
Journal of Intelligent Information Systems (2024) 62:787–807
https://doi.org/10.1007/s10844-023-00830-z

RESEARCH

A qualitative analysis of knowledge graphs
in recommendation scenarios through semantics-aware
autoencoders

Vito Bellini1 · Eugenio Di Sciascio2 · Francesco Maria Donini3 · Claudio Pomo2 ·
Azzurra Ragone4 · Angelo Schiavone2

Received: 8 May 2023 / Revised: 10 November 2023 / Accepted: 13 November 2023 /
Published online: 19 January 2024
© The Author(s) 2024

Abstract
Knowledge Graphs (KGs) have already proven their strength as a source of high-quality
information for different tasks such as data integration, search, text summarization, and
personalization. Another prominent research field that has been benefiting from the adoption
of KGs is that of Recommender Systems (RSs). Feeding a RS with data coming from a KG
improves recommendation accuracy, diversity, and novelty, and paves the way to the creation
of interpretable models that can be used for explanations. This possibility of combining a
KG with a RS raises the question whether such an addition can be performed in a plug-
and-play fashion – also with respect to the recommendation domain – or whether each
combination needs a careful evaluation. To investigate such a question, we consider all
possible combinations of (i) three recommendation tasks (books, music, movies); (ii) three
recommendation models fed with data from a KG (and in particular, a semantics-aware deep
learning model, that we discuss in detail), compared with three baseline models without
KG addition; (iii) two main encyclopedic KGs freely available on the Web: DBpedia and
Wikidata. Supported by an extensive experimental evaluation, we show the final results in
terms of accuracy and diversity of the various combinations, highlighting that the injection
of knowledge does not always pay off. Moreover, we show how the choice of the KG, and
the form of data in it, affect the results, depending on the recommendation domain and the
learning model.

Keywords Recommender systems · Autoencoder neural network · Knowledge graph ·
Deep learning

Vito Bellini work done prior to joining Amazon.

B Vito Bellini
vitob@amazon.com

B Claudio Pomo
claudio.pomo@poliba.it

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-023-00830-z&domain=pdf

788 Journal of Intelligent Information Systems (2024) 62:787–807

1 Introduction

Nowadays, we are overwhelmed by a large amount of available information we can benefit
from. In particular, e-commerce sites and entertainmentWeb services usually offer thousands
of different items among which users are invited to find the ones they need or desire the
most. In this direction, recommender systems (RSs) have proven to be a silver bullet in
suggesting appropriate items to users according to their past choices and behaviors. A typical
RS exploits item ratings available in a system, either implicitly or explicitly, to predict a list
of unseen items which are of potential interest to the user (Ricci et al., 2011). Over the years,
several strategies have been developed to build efficient recommendation algorithms. They
are generally divided into three main categories: collaborative filtering (CF) techniques,
content-based (CB) methods and hybrid approaches (Burke, 2002). While CF techniques
exclusively rely on the feedbacks (rating, click, watch, listen) from the users on specific
items without considering their description (either structured or unstructured), on the other
side CB ones exploit the data associated to an item to compute relevant recommendations to
a user. One of the main issues to tackle in adopting a CB approach is then getting the right
amount of meaningful information/data about items, which in turn results necessary to model
content-aware items and users descriptions. In fact, by gathering data about items rated by
users, one can infer attributes that can be used to model users’ profile and preferences.

In the last years, the technologicalwave related to deep learning techniques and approaches
hit also the field of RSs. A variety of new approaches based on different configurations of
Neural Networks (NNs) have been proposed to compute personalized lists of items to be
suggested to end users (Covington et al., 2016; Wang & Wang, 2014; Elkahky et al., 2015).
Among them, autoencoders have been proposed as an interesting tool to mimic the user
behavior in producing ratings and by exploiting and modeling user preferences on latent
item attributes (Wu et al., 2016). Autoencoders are a particular configuration of artificial
NNs which turned out to be very effective especially for dimensionality reduction and fea-
ture selection tasks (Vincent et al., 2008). However, autoencoders proved useful also in a
different configuration. Indeed, in their mirrored structure, neurons of the hidden layers can
be interpreted as a projection of the input layer in a different space. In Bellini et al. (2019),
the authors presented SEMAUTO1, a Semantics-Aware autoencoder (SA-autoencoder from
now on) which leverages the common graph-based structure to encode the semantics, and
the structure of a knowledge graph to enhance the representational power of the underly-
ing NN. One of the main advantages of such a hybrid structure it that of giving an explicit
semantics/label to the latent dimensions of the new space (Bellini et al., 2019). In this set-
ting, SA-autoencoders may expand the hidden layer to accommodate all features in the KG
relevant for a user.

Among the various and diverse KGs freely available on the Web, for sure DBpedia (Auer
et al., 2007) and Wikidata (Vrandecic & Krötzsch, 2014) play a key role due to their ency-
clopedic nature which makes them the ideal candidates to provide structured descriptions on
items in a recommender system (Sacenti et al., 2022; Liu et al., 2023). Although there is a
partial overlapping among the information sources to build DBpedia and Wikidata, the data
they encode is different under various aspects, such as the amount of data and the way it is
organized (Ringler & Paulheim, 2017).

In this paper we test the addition of a KG to a RS through extensive experiments that
variate the following dimensions:

• along a knowledge dimension, we variate the KG between DBpedia and Wikidata;

1 An implementation is available at: https://github.com/sisinflab/SEMAUTO-2.0

123

https://github.com/sisinflab/SEMAUTO-2.0

Journal of Intelligent Information Systems (2024) 62:787–807 789

• along the RS model dimension, we test several recommendation models:

– three state-of-the-art approaches, two of which both with- and without the addition
of knowledge (yielding five possible recommendation models)

– an SA-autoencoder model, in five different configurations;

• along the choice of domain,we conduct experiments in three different ones: books,music,
and movies, by employing an appropriate dataset for each one of them.

For all possible RSs built over any combination of the above characteristics, we examine
its results in terms of accuracy and diversity, evidencing and discussing how the structure
and coverage of information encoded on a KG may affect the accuracy and novelty of the
recommendation.
The structure of the paper is as follows: in the next section, we recap how to build SA-
autoencoders and their recommendation model. Then, in Sections 2 and 3 we introduce the
experimental setting and the different configurations adopted in our investigation, while the
results are discussed in Section 4.We then compare our resultswith relatedworks in Section 5.
Conclusions and future work close the paper.

2 Semantics-aware autoencoders in recommendation scenarios

Autoencoders are unsupervised NNs that learn a function capable of reconstructing the net-
work’s input at the output layer. They are built on top of two main components which are the
encoder and the decoder. The former is usually responsible for compressing the input data
into a lower dimensional representation, while the latter does the opposite job reconstructing
the original input data starting from a lower dimensional representation (see Fig. 1). Like
every NN configuration, autoencoders are structured in layers which contain neurons. Every
neuron in layer i is connected through an edge to all the neurons of the following layer
i + 1. In other words, in its standard configuration we have a fully connected network. In
a recommendation scenario, we may use all the items in a catalog as representative of both

Fig. 1 Architecture of an autoencoder

123

790 Journal of Intelligent Information Systems (2024) 62:787–807

the input and the output layer. We may then train the NN by using user ratings as inputs to
obtain similar values produced by the output layer.

Autoencoders have been studied also in architectures that augment the input-output dimen-
sion. Figure 2 depicts an Overcomplete Autoencoder, a deep learning technique with a
hidden layer wider than the input layer, offering greater representation capacity than tra-
ditional autoencoders (Ranzato et al., 2006; Rifai et al., 2011). This configuration excels
both in handling noisy or missing data and in generating new data (Vincent et al., 2008).
However, increased computational complexity and overfitting risks may arise. Mitigation
strategies include using specialized algorithms and hardware, regularization, and dropout
techniques (Ngiam et al., 2011; Lewicki & Sejnowski, 2000).

Denoising Autoencoders (DAE) also feature a wider middle layer and learn compressed,
simplified representations of input data (Vincent et al., 2010; Alain & Bengio, 2014). DAEs
can extract meaningful features from user interaction datasets or knowledge graphs, improv-
ing recommendation algorithmperformance and recommendation quality (Liang et al., 2018).

