadic items. Supervised methods require a dataset that
has been labeled as “normal” and “abnormal” and involves the need of a trained
classifier. Finally, semi-supervised approaches construct a model representing nor-
mal behavior from a given normal training dataset, and then test the likelihood of
a test instance to be generated by the utilized model. Since we propose an unsuper-
vised anomaly detection method, we will briefly summarize three main algorithms
that are largely used within this framework.

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is
a non parametric density-based clustering algorithm, introduced for the first time
in [19]. Tt groups together those points that have many nearby neighbors, i.e., high



QUASI-INTERPOLATION FOR TIME SERIES 3679

density areas; while it identifies as outliers, those points that lie in low-density
regions.

The Local Qutlier Factor (LOF) [7] is an unsupervised clustering algorithm which
computes the local deviation of a given point from its neighbors. Outliers are
identified as those points which have lower density than their neighbors. It shares
with DBSCAN some concepts as “reachability distance” and “core distance”.

The Isolation Forest (IF) [39] ‘isolates’ observations by randomly selecting a fea-
ture and then randomly selecting a split value between the maximum and minimum
values of the selected feature. It does not need any distance or density measure.
Anomalies are identified as those random partitions which have a shorter path from
the root node, see [40].

Here we present two classes of unsupervised anomaly detection algorithms, the
first one is based on the application of the QI to construct a smooth model of the
data and any of the clustering techniques described above, where as input to the
clustering algorithm we give the differences between the original time series and the
smoothed model s(t) and the first derivative s'(¢), we call these algorithms QIH-
I-DBSCAN, QIH-I-LOF and QIH-I-IF. To detect the anomalies it is important to
smooth out only the outliers, so we used only the combination with the QIH-I-
LSQ(1,1,1,1), that results the most effective for this purpose. To further improve
the algorithm we also present a second procedure that employs the use of dynamic
copulas in combination with the same classification algorithms. The algorithms
derived by this procedure are called QIH-I-DC-DBSCAN, QIH-I-DC-LOF, QIH-
I-DC-IF. In this case we use for the smoothing model only the procedure QIH-I-
LSQ(0,0,0,0), that results to be the most effective.

To better understand the second procedure, we firstly recall some basic theoreti-
cal concepts about copulas. In probability theory and statistics, copulas are a useful
tool to isolate the dependency structure in a multivariate distribution. In particular,
we can construct any multivariate distribution by separately specifying the marginal
distributions and the copula. See [18], [50] for a detailed description of copulas, here
we recall only the definition and the main results. Let us consider a vector of random
variables (X1, ..., X,,), and let us suppose that the marginal cumulative distribution
functions (CDFs) are continuous, i.e., F;(x) := P[X; < z] are continuous functions
for © = 1,...,n. By applying the probability integral transform to each compo-
nent, the new random vector (Uy, Us, ..., Uy,) = (F1(X1), F2(X2), ..., Fn(X,)) has
marginal CDF's that are uniformly distributed on the interval [0, 1].

Definition 6.1. A n-dimensional copula, C : [0;1]™ — [0;1] is a CDF with uniform
marginals. We write C'(u) = C(uq;...;uy) for a generic copula.

Copulas establish a connection between multivariate distributions and their uni-
variate margins, as described by the Sklar’s theorem [61]. In particular, we can
construct any multivariate distribution F' by separately specifying the marginal
distributions F1,..., F,, and the copula C, by setting

F(Ily---;zn) = C(Fl(xl)a7Fn(xn))

Moreover if the marginals are continuous functions, then the constructed copula C'is
unique. Thanks to Sklar’s theorem we can build very flexible classes of multivariate
distribution models. There are many parametric copulas families available, which
usually have parameters that control the strength of dependence There are three
principal measures of dependence: Pearson correlation coefficient, rank correlation
measures, namely Spearman’s rho and Kendall’s tau, that only depend on the unique
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copula of the joint distribution and tail dependence coefficients, that are a measure
of dependence in the extremes of the distributions. In this work we use the Kendall’s
tau 7¢. It is defined as the difference between the probability of concordance and
the probability of discordance, see [37]. Let (X,Y") be a vector of two continuous
random variables, then the Kendall’s tau for X and Y can be computed as,

T = P[(X]_ — X2)<Y1 — Yé) > O] — P[(Xl — XQ)(Y:[ — }/2) < 0]

