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A B S T R A C T   

PTE is a neurological disorder characterized by recurrent and spontaneous epileptic seizures. PTE is a major 
public health problem occurring in 2–50% of TBI patients. Identifying PTE biomarkers is crucial for the devel
opment of effective treatments. Functional neuroimaging studies in patients with epilepsy and in epileptic ro
dents have observed that abnormal functional brain activity plays a role in the development of epilepsy. Network 
representations of complex systems ease quantitative analysis of heterogeneous interactions within a unified 
mathematical framework. In this work, graph theory was used to study resting state functional magnetic reso
nance imaging (rs-fMRI) and reveal functional connectivity abnormalities that are associated with seizure 
development in traumatic brain injury (TBI) patients. We examined rs-fMRI of 75 TBI patients from Epilepsy 
Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) which aims to identify validated Post- 
traumatic epilepsy (PTE) biomarkers and antiepileptogenic therapies using multimodal and longitudinal data 
acquired from 14 international sites. The dataset includes 28 subjects who had at least one late seizure after TBI 
and 47 subjects who had no seizures within 2 years post-injury. Each subject’s neural functional network was 
investigated by computing the correlation between the low frequency time series of 116 regions of interest 
(ROIs). Each subject’s functional organization was represented as a network consisting of nodes, brain regions, 
and edges that show the relationship between the nodes. Then, several graph measures concerning the inte
gration and the segregation of the functional brain networks were extracted in order to highlight changes in 
functional connectivity between the two TBI groups. Results showed that the late seizure-affected group had a 
compromised balance between integration and segregation and presents functional networks that are hyper
connected, hyperintegrated but at the same time hyposegregated compared with seizure-free patients. Moreover, 
TBI subjects who developed late seizures had more low betweenness hubs.   

1. Introduction 

Traumatic brain injury (TBI) is a leading cause of death and disability 
in the world, accounting for 2.5 million emergency department visits 
annually in the United States. TBI survivors often experience secondary 
problems that result in serious and persistent sequelae and psychosocial 

difficulties. Recurrent and unprovoked seizures are among the most 
recognized complications of TBI (Lucke-Wold et al., 2015; Sharma et al., 
2021). The incidence of epilepsy after TBI is up to 50% depending on the 
TBI severity and the follow-up duration. Post-traumatic epilepsy (PTE) 
refers to recurrent and unprovoked late seizures (occurring more than 
seven days after TBI) (Cavazos and Verellen, 2010). Immediate 

* Corresponding author at: Dipartimento Interateneo di Fisica M. Merlin, Universitá degli Studi di Bari A. Moro, Bari, Italy. 
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(occurring less than 24 h after TBI) and early seizures (occurring be
tween 24 h and seven days after injury) are considered to be the result of 
acute TBI and do not constitute an epilepsy diagnosis. Since PTE is 
highly variable and time from TBI to epilepsy onset may span several 
years, preventing epileptogenesis and improving pre-clinical models 
that adequately represent posttraumatic epilepsy is rather challenging. 
In fact, effective interventions to prevent epileptogenesis are lacking and 
little is known about PTE trajectory from the early stages post-injury. 
The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (Epi
BioS4Rx) was designed to identify a combination of biomarkers that will 
reliably predict epileptogenesis following TBI in both a rodent model 
and humans and identify specific antiepileptogenic treatments to be 
used in future clinical trials (Garner et al., 2019; Peterson et al., 2019; La 
Rocca et al., 2020). 

Blood oxygenation level dependent (BOLD) functional magnetic 
resonance imaging (fMRI) detects changes in blood oxygenation that are 
related to neuronal activity. It is a neuroimaging technique that allows 
for visualization of whole-brain activity and can be used to identify and 
investigate functional brain networks. During rest, basic neuronal ac
tivity is believed to induce low frequency fluctuations in the BOLD signal 
that can be detected by performing resting state fMRI (rs-fMRI). A 
technique called functional connectivity analysis allows one to compute 
the correlation between the low frequency fluctuations and identify 
brain regions that are functionally connected. The functional organiza
tion of the brain can be investigated using different analytic methods, 
including seed-based correlation, independent component analysis 
(ICA) and graph theory (Smitha et al., 2017). In graph theory, the brain 
is represented as a network consisting of nodes, usually brain regions, 
and edges that show the relationship between the nodes. Several graph 
theoretical measures can be calculated to describe and quantify the 
network (Bellantuono et al., 2021; Rasero et al., 2017). Changes in these 
measures, and thus in functional connectivity, have been found in 
various neurological disorders, including Alzheimer’s disease, schizo
phrenia, attention-deficit hyperactivity disorder, traumatic brain injury 
and epilepsy (Wang et al., 2010; Rubinov and Sporns, 2010). 