Starting from the observation that both NNs and KGs are directed graphs, in Bellini et
al. (2017) the authors propose to use the topology of the latter to model the former, in an
original architecture inspiredbyovercomplete-autoencoders,whose aim is not dimensionality
reduction. Themain idea is to keep input- and output-layer nodes as representative of the items
in the catalog and substitute anonymous nodes in the hidden layers by labeled resources from
a knowledge graph thus inheriting their mutual semantic connections (see Fig. 2). Differently
from the generic definition of autoencoder, we see here that the resulting NN is no longer
fully connected since the input layer’s nodes are linked to neurons in the hidden layer if
and only if a corresponding connection exists in the original knowledge graph. In such a
semantics-aware autoencoder, we somehow project the items in a space whose dimensions
represent all the entities (features) they are connected to.

As for a generic autoencoder, also a semantics-aware autoencoder is trained with user
ratings and it learns how to reconstruct them on the output layer but differently from the
original autoencoder, since such a network is not fully connected, user ratings propagate
only through those nodes that represent features connected in the KG to items rated by the
user. According to NN models, a generic neuron outputs a value that is a non-linear function

Fig. 2 Architecture of a semantics-aware autoencoder

123

Journal of Intelligent Information Systems (2024) 62:787–807 791

of the weights summation over incoming edges. Then, in a recommendation scenario it turns
out that positively rated items tend to have connected neurons with higher output values than
those neurons connected with negatively rated items. As proposed in Bellini et al. (2019),
one single autoencoder is trained per each user for 1000 epochs by using the well-known
Sigmoid activation function for the hidden layer. The number of neurons in the hidden layer
depends on the number of entities (features) encoded in the KG for the user’s rated items. We
use the autoencoder to describe a single user’s ratings in a feature space that is tightly coupled
with the KG, so this method, even with few rates, is able to weigh items features according
to the user’s interest to them. Nevertheless, since the autoencoder is fed with ratings of only
one user, the overall approach can be easily parallelized by training each user/autoencoder
on an autonomous thread.

We recap the training process of the semantics-aware autoencoder in Fig. 3. At start, the
model is initialized with random weights (Fig. 3a). For each epoch it is fed with user ratings
and the back-propagation adjusts weights in order to reconstruct input’s user ratings at the
output layer (Fig. 3b). The model converges and encodes the relevance for each feature in
the hidden layer Fig. (3c).

2.1 User profiles

If we train one SA-autoencoder per user, the resulting model may be interpreted as an explicit
representation of the user profile on items attributes. As a matter of fact, at the end of
the training, hidden nodes encode a value that represents the relevance for the user in the
node’s associated feature. Thus, sets of pairs 〈 f eature, value〉 can be defined and used as a
representation of the user profile in the semantic space. An SA-autoencoder is, therefore, a
model that uses deep learning techniques to extract weighted features from a KG according
to user ratings in order to build users profiles for recommendation tasks. In particular, given
a user u, after the training phase the weight of a feature c is the summation of the weights
wu

k (c) associated to the k edges entering the hidden node representing a KG entity c (see
Fig. 4).
More formally, given user u and a feature c, the weight of c for u can be computed as:

ωu(c) =
|I n(c)|∑

k=1

wu
k (c)

Fig. 3 Training process for a semantics-aware autoencoder for an individual user. The color nuance of a hidden
unit denotes the relevance of a feature it represents according to the rating given to items connected to that
hidden neuron

123

792 Journal of Intelligent Information Systems (2024) 62:787–807

where I n(c) is the set of the edges entering the hidden node representing the feature c. As
an example, if we consider the excerpt of the network in Fig. 4, for Barry Sonnenfeld
we have:

ωu(Barry Sonnenfeld) = wu
11 + wu

12

Having weights associated to each resource coming from KG, we can now model a user
profile composed by a vector of weighted features. Given Su as the set of all the features
belonging to the items rated by the user u and S = ⋃

u∈U Su as the set of all the features in
the system, we have that for each user u ∈ U and for each feature c ∈ S, the user profile
P(u) is represented as:

P(u) = {〈c, ω〉 | ω = ωu(c) if c ∈ Su, ω = 0 otherwise} (1)

Because we train a SA for each user, the weights associated with the edges that link items
to values indicate how influential that type of 〈 f eature, value〉 pair is for the user. Clearly,
this value varies from user to user since we have a different SA for each one of them.

2.1.1 Recommendation

The vector computed with (1) is usually very sparse in the space representing the overall
number of features. In other words, many values are set to 0 as the corresponding feature does
not belong to any item the user rated in the past. Since thismay negatively affect the final result
in a recommendation scenario, we reduce the sparseness of the user profile by predicting a
value to fill 0-valued features in the vector through the word2vec-like approach (Bellini et
al., 2018).

Once we have a less sparse version of the user profile, we produce recommendation
performing a standard user-kNN (see (2)) by computing how close are users with each other
through a cosine similarity (see (3)).

r̂(u, i) =
∑k

j=1 sim(u, v j) · r(v j , i)
∑k

j=1 sim(u, v j)
(2)

Fig. 4 An excerpt of the network in Fig. 2 after the training

123

Journal of Intelligent Information Systems (2024) 62:787–807 793

sim(u, v) = P(u) · P(v)

||P(u)|| · ||P(v)|| (3)

In (2), given an unseen item i from user u, we predict a rating r̂(u, i) for u on i by
considering the ratings r(v j , i) assigned to i by the k most similar users v j .

From a practitioner’s perspective, this approach can scale both vertically and horizontally
as one can train a single autoencoder on a single core; therefore, SA scales vertically with
the number of cores on a single machine and horizontally by deploying multiple machines.
Given that we train a single autoencoder for each user, the dimensionality of the overall
network depends on the number of single-user interactions; this results in training relatively
small networks faster in the training procedure. In industrial settings where the availability
of clusters is generous, this becomes a plus since it is easy to scale.

3 Experiments

As a direct consequence of relying on a KG, it stands to reason that its structure, as well as
the information it encodes, might affect how user profiles are computed. Thus, it is crucial
to investigate how the KGs structure impacts the recommendation accuracy. We may believe
that the better the data are engineered and curated, the more accurate a recommendation is.
The point is, how to evaluate and measure the recommendation?

Given the recommendation model previously described, we performed an experimental
evaluation to verify the influence of a knowledge source in the final recommendation task.
In this paper, we chose the two main encyclopedic knowledge graphs freely available on
the Web: DBpedia and Wikidata due to the richness of information they encode in different
knowledge domains. DBpedia andWikidata differ from each other not only by their structure
but also Ringler and Paulheim (2017) by distinct fields of knowledge are covered in different
ways.

We first describe the structure of the datasets used in the experiments, then we move on
to the evaluation protocol for the recommendation, and finally we discuss the results.

For the sake of ensuring the reproducibility of our models we provide the link to the public
repository from which to retrieve the code and datasets (https://split.to/sa-auto).

3.1 Dataset

We conducted our experiments on three different datasets as summarized in Table 1.

Table 1 Datasets characteristics and relative levels of sparsity

#users #items #ratings sparsity #DBpedia-items #Wikidata-items

MovieLens 1M 6040 3952 1000209 95.81% 3301 (94.70%) 3097 (93.40%)

Last.fm 1892 17632 92834 99.72% 10180 (98.22%) 9742 (96.05%)

LibraryThing 7279 37232 626000 99.77% 11695 (93.47%) 11039 (92.01%)

In addition, for each KGs, we report the number of mapped items and, in parentheses, the sparsity level in the
catalog restricted to mapped items and users who rated at least one of them

123

https://split.to/sa-auto

794 Journal of Intelligent Information Systems (2024) 62:787–807

MovieLens 1M2 stores information about users-items interactions made on a 5-star
scale and relates to the movie domain. Last.fm3 contains information about music, bands
and artists listenings; since in Last.fm for each user we have the number of times a user has
listened to a song, we infer users’ preferences by scaling it within the range [1, ..., 10] (using
min-max normalization). Finally in LibraryThing4, which is a social web application for
book cataloging, rates aremade on a 10-star scalewith reference to books. By relying on these
datasets, we have three different knowledge domains which are covered both by DBpedia
and by Wikidata.

In order tomap items to resources inDBpediawe adopted a freely availablemapping5 orig-
inally presented in Ostuni et al. (2013) and then refined in Anelli et al. (2017). Thus, we retain
3301 mapped items forMovieLens 1M, 10180 for Last.fm and 11695 for LibraryThing.
Starting from DBpedia resources URI we obtained Wikidata entities through owl:sameAs
links.