The copulas are widely used to discover the dependence between two or more time
series, especially for portfolio management, risk assessment, option pricing and cov-
erage [5]. Usually the parameters of the copulas are chose statically, in other con-
texts see e.g., [53] these parameters are modelled in a dynamic way to discover
the change in correlation over time. In this case the copulas are called dynamic
copulas or time varying copulas. In our case, we use the dynamic approach, using
xj — s(t;) and §'(t;) for j = 1,...,m, as time series for which we want to analyze
the correlation over time, where s is the cubic spline obtained using the strategy
QIH-I-L.SQ(0,0,0,0) and s’ is its derivative. In order to analyze the time-varying
nonlinear correlation, we model the dynamic copula deriving an evolution equation
for the Kendall’s tau. We choose as best copula in this context the t-Student copula,
that it is able to give a greater weight to the extreme values where the anomalies
are located. The ARMA model (cf. [53]), with a lag of ¢ = 10 orders is used to eval-
uate the correlation coeflicient p; of the Student copula according to the following
evolution equation:

R _
pe=A|w+Bp1+ ay DT Ny, )T v yov) | (7)
j=1
where A(z) := (1 — e ®)(1 + e %)~! is a logistic transformation and T~ is the

inverse function of the t-Student distribution with degrees of freedom v. The logistic
transformation is used to obtain p; in (—1,1); p;—1 is the autoregressive term and
the term multiplied by « represents the forcing variable.

For the estimation of the initial value pg of the ¢-Student copula, we adopt a non-
parametric way to estimate the marginals and then we apply the maximum likeli-

hood method (MLE). Specifically we use the empirical CDF F(z) := % Z 1x,<x
i=1
with the transformed variables u; := F(z; — s(t;)) and v; := F(s'(t;)) for j =
1,...,m, as the marginal distributions.
The new p; in Eq.(7) is then calculated with the MLE in order to estimate the
parameters «,  and w. Regarding the degrees of freedom v, we choose to keep
them fixed in order to simplify the derived model. The Kendall’s tau 7; time series

. . . 2 .
can now be computed by using the correlation coefficient as 7; = — arcsin p;, see

[62] for further details. It is worth noting that we use the Kendall’s 7t:au time series
together with the difference between the original time series and the smoothed time
series s(t) as input in the selected algorithms to detect anomalies. By providing also
the Kendall’s tau time series as input, the anomaly detection improves compared
to using only the original time series, as it is shown in the next examples. We
ran the experiments by using the Python module Scikit-learn and the copulae
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libraries Copulae® and pyvinecopulib®. For the experiments we use one of the few
publicly available dataset, Yahoo! Webscope S5 dataset®. It consists of four data
classes, each containing either a set of synthetic or real web traffic values tagged
with anomalies. Data class A2Benchmark, A3Benchmark, A4Benchmark represent
synthetic time series of different length. Data class A1Benchmark is the most diverse
one due to its real nature. It consists of time series representing metrics of various
Yahoo! services.

To show the behavior of the algorithm we start by choosing some different time
series from the classes. We first show an example with four time series: two time
series are selected from the real-values dataset and two are taken from the synthetic
one. Although the whole dataset contains both, the time series of the values and the
vector with elements in {0, 1} where 0 indicates the absence of anomaly and 1 the
anomalous point, we conduct this example in a completely unsupervised fashion.

—— original ts
4004 ---- smoothed ts
X true anomaly

200 A
o L T T T T T T T T
0 200 400 600 800 1000 1200 1400
0.50
—— dinamic
0.25 4 static

L " |

B e T e B S ey e A e A |
0.00 A ‘hr A l{-vr

—0.25 A

0 200 400 600 800 1000 1200 1400

FIGURE 9. AlBenchmark-reall9 time series and Kendall’s tau
time-varying copula.

The choice of the Kendall’s tau together with the smooth function and its smooth
derivative turns out to be very interesting. In fact, as it can be seen in the Figures
9, 10, 11, 12, it is clear how the peaks of the Kendall’s tau evolution equation match
with the anomalous points of the considered time series.

To show the different performance between QIH-I-* and QIH-I-DC-* in Figure
13 we plot the scatterplot for the time series A4dBenchmark-TS10 of the input and
output data of the two procedures, by showing in Figure 13 (a) the QIH-I-LOF and

Shttps://copulae.readthedocs.io/en/latest/

4https://vinecopulib.github.io/pyvinecopulib/

5The dataset can be downloaded at https://yahooresearch.tumblr.com/post/114590420346/
a-benchmark-dataset-for-time-series-anomaly
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FIGURE 10. AlBenchmark-real25 time series and Kendall’s tau
time-varying copula.
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FIGURE 11. A4Benchmark-TS10 time series and Kendall’s tau
time-varying copula.
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FIGURE 12. A4Benchmark-TS11 time series and Kendall’s tau
time-varying copula.