Studies combining rs-fMRI with graph theory in patients with epi
lepsy have shown abnormalities in the topological organization of the 
brain. Most studies found a lower segregation and increased integration 
(Liao et al., 2010; Song et al., 2015; Mazrooyisebdani et al., 2020). 
Vlooswijk et al. (2011) also found decreased segregation, but accom
panied by decreased integration. Whereas, Peterson et al. (2019), Wang 
et al. (2014) found both a higher integration and segregation, even 
though the latter states that this can be due to medications or a brain 
mechanism to avoid seizure spread that is specific for focal forms of 
epilepsy. 

In this work, we characterized, for the first time, the functional brain 
network organization of TBI subjects and investigated how this func
tional organization changes in TBI subjects who develop epilepsy. 
Various graph theory metrics concerning network integration, segrega
tion and centrality were used. Usually, functional connectivity studies 
are based on network metrics computed from binary brain networks 
leaving out the network weights. Even though unweighted networks 
have the advantage of easier interpretation, they can overlook the di
versity of temporal correlations among different brain regions (Wang 
et al., 2019; Ma et al., 2018). Therefore, to obtain a comprehensive 
description of the functional brain networks associated with TBI, we 
performed both unweighted and weighted network analyses. It is well- 
known that the human brain optimizes the balance between the cost 
of maintaining many connections and the efficiency of transmitting in
formation through a small-world architecture. Small-world topology 
occurs when there are many short range connections between related 
areas and relatively few long range connections between less related 
areas (Watts and Strogatz, 1998). Several studies have observed that this 
optimal organization can be disrupted by aging as well as brain diseases 
(Brier et al., 2014; Achard and Bullmore, 2007). While small-world 
behavior has been investigated in TBI patients and in subjects with 

temporal lobe epilepsy and other forms of epilepsy, how small-world 
properties of the brain are changed by seizure development in TBI pa
tients has not yet been investigated (Pandit et al., 2013; Yang et al., 
2018). In this regard, we deepened also this aspect of the brain small- 
world topology. Another important aspect of human brain networks 
are the network hubs, which are nodes with a large number of con
nections. It has been shown that these strategical nodes are particularly 
vulnerable to targeted attacks that are generally associated with the 
progression of neurodegenerative conditions (Tijms et al., 2013). 
Therefore, another crucial aim of this study was to identify the hubs 
which characterize the functional networks of TBI patients and how 
these nodes can be affected by seizure development. In summary, the 
main goals of this work are three: (i) the study of the functional con
nectivity in TBI patients to highlight alterations related to late seizure 
development, (ii) the characterization of the functional brain network 
organization in TBI patients who developed at least one late seizure and 
(iii) the characterization of the ROIs that are functionally strategical in 
TBI patients who developed at least one late seizure. 

2. Materials and methods 

2.1. Dataset 

This is a prospective multicenter observational biomarker study of 
moderate-severe TBI patients and was approved by the UCLA Institu
tional Review Board and the local review boards at each EpiBioS4Rx 
Study Group institution. All patients have consented for data to be 
deidentified and then analyzed. In this study, we used 75 rs-fMRI scans 
of TBI subjects enrolled in EpiBioS4Rx according to specific inclusion 
and exclusion criteria available online.1 Of these subjects, 28 experi
enced at least one late seizure within 24 months of their TBI and 47 did 
not experience any seizures. Both groups include acute, sub-acute and 
chronic TBI and the distributions of the MRI post-injury days (see Fig.S1 
in the Supplementary Material) are not different for the two groups at a 
1% significance level using the Wilcoxon rank-sum statistic test. De
mographic and clinical information for the two groups are reported in 
Table 1. In addition a breakdown of the late seizure onset period for each 
patient is reported in the Supplementary Material (Fig.S2). 