3.2 Knowledge graphs: DBpedia vs.Wikidata

In addition to a general evaluation on the impact of the usage of DBpedia vs. Wikidata in a
recommendation setting, we also evaluated how different kinds of information from a KG
impact the recommendation itself. If we look at the semantic knowledge encoded within the
two knowledge graphs, we may identify factual knowledge where we have facts stated on
a specific resource, for example6:

dbr:Men_in_Black_(Film) dbo:director dbr:Barry_Sonnenfeld .
and ontological and categorical knowledgewhich encode the semantics of an entity through
classes and categories, such as:

dbr:Men_in_Black_(Film) dct:subject dbc:Buddy_Film .
dbr:Men_in_Black_(Film) rdf:type dbo:Film .

In DBpedia, categorical information is reached through the following predicates:

• http://purl.org/dc/terms/subject
• http://www.w3.org/2009/08/skos-reference/skos.html#broader

The former allows us to explore categorical resources related to an item, while the latter lets
us discover a wider category in a hierarchical perspective.

As for Wikidata, we considered categorical information encoded through the predicates:

• https://www.wikidata.org/wiki/Property:P921 labeled as main subject
• https://www.wikidata.org/wiki/Property:P136 (whenever possible) labeled as genre

Since DBpedia skos:broader is not directly mapped in Wikidata, we used https://www.
wikidata.org/wiki/Property:P279, labeled as subclass of, to identify hierarchical categories
as well.

Regarding factual information, we used the approach proposed in Ragone et al. (2017) to
automatically identify those DBpedia predicates (listed in Table 2) which turn out to be the
most meaningful for a recommendation task; the corresponding Wikidata properties were
properly collected through SPARQL queries.

2 http://grouplens.org/datasets/movielens/
3 http://www.lastfm.com
4 https://www.librarything.com/
5 https://github.com/sisinflab/LODrecsys-datasets
6 All the prefixes we will use from now on are those available at http://prefix.cc

123

http://purl.org/dc/terms/subject
http://www.w3.org/2009/08/skos-reference/skos.html#broader
https://www.wikidata.org/wiki/Property:P921
https://www.wikidata.org/wiki/Property:P136
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P279
http://grouplens.org/datasets/movielens/
http://www.lastfm.com
https://www.librarything.com/
https://github.com/sisinflab/LODrecsys-datasets
http://prefix.cc

Journal of Intelligent Information Systems (2024) 62:787–807 795

Table 2 DBpedia factual predicates selected to compute recommendations

Last.fm LibraryThing MovieLens 1M

dbo:genre dbo:author dbo:starring

dbo:instrument dbo:literaryGenre dbo:director

dbo:occupation dbo:publisher dbo:writer

dbo:associatedBand dbo:mediaType dbo:producer

dbo:associatedMusicalArtist dbo:language dbo:musicComposer

dbo:recordLabel dbo:country dbo:distributor

dbo:hometown dbo:previousWork dbo:language

dbo:birthPlace dbo:subsequentWork dbo:cinematography

dbo:country dbo:nonFictionSubject dbo:country

dbo:influencedBy dbo:series dbo:editing

dbo:voiceType dbo:coverArtist dbp:music

dbo:award dbo:illustrator dbp:studio

dbo:bandMember dbo:translator dbp:extra

dbo:currentMember dbp:awards dbp:screenplay

dbo:pastMember dbp:writer dbp:genre

3.3 Data settings

Here we show the different configurations we adopted to inject data from DBpedia and
Wikidata in our semantics-aware autoencoder. As stated in Section 2, the input and output
layers are always composed by resources representing items of our recommendation setting
(i.e., movies forMovieLens 1M, books for LibraryThing, songs, bands, etc. for Last.fm).
The differences of the configurations we propose mainly rely on the information encoded in
the hidden layers. In Fig. 5 we show only the case for DBpedia, as for Wikidata we have
analogous configurations.

We list below the symbol of each configuration along with its explanation:

S (for Subject) the first configuration (Fig. 5a) encodes only categories through the
dct:subject property. Hence, all the nodes in the hidden layer have a one-to-one
mapping with a corresponding category in DBpedia. We refer to this configu-
ration as Subject since categories are structured in a hierarchical way through
skos:broader;

B (for Broader) We considered in the hidden layer only those categories which are
one-hop distant through the skos:broader property from those resources directly
connected to an item via dct:subject (Fig. 5b). In this configuration, connec-
tions between the items and the hidden layer are represented by the property chain
dct:subject/skos:broader;

S-B (for Subject-Broader) In this configuration we considered three hidden layers7 thus
mimicking the actual topology of the knowledge graph in the structure of the NN (see
Fig. 5c);

M (for Mixed) We put in the same hidden layer both the categories connected via
dct:subject and dct:subject/skos:broader. We consider this config-
uration as flattening of S-B;

7 Due to the mirrored structure of an autoencoder, the number of layers is always odd

123

796 Journal of Intelligent Information Systems (2024) 62:787–807

Fig. 5 The different configurations used in our experiments

F (for Factual) Herein the hidden layer is composed by all the resources which are
one-hop far from the input item through the properties in Table 2.

3.4 Evaluation

Before measuring how different KGs impact on recommendation quality, we first prove the
strength of the proposed method by comparing it with some state-of-the-art baselines. Then
we quantify how our performances vary depending on the different subsets of the KG we
use.

123

Journal of Intelligent Information Systems (2024) 62:787–807 797

For the evaluation of our approach we adopted the “All Unrated Items” protocol described
in Steck (2013): for each user u, a top-N recommendation list is provided by computing a
score for every item i not rated by u, whether i appears in the user test set or not. Training
and test sets are generated by splitting each dataset with Hold-Out 80/20, which ensures that
user have 80% of their ratings in the training set and the remaining 20% in the test set. To
carry out the experimental phase, we used a server equipped with an i7-7700K processor
with 128GB RAM and GeForce GTX 960 GPU. Five full rounds (training and evaluation)
were run for each model and configuration, and we reported the results of the best obtained
in the individual rounds.

The produced recommendation lists are finally compared with the test set by computing
performance metrics: Precision, Recall and F1-score. These metrics have been chosen to
evaluate the accuracy of our model in a top-10 recommendation scenario (Cremonesi et al.,
2010), using threshold values of 4 for MovieLens 1M and 8 for both LibraryThing and
Last.fm.

Accuracy metrics are a valuable way to evaluate the performance of a recommender
system. Nonetheless, it has been argued (Smyth & McClave, 2001) that diversity should
be considered when evaluating how good a recommendation engine is. Gini index (Shani &
Gunawardana, 2011, Formula 8.20) is an ideal candidate to measure the distribution/diversity
of items across recommendation lists:

Gini = 1

n − 1
·

n∑

j=1

(2 j − n − 1) · p(i j)

where n is the number of items, p(i j) is the proportion of user choices for item i j and i1, ...in

is the list of items ordered according to increasing p(i j). A Gini index value equal to 0 means
that all items are chosen equally often, while it is 1 if a single item is always chosen.

Among the several state-of-the-art techniques used in recommender scenarios, we
tested the most widely adopted: BPRSLIM (Ning & Karypis, 2011; Rendle et al., 2009),
WRMF (Pan et al., 2008; Hu et al., 2008) and a single-layer autoencoder for rating pre-
diction. Although they have been proposed a few years ago, BPRSLIM and WRMF have
recently shown to have excellent performances compared to deep-learning based approaches
(Dacrema et al., 2019). BPRSLIM is a Sparse Linear Method which leverages Bayesian
Personalized Ranking as an objective function. WRMF is a Weighted Regularized Matrix
Factorization method which exploits users’ implicit feedbacks to provide recommendations.
In their basic version, both strategies rely exclusively on the User-Item matrix in a pure
CF approach. They can be hybridized by exploiting side information (SI) (Ning & Karypis,
2011), i.e., additional data associated with items. We used the implementations of BPRSLIM
and WRMF available in MyMediaLite8 (Gantner et al., 2011) and both our SA-autoencoder
and the classic autoencoder are implemented with TensorFlow9.

4 Discussion of the results

For all the recommendation models described, and for both KG, we performed experiments
on three datasets:MovieLens 1M, Last.fm and LibraryThing, related to movies, music,
and books domains, respectively.