1e3 Scatterplot of QIH-I-LOF data Scatterplot of QIH-I-DC-DBSCAN data
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FIGURE 13. Scatterplot of x(t) — s(t) vs s'(t) for the QIH-I-LOF
(a) and of x(t) — s(t) vs Kendall’s tau (b) for QIH-I-DC-DBSCAN,
both for problem A4Benchmark-TS10. Computed normal points:
magenta bullet. Computed anomalies: green diamond. True nor-
mal behavior: blue +. True anomalies: yellow x.

in Figure 13 (b) the QIH-I-DC-DBSCAN. It is evident how they use of Kendall’s
tau simplifies the task of identifying anomalies, as there is a minor dispersion within
the normal points.

Finally we use the ground-truth present in the dataset, in order to compare the
results obtained with our approach and with DBSCAN, LOF and IF applied on the
original time series, in terms of RECALL, Overall Accuracy (OA) and ROC-AUC
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score. The first metric, intuitively, measures the ability to correctly identify all the
anomalous samples. The OA metric computes the fraction of correct predictions
over the total amount of samples. Finally, the ROC-AUC score is usually employed
to assess the performance of a binary classifier by varying a discrimination threshold
[24].

We stress that the experiments are conducted in a completely unsupervised fash-
ion and that the aforementioned metrics are computed only at the end, when we
can use the correct labels present in the ground-truth to evaluate the performance
of our approach.

RECALL | OA | ROC-AUC
QIH-I-DBSCAN 0.917 0.942 0.929
QIH-I-DC-DBSCAN 0.939 0.980 0.959
DBSCAN 0.984 0.067 0.523
QIH-I-LOF 0.973 0.955 0.964
QIH-I-DC-LOF 0.897 0.984 0.940
LOF 0.208 0.991 0.601
QIH-I-IF 0.940 0.791 0.865
QIH-I-DC-IF 0.958 0.882 0.920
IF 0.620 0.728 0.674

TABLE 3. Mean values of the recall, overall accuracy and ROC-
AUC for the AdBenchmark for the compared algorithms.

Regarding DBSCAN, LOF and IF finding the correct input parameters it is
not a trivial task, therefore we decided to test these algorithms using the avail-
able routines with the default parameters and giving as input the original time
series. For our approach, regarding the DBSCAN, we have used a special routine
to set the eps parameter. This is the most important parameter as it represents
the threshold distance which discriminates outliers from normal samples. As it
can be seen in Table 3, the default value for eps, which is equal to 0.5, used
applying DBSCAN to the original time series is too small and as a result most
of the points are considered as anomalies. The information given by the abso-
lute error between the original time series and the smoothed one is used to set
up the eps value. In particular, for the algorithm QIH-I-DBSCAN we used eps
= mean(|z — s(t)|). For the algorithm QIH-I-DC-DBSCAN we empirically decided
to divide the time interval in 5 equals subintervals I, 7 = 1,...,5 and we consider as
eps = min {mean(|z — s(t)|), mean(|z — s(t)|)|s,,j =1,...,5} /5. This technique
allows to select a good value for eps even when the time series changes behavior as
shown in figures 11-12.

Table 3 shows the potentiality of the algorithms that combines Hermite quasi-
interpolation smoothing and dynamic copulas with clusterization algorithms, that
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for the chosen benchmark dataset, outperforms the using of any clustering algo-
rithms employed on the original dataset. We observe that all the proposed algo-
rithms could have a better behavior choosing in the correct way the parameters,
but it is not our intention to make an effective comparison, that we know is usually
very difficult to achieve, but we only want to show the potentiality of the proposed
algorithms. In particular, we see that for some classes of problems the DBSCAN,
LOF and IF algorithms are also very effective, but they have poor behavior for
other examples, that are, however, handled very well by the combined algorithms.

7. Conclusions. Times series usually refers to stochastic processes of data col-
lected in real scenarios, and hence, affected by noise or by error measurements. In
this paper we present a valid tool based on Hermite quasi-interpolation which has
a twofold use. On the one hand, we can successfully preprocess the considered time
series by performing the operations of imputation and smoothing. On the other
hand, we can provide a smooth model of the time series that can be applied to fore-
cast and to anomaly detection tasks. In all the considered examples we obtained
promising results compared to standard techniques. This is a first step for a deeper
analysis of the application of the proposed QI scheme for the study of time series
in different contexts.
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