2.2. Imaging acquisition 

Images were from: Siemens 3T Skyra at Massachusetts General 
Hospital; Philips Healthcare Ingenia 3T at Phoenix Children’s Hospital; 
GE Healthcare Signa HDxt 3T at University of California, Davis; Siemens 
3T TrioTim at University of California, Los Angeles; GE Healthcare 
SIGNA Architect 3T at University of Cincinnati; Siemens Aera 1.5T at 

Table 1 
Sample size, gender, and Glasgow Coma Score (GCS) at emergency department 
arrival are reported for each clinical class. Age and GCS were provided in terms 
of mean and standard deviation. No statistically significant differences between 
the two classes were found with respect to age, GCS score, and gender. Statistical 
evaluations were performed with a Wilcoxon rank-sum statistic test except for 
gender, for which a Chi-square test was used.  

Clinical status Sample 
size 

Age Female/ 
Male 

GCS score 

Seizure-free patients 47 43.77 ± 20.75 11/36 8.26 ± 4.43 
Patients with late 

seizure 
28 38.21 ± 18.24 6/22 7.07 ± 3.57  

1 https://sites.google.com/g.ucla.edu/epibios4rxmobilewebsite/inclusion 
exclusion-criteria. 
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University of Miami; Siemens 3T Verio at Yale University; and Siemens 
3T Skyra at Alfred Hospital. Imaging was performed within 36 days of 
TBI using a standardized protocol. MRI sequences acquired included 
resting state blood oxygen level dependent imaging (rs-BOLD), 3D T1- 
weighted magnetization prepared rapid gradient-echo (MPRAGE) and 
3D T2-weighted fluid attenuated inversion recovery (FLAIR). MRI 
acquisition parameters were optimized across sites and scanner types 
(1.5 and 3T) to reduce inter-scanner variability. Additional information 
on the recommended EpiBioS4Rx protocol used to acquire each MRI 
sequence is reported in Table 2. 

2.3. Lesion segmentation 

To incorporate lesion information in the rs-fMRI preprocessing 
pipeline and relate functional connectivity and lesion location, a 3D 
lesion mask was generated for each patient that included parenchymal 
contusions and brain edema. The masks were obtained via manual 
segmentation using ITK-SNAP (Yushkevich et al., 2006) from 3D T2- 
weighted FLAIR scans acquired within 36 days of TBI. Additional de
tails on how brain contusions and edema were defined and validated are 
reported in La Rocca et al. (2021). Once validated, lesion masks were 
affinely registered to the Montreal Neurological Institute (MNI) 152 
template with the Linear Registration Tool (FLIRT) of the Oxford FMRIB 
Software Library (FSL) for subsequent use in the rs-fMRI preprocessing 
pipelines (Jenkinson et al., 2012). 

2.4. Preprocessing 

rs-fMRI and structural MRI (sMRI) images were preprocessed using 
the CONN functional connectivity toolbox v18a (Whitfield-Gabrieli and 
Nieto-Castanon, 2012)2: an open source software based on SPM and 
MATLAB for data analysis. The CONN default pipeline was used to 
perform preprocessing steps on the functional and structural images as 
shown in Fig. 1. 

First, fMRI realignment, that includes subject motion estimation and 
correction, was performed. Secondly, fMRIs were centered, slice time
–corrected and motion artifact outliers were detected. The artifact 
rejection tool (ART) was used to identify outliers based on the first-order 
derivatives (scan to scan changes) of the associated global signal and 
subject movement parameters. Subject volumes were detected as out
liers if satisfied at least one of the following thresholds: normalized 

global BOLD signal z⩾3.0 or ⩾95th percentile, subject composite motion 
⩾0.5 mm. As an example, the outlier identification for one subject is 
shown in the Supplementary Material (Fig.S3). 

All sMRIs were centered and segmented into cerebrospinal fluid 
(CSF), gray matter (GM) and white matter (WM), and spatially 
normalized to the MNI152 template. Finally, fMRIs were also normal
ized to the MNI152, segmented into CSF, GM, and WM, and spatially 
smoothed to reduce noise using a 4 mm FWHM Gaussian kernel. For 
denoising, outliers along with CSF and white matter principal compo
nents were used as nuisance covariates in accordance with the 
anatomical component-based noise correction method (aCompCor) 
(Muschelli et al., 2014). After denoising, we isolated low-frequency 
fluctuations with a low-pass temporal filter (0.009–0.09 Hz). 