8 http://mymedialite.net
9 https://www.tensorflow.org/

123

http://mymedialite.net
https://www.tensorflow.org/

798 Journal of Intelligent Information Systems (2024) 62:787–807

In Table 3, we present the most favorable outcomes we have obtained across three datasets
by implementing the methods discussed earlier, with a specific emphasis on the level of
sparsity. Regarding the SA-Autoencoder approach, we conducted tests with various numbers
of neighbors (k), and we have included only the optimal results in the table. Notably, we have
highlighted the overall best-performing approach in bold, while we have underscored the
most effective configuration for the SA-autoencoder.We initiate our discussion by evaluating
the results in terms of accuracy before delving into the aspect of diversity. Examining the
table reveals that the semantics-aware autoencoder surpasses all baseline methods in the
Last.fm dataset. Conversely, in the case of theLibraryThing andMovieLens 1M datasets,
its performance closely mirrors that of the fully-connected autoencoder. To elucidate this
outcome, we can posit that the semantics-aware autoencoder’s performance is contingent
upon the quantity of features retrieved from a knowledge graph (KG). A greater number
of features corresponds to a larger number of neurons in the hidden layers. According to
Hornik’s Universal Approximation Theorem, a neural network with more neurons possesses
a superior capacity to approximate any given function. Consequently, as indicated in Table 4,
we have computed the ratio of features associated with items, denoted as average# f eatures

average#i tems .
Our findings reveal that, considering each pair of KGs (DBPedia-WikiData) for a given
setting (S-B-F...), the KG with the higher ratio yields the better results on performance It
is imperative to emphasize that this measure also serves as a gauge of connectivity in SA-
autoencoders. Specifically, lower values of average# f eatures

average#i tems indicate a sparse connectivity
with fewer connections, while higher values signify a denser connectivity (Pujara et al.,
2017).

Nevertheless, when examining the sparsity levels presented in the final column of Table 1,
it becomes evident that, despite the LibraryThing and Last.fm datasets having nearly
identical sparsity values, they exhibit substantial disparities in their average features per item
ratios. Specifically, the SA-Autoencoder demonstrates superior performance on the Last.fm
dataset, characterized by a higher ratio, while its performance is notably inferior on the
LibraryThing dataset, where the ratio is lower. Consequently, it is reasonable to infer that
this method exhibits a relatively lower sensitivity to dataset sparsity in comparison to the
quality of data curation within the Knowledge Graph (KG). Consequently, the comparison
between the outcomes of the SA-Autoencoder and the Autoencoder can serve as a valuable
means of evaluating data quality within KGs, particularly in the context of recommendation
tasks.

On the other hand, we can observe that factual information (F) brings more accurate
results for a recommendation task than ontological/categorical knowledge when the datasets
are very sparse (as forMovieLens 1M andLibraryThing). This is a quite interesting result.
A possible explanation is that categorical information introduces fewer connections among
item descriptions than factual information. Hence, factual statements result more useful in
making denser connections among items (and then users), which are eventually exploited by
the latent collaborative part of the semantics-aware autoencoder.

If we just focus on the absolute numbers, one may argue that SA-Autoencoder is not
competitive as it is slightly beaten in terms of accuracy by state-of-the-art algorithms such as
BPRSLIM and WRMF (although it is the second best performing approach). Nevertheless,
we point out that, differently from the other approaches based on matrix factorization (or any
deep learning technique) with SA-Autoencoder we compute a meaningful and explicit user
profilewhich contains user preferences on single features. Thismay result extremely useful in
case wewant to automatically generate a content-based explanation for the ranking computed
with the recommendation list as also shown in Bellini et al. (2018). Then, although we rely

123

Journal of Intelligent Information Systems (2024) 62:787–807 799

Table 3 Experimental results over DBpedia and Wikidata KGs

setting KG k F1@10 Prec@10 Recall@10 1−Gini

LAST.FM

AUTOENCODER − − − 0.00048 0.00027 0.00240 0.00190

BPRSLIM − − − 0.00077 0.00043 0.00400 0.02867

BPRSLIM + SI − DBpedia − 0.00113 0.00064 0.00476 0.05360

− Wikidata − 0.00107 0.00039 0.00393 0.02479

WRMF − − − 0.00077 0.00043 0.00400 0.01073

WRMF + SI − DBpedia − 0.00058 0.00032 0.00293 0.00877

− Wikidata − 0.00050 0.00027 0.00132 0.00701

SA-AUTOENCODER S DBpedia 5 0.00151 0.00085 0.00644 0.05783

S Wikidata 10 0.00124 0.00069 0.00587 0.03815

B DBpedia 10 0.00113 0.00064 0.00484 0.03812

B Wikidata 30 0.00086 0.00048 0.00391 0.01430

M DBpedia 5 0.00151 0.00085 0.00644 0.05783

M Wikidata 5 0.00067 0.00037 0.00320 0.05317

S-B DBpedia 5 0.00111 0.00064 0.00422 0.05624

S-B Wikidata 5 0.00172 0.00096 0.00844 0.05742

F DBpedia 5 0.00169 0.00096 0.00689 0.05878

F Wikidata 10 0.00143 0.00080 0.00693 0.03689

LIBRARYTHING

AUTOENCODER − − − 0.01562 0.01375 0.01808 0.07628

BPRSLIM − − − 0.01874 0.01577 0.02309 0.09338

BPRSLIM + SI − DBpedia − 0.01939 0.01685 0.02284 0.17915

− Wikidata − 0.01715 0.01502 0.01894 0.07915

WRMF − − − 0.01142 0.01071 0.01223 0.00864

WRMF + SI − DBpedia − 0.01136 0.01043 0.01247 0.00832

− Wikidata − 0.01003 0.00975 0.01021 0.00922

SA-AUTOENCODER S DBpedia 100 0.01293 0.01168 0.01447 0.01855

S Wikidata 100 0.00993 0.00888 0.01125 0.01124

B DBpedia 45 0.01264 0.01139 0.01420 0.02475

B Wikidata 100 0.00791 0.00741 0.00848 0.00983

M DBpedia 45 0.01299 0.01164 0.01469 0.02938

M Wikidata 150 0.00867 0.00805 0.00941 0.00770

S-B DBpedia 100 0.01390 0.01247 0.01570 0.01205

S-B Wikidata 100 0.00995 0.00892 0.01123 0.00950

F DBpedia 40 0.01468 0.01306 0.01677 0.02888

F Wikidata 45 0.01278 0.01153 0.01435 0.02237

MOVIELENS 1M

AUTOENCODER − − − 0.22969 0.28416 0.19274 0.04536

BPRSLIM − − − 0.17106 0.19581 0.15187 0.14060

BPRSLIM + SI − DBpedia − 0.14986 0.17113 0.13329 0.17294

− Wikidata − 0.14163 0.16872 0.12899 0.01644

123

800 Journal of Intelligent Information Systems (2024) 62:787–807

Table 3 continued

setting KG k F1@10 Prec@10 Recall@10 1−Gini

WRMF − − − 0.20336 0.25343 0.16981 0.03758

WRMF + SI − DBpedia − 0.20373 0.25371 0.17020 0.03750

− Wikidata − 0.19003 0.24714 0.15361 0.02105

SA-AUTOENCODER S DBpedia 50 0.18582 0.22419 0.15867 0.02298

S Wikidata 100 0.16809 0.21619 0.13749 0.01712

B DBpedia 45 0.17640 0.21369 0.15019 0.02207

B Wikidata 100 0.15487 0.20555 0.12424 0.01611

M DBpedia 45 0.18633 0.22430 0.15935 0.02421

M Wikidata 100 0.15592 0.20046 0.12757 0.01378

S-B DBpedia 50 0.22001 0.26616 0.18749 0.03653

S-B Wikidata 100 0.15800 0.20394 0.12896 0.01574

F DBpedia 50 0.22447 0.26788 0.19317 0.04446

F Wikidata 50 0.17150 0.21149 0.14423 0.01872

For BPRSLIM + SI and WRMF + SI in KG column, we indicate only the KG for which we have the best
performance when used to get side information. Best column values are in bold, best column values among
SA-Autoencoder configuration underlined. Complete results about SA-AUTOENCODER are reported here:
https://split.to/sa-auto-res

on a deep learning approach, we can go beyond the pure black-box method and provide a
human-understandable explanation for a recommendation list.