To improve tissue segmentation and noise regression, lesion infor
mation was incorporated in the segmentation step using the lesion mask 
(parenchymal contusions plus edema) relative to each TBI subject to 
obtain a modified Tissue Probability Map (TPM). The TPM normally 
provides a prior probability of a given voxel belonging to one of 6 tissue 
classes; GM, WM, CSF, skull, soft tissue, and other (Ashburner, 2009). 
For this pipeline the default TPM was augmented for each subject with a 
7th tissue class which corresponds to the MNI lesion mask for that 
subject, thereby setting the prior probability of the existence of GM, 
WM, or CSF in the lesion areas to 0. 

2.5. Graph-based network analysis 

The mean BOLD signal time course was then extracted from 116 ROIs 
defined by the automated anatomical labeling (AAL) atlas (Tzourio- 
Mazoyer et al., 2002). The time series of voxels within each region was 
averaged and the resulting signal was used as the representative signal 
for that ROI. For each subject, AAL regions were employed to define the 
nodes of the functional brain network and Fisher z-transformed Pear
son’s correlation coefficients of signals of all pairs of AAL regions were 
computed to define the edges of the functional brain network. Therefore, 
we obtained an undirected weighted graph for each subject. Then, we 
computed the mean network for two clinical groups: seizure-free TBI 
patients and TBI patients who experienced at least 1 late seizure. 

For each group, only positive correlations were studied because of 
the controversial interpretation of negative correlations in the field of 
brain functional connectivity. A number of studies consider negative 
correlations a consequence of functional signal regression. Other studies 
state that negative correlations can give important information about 
brain neuro-physiology. However they are generally fewer and less 
reliable than positive correlations, and their neurophysiological basis is 
still unclear (Schwarz and McGonigle, 2011; Fox et al., 2005; Geerligs 
and Henson, 2016). For each mean network, several graph theory 
network metrics were investigated as a function of the network density 
to describe the functional organization of the brain network. For each 
metric and for each density, we compared seizure-free versus late 
seizure-affected subjects using a Wilcoxon rank-sum statistic test. Den
sity threshold study ensures that the networks of the two clinical groups 
have the same number of edges and that the between-group differences 
reflect alterations in brain organization rather than differences in level 
correlations. According to the recommendations reported in Hallquist 
and Hillary (2018), van den Heuvel et al. (2017), we assessed the extent 
to which the proportional thresholding includes spurious links in the 
brain networks by performing a permutation test to compare the dis
tribution of the real FC values with the distribution of randomly 
generated FC values and find the maximum densities under which we 
have no spurious links (Nichols and Holmes, 2002; Muschelli et al., 
2014). A detailed description of this test is reported in the Supplemen
tary Material. Network density was defined as the number of the present 
connections divided by the number of all possible connections. We 
applied a wide range of density (D) ranging from 2% to 72% (maximum 
possible density after negative correlation removal) with increments by 
2% and repeated the analysis for each density to find the best trade-off 

Table 2 
Recommended EpiBioS4Rx MRI Protocol to acquire resting state blood oxygen 
level dependent imaging (rs-BOLD), 3D T1-weighted magnetization prepared 
rapid gradient-echo (MPRAGE), and 3D T2-weighted fluid attenuated inversion 
recovery (FLAIR) sequences with 1.5 and 3T scanners. TE stands for echo time, 
TR for repetition time, TI inversion time, FOV for field of view and NEX for 
number of excitations.  

Sequence 3D T1 RS-BOLD 3D T2 FLAIR 

Plane Sagittal or Axial Oblique-Axial Sagittal or Axial 
Mode 3D 2D 3D 
TR [ms] 1500–2500 2000 >5000 
TE [ms] Min 25 (Effective TE) 80–140 
TI [ms] 1100–1500 n/a 2000–2500 
Flip Angle 8–15◦ 78◦ 90◦⩾120◦

Frequency 256 64 256 
Phase 256 64 256 
NEX ⩾1 1 ⩾1 
FOV 256 mm 220 mm 256 mm 
Slice Thickness 1 mm 3.4 mm 1 mm 
Gap/Spacing 0 0.25 0 
Parallel Imaging Up to 2x Up to 2x Up to 2x  

2 http://www.nitrc.org/projects/conn. 
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between minimizing the number of spurious edges in each network and 
having a connected network with the inclusion of all the nodes. It is 
possible to see the effects of both weight-based and density-based 
thresholding on the overall connectivity in the Fig.S4. 

For each network density, we computed the following network 
measurements at the whole-brain level: Network strength (S) concerning 
the intensity of the node connections and computed as the mean of all 
node strengths si: 

si =
∑

j
wij; (1)  

where wij is weight associated to the edge between nodes i and j. global 
efficiency (G) and average shortest path length (L) to analyze graph 
integration that reflect the capacity of the network to transfer infor
mation and communicate between nodes. 

Average shortest path length of the two mean networks was defined 
as the mean of the average shortest path lengths of all network nodes. By 
considering the distance between two nodes i and j the reciprocal of the 
edge weight 1/wij, the average shortest path length of a node i is lwi 

lw
i =

1
N(N − 1)

∑

i∕=j

dij; (2)  

where N is the number of nodes in the network and dij is the shortest 
distance between two nodes. 

Network global efficiency was computed as mean of the global effi
ciencies of network nodes. The length of an edge was designated as the 
reciprocal of the edge weight, therefore a high correlation coefficient 
can be interpreted as a short functional distance. 

ew
i =

1
N(N − 1)

∑

i∕=j

1
dij

; (3) 

Clustering coefficient that indicates the degree to which nodes tend 
to cluster together and perform specialized processes. Clustering coef
ficient of the two mean networks was obtained by averaging the clus
tering coefficients cw

i of all network nodes computed using the 
generalizations of clustering coefficient to weighted graphs according to 
Barrat definitions (Barrat et al., 2004). 

cw
i =

1
si(ki − 1)

∑

j,h

wij + wih

2
aijaihajh; (4)  

si is the strength of node i, aij are elements of the adjacency matrix that 
indicates whether or not an edge exists, ki is the node degree (number of 
edges connected to a node i), wij are the weights. The main idea of this 
generalization is to replace the total number of the triangles in which a 
node i participates, with the “intensity” of the triangle (Ma et al., 2018; 
La Rocca et al., 2018; Clemente and Grassi, 2018). 

Characteristic clustering coefficient, characteristic average shortest 
path length and small-worldness were computed to compare the func
tional brain networks of the two clinical groups with a random network 
(Brier et al., 2014). 

Many studies carried out across different modalities and scales have 
demonstrated that brain networks exhibit a small-world topology that 
allows the brain to optimize brain organization in term of integration 
and segregation. A graph is small-world if the path length is similar to 
that of a random graph L/L0 ∼ 1 and has a clustering coefficient that is 
much greater than a random graph C/C0≫1 where L0 and C0 are the 
mean clustering coefficient and the mean average shortest path length 
computed across 1000 Erdos Renyi random networks (Erdös and Rényi, 
1959) generated in order to have the same number of nodes, edges, and 
degree distribution as the real network considered. Since, by definition, 
the study of the network topology comprises the analysis of network 
properties disregarding the weights, for each density, we studied small- 

Fig. 1. Flowchart of rs-fMRI and sMRI preprocessing. Top row outlines rs-fMRI preprocessing including realignment, centering, slice timing, outlier detection, 
normalization to the MNI 152 template, segmentation into cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM), and smoothing. Bottom row shows 
the steps of sMRI preprocessing (centering, normalization to the MNI 152 template, segmentation into WM, GM and CSF) and the result of the denoising. Denoising 
includes linear regression of potential confounding effects: noise from WM, CSF subject motion and poor quality scans (outliers). After denoising, functional con
nectivity values between randomly-selected pairs of points (bottom right corner) show approximately centered distributions, with considerably reduced inter-subject 
variability. 
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world behavior of the networks after binarizing them. Finally, we per
formed network hub analysis which is of paramount importance to study 
the critical ROI in the two TBI groups. Since hubs are nodes with a 
number of links that greatly exceeds, the average betweenness bi of a 
node i was used to determine candidate hubs in a network. The 
betweenness was normalized as Bi = bi/B with B averaged betweenness 
for all nodes of the entire network. Then, we considered hubs all those 
nodes that are outliers of the normalized betweenness distribution of the 
network. Therefore, for each subject, we collected nodes having a 
betweenness greater than Q3 +1.5*IQR where Q3 and IQR are the third 
quartile and the interquartile range of the betweenness distribution 
values, respectively (van den Heuvel and Sporns, 2013). 