As for diversity, we can observe that when using Wikidata, values for Gini index are
in general lower than the DBpedia case. This means that using Wikidata we are able to
better diversify the items in a catalog. This result somehow reinforces the one obtained
in Nguyen et al. (2015). Lack of diversity in recommendation strongly depends on the so-
called “popularity bias”: popular items tend to be recommended more than those in the long
tail. This observation leads us to a possible interpretation on diversity results we obtain in our
experiments if we consider the popularity of entities in a KG as the number of connections
they have. In DBpedia we have that popular resources (e.g. movies) are more connected to
other nodes than unpopular ones. This is not the case with Wikidata where there is a less
biased distribution of connections among resources in the graph. Hence, when the adopted
KG suffers from a popularity bias in terms of connections among resources, this is inherited
by the recommendation dataset, thus affecting the final recommended list of results.

5 Related works

Very fewworks exist about qualitative studies of LinkedOpenData (LOD) knowledge graphs.
In Ringler and Paulheim (2017) present an analysis of main KGs such as DBpedia, Wikidata,
YAGO,underlining their differences in coverage, identifyingoverlapping and complementary
parts of KGs. They assert that KGs are not easily interchangeable and each of them has its
strengths and weaknesses for a domain-related task. Thus, using a specific KG that is suitable
for the task to accomplish leads to better performances of the overall system. Authors in this
work made a category-specific analysis, asserting that even if DBpedia and YAGO come
from the same source (Wikipedia) and have a quite similar number of instances, there are

123

https://split.to/sa-auto-res

Journal of Intelligent Information Systems (2024) 62:787–807 801

Table 4 Summary of hidden units over DBpedia and Wikidata KGs using both factual and semantics infor-
mation

setting KG average #features average #features
average #items

LAST.FM

SA-AUTOENCODER S DBpedia 374.33 11.86

S Wikidata 38.48 1.26

B DBpedia 38.48 20.36

B Wikidata 17.98 0.59

M DBpedia 974.61 30.87

M Wikidata 47.95 1.57

S-B DBpedia 2865.35 90.76

S-B Wikidata 246.66 8.08

F DBpedia 297.20 9.41

F Wikidata 180.67 5.92

LIBRARYTHING

SA-AUTOENCODER S DBpedia 206.83 1.96

S Wikidata 28.33 0.35

B DBpedia 395.75 3.75

B Wikidata 30.96 0.38

M DBpedia 572.22 5.43

M Wikidata 52.59 0.66

S-B DBpedia 2578.11 24.45

S-B Wikidata 426.95 5.35

F DBpedia 137.08 1.30

F Wikidata 110.15 1.38

MOVIELENS 1M

SA-AUTOENCODER S DBpedia 1102.46 8.38

S Wikidata 100.01 0.76

B DBpedia 1499.39 11.39

B Wikidata 82.60 0.63

M DBpedia 2386.48 18.14

M Wikidata 167.34 1.27

S-B DBpedia 11245.00 85.46

S-B Wikidata 1279.82 9.73

F DBpedia 1097.76 8.34

F Wikidata 2278.99 17.32

In setting column we denote: S = subjects, B = broaders, M = merge S and B in a single hidden layer, S-B =
S and B in multiple hidden layers, F = factual information

notable differences in coverage. YAGOhas five times the number of events of DBpedia, while
DBpedia has four times as many settlements (i.e., cities and town) as YAGO; but Wikidata
contains twice as many persons as DBpedia and YAGO. They conclude their investigation
by providing a coverage summarization for some popular classes. A comparative survey of
some popular KGs is done in Färber et al. (2018) in which authors propose a method to

123

802 Journal of Intelligent Information Systems (2024) 62:787–807

find the most suitable KG for a given task setting. To achieve this result, authors identify
a set of characteristics they found relevant to describe a KG and then compare different
KGs accordingly. Furthermore, in Färber et al. (2018) they provide a more detailed analysis
of quantitative information stored in KGs by using several statistics such as the number of
triples and classes, distribution of classes and corresponding instances, domain and classes
coverage. Finally, to select the KG that best fits task requirements, a novel method that takes
into account KG’s quantitative assessment is proposed.

In the last few years, thanks to increasing computational resources, new techniques based
on deep learning have been successfully adopted in the recommendation scenario (Cheng
et al., 2016). These techniques led to the development of different neural network models,
each yielding interesting results (Singhal et al., 2017). In particular, some of these models
turned out to be more effective for a specific recommendation task than others; e.g. autoen-
coders have proved their strength in collaborative filtering, outperforming state-of-the-art
approaches (Sedhain et al., 2015), while Recurrent Neural Networks seem to be more suit-
able in session-based recommendation (Hidasi et al., 2016). Among the several autoencoders
extensions, denoising autoencoders have been efficiently used to address the recommenda-
tion problem by improving users’ profile learning (Wu et al., 2016) or getting a smaller
and non-linear representation of the User-Item rating matrix (Strub et al., 2016). Further-
more, Dong et al. (2017) shows how to build a hybrid RS by integrating side information
in CF deep learning techniques, alleviating the sparsity problem and improving all system
performances (Dacrema et al., 2019).

LOD are increasingly adopted in recommender systems because they provide more com-
plex structured data that leverages relationships among entities in the graph. Moreover, they
encode somehow semantics behind the data (Di Noia et al., 2012; de Gemmis et al., 2015).
Recent works leveraged the data encoded in KGs to represent items thus achieving interesting
results in recommendation scenarios (Oramas et al., 2017; Di Noia et al., 2016, 2012). Other
approaches, as the one proposed by Ostuni et al. (2014) uses kernel graphs to compute item
similarities by matching their local neighborhood graphs. LODs have been also exploited
for measuring semantic distances between resources in order to provide top-N recommenda-
tions (Piao & Breslin, 2016). In Bellini et al. (2017) presented a novel method that combines
both deep learning techniques and KGs, in which a semantics-aware neural network that
explicitly computes user profiles for recommendation tasks is modeled. In particular, they
focus on cold-start scenarios using DBpedia as a source of information for both user- and
item modeling. In Bellini et al. (2018), authors used the aforementioned method to perform
experiments in recommendation scenarios by using DBpedia KG on three different datasets
and they compared their approach with state-of-the-art algorithms. Furthermore, they inves-
tigated the effectiveness of their method that leverages on a KG to provide an explanation
in recommendation scenarios (Bellini et al., 2018). Another approach that uses KGs to rep-
resent the relationship between users and items is investigated in Ristoski et al. (2019), in
which the authors leveraged on language models to extract features from node sequences
in RDF graphs. Recently, there has also been much interest in the topic of KG completion,
whose aim is to infer hidden relationships between entities in a KG. Taking advantage of the
progress made in this area, the authors of KTUP (Cao et al., 2019) have proposed to exploit
KG completion methods with respect to users’ preferences towards items in a catalogue in
order to jointly train a model that exploits both the interactions between users and items and
the characteristics of the items in a KG.

123

Journal of Intelligent Information Systems (2024) 62:787–807 803

6 Conclusions and future work

In this paper, we showed how it is possible to combine the computational predictive power
of NNs (in the form of autoencoders) with the representational power of KGs such as DBpe-
dia and Wikidata. We found that the choice of the KG affects the results of a KG-aware
approach to recommendation, and that some combinations of KG, recommendation model,
and task domain, yield better recommendations than others. In particular, we evaluated an
SA-autoencoder on different configurations for DBpedia and Wikidata, and we tested and
compared its results in terms of accuracy and diversity with other recommendation models
used as baselines, in three different recommendation domains. We showed that the selection
of the right information from the right KGmay heavily affect recommendations both in terms
of accuracy and in terms of diversity of results.

As a prominent example,Wikidata seems to be a better choice than DBpedia if we look for
recommendation lists where the popularity bias is mitigated: our results show that Wikidata
allows the SA-autoencoder to tackle the popularity bias and to better diversify the items in a
catalog, by recommending also less popular items.

As for future work, we are developing a new version of the SA-autoencoder – one that
better exploits collaborative information by building a global model encoding preferences
from all users at the same time, as done by state-of-the-art CF approaches – with the aim of
improving the experiments presented here.

Acknowledgements This work was partially supported by the following projects: Secure Safe Apulia, Casa
delle Tecnologie Emergenti Comune di Matera, CT_FINCONS_III “Smart Rights Management Platform”,
LUTECH Digitale 4.0.

Author Contributions Vito Bellini, Angelo Schiavone have conceptualized and developed the framework,
have written the first draft of the work presented here. Claudio Pomo, Francesco M. Donini have reworked
the first draft, inserting details and contextualizing more recent literature. They revised the discussion of the
results. Azzurra Ragone, Eugenio Di Sciascio supervised and reviewed the submitted work

Funding Open access funding provided by Politecnico di Bari within the CRUI-CARE Agreement.

Availability of supporting data The datasets generated during and/or analysed during the current study are
available in the SEMAUTO-2.0 repository, https://github.com/sisinflab/SEMAUTO-2.0.

Declarations

Ethical Approval Not Applicable.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://github.com/sisinflab/SEMAUTO-2.0
http://creativecommons.org/licenses/by/4.0/

804 Journal of Intelligent Information Systems (2024) 62:787–807

References

Alain, G., & Bengio, Y. (2014). What regularized auto-encoders learn from the data-generating distribution.
Journal of Machine Learning Research, 15(1), 3563–3593. https://doi.org/10.5555/2627435.2750359

Anelli, V. W., Di Noia, T., Lops, P., et al. (2017). Feature factorization for top-n recommendation: From
item rating to features relevance. In Y. Zheng, W. Pan, S. S. Sahebi, et al. (Eds.), Proceedings of the 1st
Workshop on Intelligent Recommender Systems by Knowledge Transfer & Learning co-located with ACM
Conference on Recommender Systems (RecSys 2017), Como, Italy, CEUR Workshop Proceedings, vol.
1887 (pp. 16–21). CEUR-WS.org. Accessed 27 Aug 2017. https://ceur-ws.org/Vol-1887/paper3.pdf.

Auer, S., Bizer, C., Kobilarov, G., et al. (2007) Dbpedia: A nucleus for a web of open data. In K. Aberer,
K. Choi, N. F. Noy, et al. (Eds.), The Semantic Web, 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, Lecture Notes in Computer
Science, vol. 4825 (pp. 722–735). Springer. Accessed 11-15 Nov 2007. https://doi.org/10.1007/978-3-
540-76298-0_52.

Bellini, V., Anelli, V. W., Noia, T. D., et al. (2017). Auto-encoding user ratings via knowledge graphs in
recommendation scenarios. In B. Hidasi, A. Karatzoglou, O. S. Shalom, et al. (Eds.), Proceedings of
the 2nd Workshop on Deep Learning for Recommender Systems, DLRS@RecSys 2017, Como, Italy (pp.
60–66). ACM. Accessed 27 Aug 2017. https://doi.org/10.1145/3125486.3125496.

Bellini, V., Schiavone, A., Di Noia, T., et al. (2018). Computing recommendations via a knowledge graph-
aware autoencoder. In V. W. Anelli, T. D. Noia, P. Lops, et al. (Eds.), Proceedings of the Workshop on
Knowledge-aware and Conversational Recommender Systems 2018 co-located with 12th ACM Confer-
ence on Recommender Systems, KaRS@RecSys 2018, Vancouver, Canada, CEUR Workshop Proceedings,
vol. 2290 (pp. 9–15). CEUR-WS.org. Accessed 7 Oct 2018. https://ceur-ws.org/Vol-2290/kars2018_
paper3.pdf.

Bellini, V., Schiavone, A., Di Noia, T., et al. (2018). Knowledge-aware autoencoders for explainable rec-
ommender systems. In B. Hidasi, A. Karatzoglou, O. S. Shalom, et al. (Eds.), Proceedings of the 3rd
Workshop on Deep Learning for Recommender Systems, DLRS@RecSys 2018, Vancouver, BC, Canada
(pp. 24–31). ACM. Accessed 6 Oct 2018. https://doi.org/10.1145/3270323.3270327.

Bellini, V., Di Noia, T., Di Sciascio, E., et al. (2019). Semantics-aware autoencoder. IEEE Access, 7, 166122–
166137. https://doi.org/10.1109/ACCESS.2019.2953308

Burke, R. D. (2002). Hybrid recommender systems: Survey and experiments.User Model User Adapt Interact,
12(4), 331–370. https://doi.org/10.1023/A:1021240730564

Cao, Y., Wang, X., He, X., et al. (2019). Unifying knowledge graph learning and recommendation: Towards a
better understanding of user preferences. In L. Liu, R. W. White, A. Mantrach, et al. (Eds.), The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA (pp. 151–161). ACM. Accessed 13-17 May
2019. https://doi.org/10.1145/3308558.3313705.

Cheng, H., Koc, L., Harmsen, J., et al. (2016). Wide & deep learning for recommender systems. In A.
Karatzoglou, B. Hidasi, D. Tikk, et al. (Eds.), Proceedings of the 1st Workshop on Deep Learning
for Recommender Systems, DLRS@RecSys 2016, Boston, MA, USA (pp. 7–10). ACM. Accessed 15 Sept
2016. https://doi.org/10.1145/2988450.2988454.

Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for youtube recommendations. In S. Sen,
W. Geyer, J. Freyne, et al. (Eds.), Proceedings of the 10th ACM Conference on Recommender Systems,
Boston, MA, USA (pp. 191–198). ACM. Accessed 15-19 Sept 2016. https://doi.org/10.1145/2959100.
2959190.

Cremonesi, P., Koren, Y., & Turrin, R. (2010). Performance of recommender algorithms on top-n recom-
mendation tasks. In X. Amatriain, M. Torrens, P. Resnick, et al. (Eds.), Proceedings of the 2010 ACM
Conference on Recommender Systems, RecSys 2010, Barcelona, Spain (pp. 39–46). ACM. Accessed
26-30 Sept 2010. https://doi.org/10.1145/1864708.1864721.

Dacrema, M. F., Cremonesi, P., & Jannach, D. (2019). Are we really making much progress? A worrying
analysis of recent neural recommendation approaches. In T. Bogers, A. Said, P. Brusilovsky, et al. (Eds.),
Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, Copenhagen, Denmark
(pp. 101–109). ACM. Accessed 16-20 Sept 2019. https://doi.org/10.1145/3298689.3347058.

de Gemmis, M., Lops, P., Musto, C., et al. (2015). Semantics-aware content-based recommender systems. In F.
Ricci, L. Rokach, & B. Shapira (Eds.), Recommender Systems Handbook (p. 119–159). Springer. https://
doi.org/10.1007/978-1-4899-7637-6_4.

Di Noia, T., Mirizzi, R., Ostuni, V. C., et al. (2012). Linked open data to support content-based recommender
systems. In V. Presutti, & H. S. Pinto (Eds.), I-SEMANTICS 2012 - 8th International Conference on
Semantic Systems, I-SEMANTICS ’12, Graz, Austria (pp. 1–8). ACM. Accessed 5-7 Sept 2012. https://
doi.org/10.1145/2362499.2362501.

123

https://doi.org/10.5555/2627435.2750359
https://ceur-ws.org/Vol-1887/paper3.pdf
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1145/3125486.3125496
https://ceur-ws.org/Vol-2290/kars2018_paper3.pdf
https://ceur-ws.org/Vol-2290/kars2018_paper3.pdf
https://doi.org/10.1145/3270323.3270327
https://doi.org/10.1109/ACCESS.2019.2953308
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1145/3308558.3313705
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/1864708.1864721
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1007/978-1-4899-7637-6_4
https://doi.org/10.1007/978-1-4899-7637-6_4
https://doi.org/10.1145/2362499.2362501
https://doi.org/10.1145/2362499.2362501

Journal of Intelligent Information Systems (2024) 62:787–807 805

Di Noia, T., Ostuni, V. C., Tomeo, P., et al. (2016). Sprank: Semantic path-based ranking for top-N recommen-
dations using linked open data. ACM Transactions on Intelligent Systems and Technology, 8(1), 9:1-9:34.
https://doi.org/10.1145/2899005

Dong, X., Yu, L., Wu, Z., et al. (2017). A hybrid collaborative filtering model with deep structure for recom-
mender systems. In S. Singh, & Markovitch S. (Eds.), Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, San Francisco, California, USA (pp. 1309–1315). AAAI Press. Accessed 4-9
Feb 2017. https://doi.org/10.1609/AAAI.V31I1.10747.

Elkahky, A. M., Song, Y., & He, X. (2015). A multi-view deep learning approach for cross domain user
modeling in recommendation systems. In A. Gangemi, S. Leonardi, & A. Panconesi (Eds.), Proceedings
of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy (pp. 278–288).
ACM. Accessed 18-22 May 2015. https://doi.org/10.1145/2736277.2741667.

Färber, M., Bartscherer, F., Menne, C., et al. (2018). Linked data quality of dbpedia, freebase, opencyc,
wikidata, and YAGO. Semantic Web, 9(1), 77–129. https://doi.org/10.3233/SW-170275

Gantner, Z., Rendle, S., Freudenthaler, C., et al. (2011). Mymedialite: A free recommender system library.
In B. Mobasher, R. D. Burke, D. Jannach, et al. (Eds.), Proceedings of the 2011 ACM Conference on
Recommender Systems, RecSys 2011, Chicago, IL, USA (pp. 305–308). ACM. Accessed 23-27 Oct 2011.
https://doi.org/10.1145/2043932.2043989.

Hidasi, B., Karatzoglou, A., Baltrunas, L., et al. (2016). Session-based recommendations with recurrent neural
networks. In Y. Bengio, & Y. LeCun (Eds.), 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, Conference Track Proceedings. Accessed 2-4 May 2016 http://arxiv.
org/abs/1511.06939.

Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In Proceedings
of the 8th IEEE International Conference on Data Mining (ICDM 2008) Pisa, Italy (pp. 263–272). IEEE
Computer Society. Accessed 15-19 Dec 2008. https://doi.org/10.1109/ICDM.2008.22.

Lewicki,M. S., & Sejnowski, T. J. (2000). Learning overcomplete representations.Neural Computation, 12(2),
337–365. https://doi.org/10.1162/089976600300015826

Liang, D., Krishnan, R. G., Hoffman, M. D., et al. (2018). Variational autoencoders for collaborative filtering.
In P. Champin, F. Gandon, M. Lalmas, et al. (Eds.), Proceedings of the 2018 World Wide Web Conference
on World Wide Web, WWW 2018, Lyon, France (pp. 689–698). ACM. Accessed 23-27 April 2018. https://
doi.org/10.1145/3178876.3186150.

Liu, Y., Xuan, H., & Li, B. (2023). Bi-knowledge views recommendation based on user-oriented contrastive
learning. Journal of Intelligent Information System, 61(2), 611–630. https://doi.org/10.1007/S10844-
023-00778-0

Ngiam, J., Khosla, A., Kim, M., et al. (2011). Multimodal deep learning. In L. Getoor, & T. Scheffer (Eds.),
Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Wash-
ington, USA (pp. 689–696). Omnipress. Accessed 28 June - 2 July 2011. https://icml.cc/2011/papers/
399_icmlpaper.pdf

Nguyen, P. T., Tomeo, P., Di Noia, T., et al. (2015). Content-based recommendations via dbpedia and freebase:
A case study in the music domain. In M. Arenas, Ó. Corcho, E. Simperl, et al. (Eds.), The Semantic Web
- ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA, USA, Proceedings, Part
I, Lecture Notes in Computer Science, vol. 9366 (pp. 605–621). Springer. Accessed 11-15 Oct 2015.
https://doi.org/10.1007/978-3-319-25007-6_35.

Ning, X., &Karypis, G. (2011). SLIM: Sparse linear methods for top-n recommender systems. In D. J. Cook, J.
Pei,W.Wang, et al. (Eds.), 11th IEEE International Conference on Data Mining, ICDM 2011, Vancouver,
BC, Canada (pp. 497–506). IEEE Computer Society. Accessed 11-14 Dec 2011. https://doi.org/10.1109/
ICDM.2011.134.

Oramas, S., Ostuni, V. C., Noia, T. D., et al. (2017). Sound and music recommendation with knowledge
graphs. ACM Transactions on Intelligent Systems and Technology, 8(2), 21:1-21:21. https://doi.org/10.
1145/2926718

Ostuni, V. C., Di Noia, T., Di Sciascio E., et al. (2013). Top-n recommendations from implicit feedback
leveraging linked open data. In Q. Yang, I. King, Q. Li, et al. (Eds.), Seventh ACM Conference on
Recommender Systems, RecSys ’13, Hong Kong, China (pp. 85–92). ACM. Accessed 12-16 Oct 2013.
https://doi.org/10.1145/2507157.2507172.

Ostuni, V. C., Noia, T. D., Mirizzi, R., et al. (2014). A linked data recommender system using a neighborhood-
based graph kernel. In M. Hepp, & Y. Hoffner (Eds.), E-Commerce and Web Technologies - 15th
International Conference, EC-Web 2014, Munich, Germany. Proceedings, Lecture Notes in Business
Information Processing, vol. 188 (pp. 89–100). Springer. Accessed 1-4 Sept 2014. https://doi.org/10.
1007/978-3-319-10491-1_10

123

https://doi.org/10.1145/2899005
https://doi.org/10.1609/AAAI.V31I1.10747
https://doi.org/10.1145/2736277.2741667
https://doi.org/10.3233/SW-170275
https://doi.org/10.1145/2043932.2043989
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1511.06939
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1162/089976600300015826
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1007/S10844-023-00778-0
https://doi.org/10.1007/S10844-023-00778-0
https://icml.cc/2011/papers/399_icmlpaper.pdf
https://icml.cc/2011/papers/399_icmlpaper.pdf
https://doi.org/10.1007/978-3-319-25007-6_35
https://doi.org/10.1109/ICDM.2011.134
https://doi.org/10.1109/ICDM.2011.134
https://doi.org/10.1145/2926718
https://doi.org/10.1145/2926718
https://doi.org/10.1145/2507157.2507172
https://doi.org/10.1007/978-3-319-10491-1_10
https://doi.org/10.1007/978-3-319-10491-1_10

806 Journal of Intelligent Information Systems (2024) 62:787–807

Pan, R., Zhou, Y., Cao, B., et al. (2008). One-class collaborative filtering. In Proceedings of the 8th IEEE
International Conference on Data Mining (ICDM 2008), Pisa, Italy (pp. 502–511). IEEE Computer
Society. Accessed 15-19 Dec 2008. https://doi.org/10.1109/ICDM.2008.16.

Piao, G., & Breslin, J. G. (2016). Measuring semantic distance for linked open data-enabled recommender
systems. In S. Ossowski (Ed.), Proceedings of the 31st Annual ACM Symposium on Applied Computing,
Pisa, Italy (pp. 315–320). ACM. Accessed 4-8 April 2016. https://doi.org/10.1145/2851613.2851839.

Pujara, J., Augustine, E., & Getoor, L. (2017). Sparsity and noise: Where knowledge graph embeddings
fall short. In M. Palmer, R. Hwa, & S. Riedel (Eds.), Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark (pp. 1751–1756).
Association for Computational Linguistics. Accessed 9-11 Sept 2017. https://doi.org/10.18653/V1/D17-
1184.

Ragone, A., Tomeo, P., Magarelli, C., et al. (2017). Schema-summarization in linked-data-based feature selec-
tion for recommender systems. In A. Seffah, B. Penzenstadler, C. Alves, et al. (Eds.), Proceedings of the
Symposium on Applied Computing, SAC 2017, Marrakech, Morocco (pp. 330–335). ACM. Accessed 3-7
April 2017. https://doi.org/10.1145/3019612.3019837.

Ranzato, M., Poultney, C. S., Chopra, S., et al. (2006) Efficient learning of sparse representations with an
energy-based model. In B. Schölkopf, J. C. Platt, & T. Hofmann (Eds.), Advances in Neural Information
Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Process-
ing Systems, Vancouver, British Columbia, Canada (pp. 1137–1144).MIT Press. Accessed 4-7 Dec 2006.
https://proceedings.neurips.cc/paper/2006/hash/87f4d79e36d68c3031ccf6c55e9bbd39-Abstract.html.

Rendle, S., Freudenthaler, C., Gantner, Z., et al. (2009). BPR: Bayesian personalized ranking from
implicit feedback. In J. A. Bilmes, & A. Y. Ng (Eds.), UAI 2009, Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada (pp. 452–
461). AUAI Press. Accessed 18-21 June 2009. https://www.auai.org/uai2009/papers/UAI2009_0139_
48141db02b9f0b02bc7158819ebfa2c7.pdf.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In F. Ricci, L.
Rokach, B. Shapira, et al. (Eds.), Recommender Systems Handbook (p. 1–35). Springer. https://doi.org/
10.1007/978-0-387-85820-3_1.

Rifai, S., Vincent, P., Muller, X., et al. (2011). Contractive auto-encoders: Explicit invariance during feature
extraction. In L. Getoor, & T. Scheffer (Eds.), Proceedings of the 28th International Conference on
Machine Learning, ICML 2011, Bellevue, Washington, USA (pp. 833–840). Omnipress. Accessed 28
June - 2 July 2011. https://icml.cc/2011/papers/455_icmlpaper.pdf.

Ringler, D., & Paulheim, H. (2017). One knowledge graph to rule them all? Analyzing the differences between
dbpedia, yago, wikidata & co. In G. Kern-Isberner, J. Fürnkranz, &M. Thimm (Eds.), KI 2017: Advances
in Artificial Intelligence - 40th Annual German Conference on AI, Dortmund, Germany, Proceedings,
Lecture Notes in Computer Science, vol. 10505 (pp. 366–372). Springer. Accessed 25-29 Sept 2017.
https://doi.org/10.1007/978-3-319-67190-1_33.

Ristoski, P., Rosati, J., Di Noia, T., et al. (2019). Rdf2vec: RDF graph embeddings and their applications.
Semantic Web, 10(4), 721–752. https://doi.org/10.3233/SW-180317

Sacenti, J. A. P., Fileto, R., & Willrich, R. (2022). Knowledge graph summarization impacts on movie recom-
mendations. Journal of Intelligent Information System, 58(1), 43–66. https://doi.org/10.1007/S10844-
021-00650-Z

Sedhain, S., Menon, A. K., Sanner, S., et al. (2015). Autorec: Autoencoders meet collaborative filtering. In
A. Gangemi, S. Leonardi, & A. Panconesi (Eds.) Proceedings of the 24th International Conference on
World Wide Web Companion, WWW 2015, Florence, Italy - Companion Volume (pp. 111–112). ACM.
Accessed 18-22 May 2015. https://doi.org/10.1145/2740908.2742726.

Shani, G., &Gunawardana, A. (2011). Evaluating recommendation systems. In F. Ricci, L. Rokach, B. Shapira,
et al. (Eds.), Recommender Systems Handbook (p. 257–297). Springer. https://doi.org/10.1007/978-0-
387-85820-3_8.

Singhal, A., Sinha, P., & Pant, R. (2017). Use of deep learning in modern recommendation system: A summary
of recent works. International Journal of Computer Applications, 180(7), 17–22. https://doi.org/10.5120/
ijca2017916055

Smyth, B., & McClave, P. (2001). Similarity vs. diversity. In D. W. Aha, & I. D. Watson (Eds.) Case-Based
Reasoning Research and Development, 4th International Conference on Case-Based Reasoning, ICCBR
2001, Vancouver, BC, Canada, Proceedings, Lecture Notes in Computer Science, vol. 2080 (pp. 347–361).
Springer. Accessed 30 July - 2 August 2001. https://doi.org/10.1007/3-540-44593-5_25.

Steck, H. (2013). Evaluation of recommendations: Rating-prediction and ranking. In Q. Yang, I. King, Q. Li,
et al. (Eds.), Seventh ACM Conference on Recommender Systems, RecSys ’13, Hong Kong, China (pp.
213–220). ACM. Accessed 12-16 Oct 2013. https://doi.org/10.1145/2507157.2507160.

123

https://doi.org/10.1109/ICDM.2008.16
https://doi.org/10.1145/2851613.2851839
https://doi.org/10.18653/V1/D17-1184
https://doi.org/10.18653/V1/D17-1184
https://doi.org/10.1145/3019612.3019837
https://proceedings.neurips.cc/paper/2006/hash/87f4d79e36d68c3031ccf6c55e9bbd39-Abstract.html
https://www.auai.org/uai2009/papers/UAI2009_0139_48141db02b9f0b02bc7158819ebfa2c7.pdf
https://www.auai.org/uai2009/papers/UAI2009_0139_48141db02b9f0b02bc7158819ebfa2c7.pdf
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-0-387-85820-3_1
https://icml.cc/2011/papers/455_icmlpaper.pdf
https://doi.org/10.1007/978-3-319-67190-1_33
https://doi.org/10.3233/SW-180317
https://doi.org/10.1007/S10844-021-00650-Z
https://doi.org/10.1007/S10844-021-00650-Z
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.5120/ijca2017916055
https://doi.org/10.5120/ijca2017916055
https://doi.org/10.1007/3-540-44593-5_25
https://doi.org/10.1145/2507157.2507160

Journal of Intelligent Information Systems (2024) 62:787–807 807

Strub, F., Gaudel, R., & Mary, J. (2016). Hybrid recommender system based on autoencoders. In A. Karat-
zoglou, B. Hidasi, D. Tikk, et al. (Eds.), Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, DLRS@RecSys 2016, Boston, MA, USA (pp. 11–16). ACM. Accessed 15 Sept
2016 https://doi.org/10.1145/2988450.2988456.

Vincent, P., Larochelle, H., Bengio, Y., et al. (2008). Extracting and composing robust features with denoising
autoencoders. In W. W. Cohen, A. McCallum, & S. T. Roweis (Eds.), Machine Learning, Proceedings
of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, ACM International Con-
ference Proceeding Series, vol. 307 (pp. 1096–1103). ACM. Accessed 5-9 June 2008. https://doi.org/10.
1145/1390156.1390294.

Vincent, P., Larochelle, H., Lajoie, I., et al. (2010). Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion. Journal of Machine Learning Research,
11, 3371–3408. https://doi.org/10.5555/1756006.1953039

Vrandecic, D., & Krötzsch, M. (2014). Wikidata: A free collaborative knowledgebase. Communications of the
ACM, 57(10), 78–85. https://doi.org/10.1145/2629489

Wang,X.,&Wang,Y. (2014). Improving content-based and hybridmusic recommendation using deep learning.
In K. A. Hua, Y. Rui, R. Steinmetz, et al. (Eds.), Proceedings of the ACM International Conference on
Multimedia, MM ’14, Orlando, FL, USA (pp. 627–636). ACM. Accessed 03 - 07 Nov 2014. https://doi.
org/10.1145/2647868.2654940.

Wu, Y., DuBois, C., Zheng, A. X., et al. (2016). Collaborative denoising auto-encoders for top-n recommender
systems. In P. N. Bennett, V. Josifovski, J. Neville, et al. (Eds.), Proceedings of the Ninth ACM Inter-
national Conference on Web Search and Data Mining, San Francisco, CA, USA (pp. 153–162). ACM.
Accessed 22-25 Feb 2016. https://doi.org/10.1145/2835776.2835837.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Vito Bellini1 · Eugenio Di Sciascio2 · Francesco Maria Donini3 · Claudio Pomo2 ·
Azzurra Ragone4 · Angelo Schiavone2

Eugenio Di Sciascio
eugenio.disciascio@poliba.it

Francesco Maria Donini
donini@unitus.it

Azzurra Ragone
azzura.ragone@uniba.it

Angelo Schiavone
angelo.schiavone@poliba.it

1 Amazon Music ML, Berlin, Germany
2 Politecnico di Bari, Bari, Italy
3 Università della Tuscia, Viterbo, Italy
4 Università degli Studi di Bari, Bari, Italy

123

https://doi.org/10.1145/2988450.2988456
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.5555/1756006.1953039
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2647868.2654940
https://doi.org/10.1145/2647868.2654940
https://doi.org/10.1145/2835776.2835837

	A qualitative analysis of knowledge graphs in recommendation scenarios through semantics-aware autoencoders
	Abstract
	1 Introduction
	2 Semantics-aware autoencoders in recommendation scenarios
	2.1 User profiles
	2.1.1 Recommendation

	3 Experiments
	3.1 Dataset
	3.2 Knowledge graphs: DBpedia vs. Wikidata
	3.3 Data settings
	3.4 Evaluation

	4 Discussion of the results
	5 Related works
	6 Conclusions and future work
	Acknowledgements
	References