3. Results 

3.1. Weighted metric analysis 

Weighted average shortest path length and weighted global effi
ciency, computed to examine the integration properties for the mean 
networks of the seizure-free subjects and late seizure-affected subjects, 
are represented, for each network density, in Fig. 2. We underlined with 
red stars the densities to which a given network metric is significantly 
different (p < 0.01) for the two groups. Similarly, strength and weighted 
clustering coefficient, used to describe functional connectivity intensity 
and segregation of the mean brain networks relative to the two clinical 
groups, are reported for each density in Fig. 2. The seizure-affected 
group has, on average, a lower average shortest path length and clus
tering coefficinet, and a greater strength and global efficiency. 

3.2. Topology analysis 

It is well-known that healthy brain networks have a small-world 
topology. We investigated if TBI subjects maintain a small-world orga
nization and whether seizure development affects brain network to
pology of the TBI cohort. We found that small-world index for the binary 
mean networks of seizure-free and late seizure-affected are, respectively 
1.53 and 1.42. Both values are greater than 1 proving the small- 
worldness of the two group networks. However, examining character
istic clustering coefficient and characteristic average shortest path 
length, reported in Fig. 3 for the two groups, as a function of the network 
density, it is possible to notice that late seizure-affected subjects in the 
density interval highlighted by the red stars have significantly lower 
characteristic clustering coefficient and lower characteristic average 
shortest path length compared with seizure-free subjects. This suggests 
that late seizure-affected subjects tends to have a topology more similar 
to a random network resulting in a less efficient brain organization. 

In seizure-free networks, all nodes are connected without network 
fragmentation for densities greater than 16 and in late seizure-affected 
networks, for densities greater than 24. It is interesting to notice that 
the density to which most of the computed metrics are significantly 
different for the seizure-free versus late seizure-affected comparison is 
34. Therefore, we have chosen this density as the optimal density that 
guarantees to have all network nodes connected and at the same time 
significant differences between the two groups for all the graph metrics. 
Furthermore, from the results of the permutation test reported in the 
Supplementary Material (see Fig.S5), we found that the maximum 
densities under which we have no spurious links for the seizure-free 
group and for the seizure affected group are 59% and 56%, 

Fig. 2. Top row: Weighted average shortest path length (left) and weighted global efficiency (right) as a function of network density for seizure-free TBI patients 
(blue) and TBI patients who developed seizure at least one week post-injury (green). Bottom row: Strength (left) and weighted clustering coefficient (right) as a 
function of network density for seizure-free TBI patients (blue) and TBI patients who developed seizure at least one week post-injury (green). 
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respectively. These densities are greater than the optimal thresholds that 
we found experimentally, therefore our analysis is not affected by 
spurious link. Table 3 shows the network metric values and the statis
tical significance obtained from the comparison of the two groups at the 
optimal density of 34. According to the recommendation in van den 
Heuvel et al. (2017), we also controlled for differences in overall FC 
values between the two groups and we found that both before and after 
the thresholding there are no significant differences (see Fig.S6 in the 
Supplementary Material). 

3.3. Hub detection 

We used the optimal density threshold of 34 to carry out the hub 
detection and analysis for the two group comparison. Fig. 4 shows in red 
the hubs for the late seizure-affected group and in cyan the hubs for the 

seizure-free group. In the late seizure-affected group, the network hubs 
have, on average, a lower betweenness but are greater in number. 
Table 4 reports the betweenness values and the anatomical regions of 
the AAL atlas corresponding to the hubs of the two groups. 

In addition, to investigate how brain lesions are related to the 
functional brain networks, we identified the anatomical regions of the 
AAL that are affected by lesions in the highest number of subjects for 
both clinical groups. Figs. 5 and 6 show the original positive connec
tivity matrix, the connectivity matrix at the threshold chosen as optimal 
and the connections between the regions affected by lesions (in the 
highest number of subjects) for the seizure-affected group and the 
seizure-free group, respectively. These results suggest that lesions are 
responsible for a reduction in brain connectivity and this is particularly 
evident in the late seizure-affected group. An exhaustive list of the AAL 
regions mainly affected by lesions for the two groups is reported in the 
Supplementary Material (TableS1). 

4. Discussion 

In this study, we utilized graph theory to investigate the functional 
connectivity of seizure-free TBI patients and late seizure-affected TBI 
patients. We found that patients who have developed seizures more than 
1 week after a TBI exhibited an overall increase in functional connec
tivity in their brain networks. Indeed, strength is significantly greater in 
seizure-affected subjects than in seizure-free subjects along a wide range 
of densities (34–72%). Increased connectivity could explain why 
increased weighted global efficiency was observed in TBI patients who 
develop epilepsy. Nevertheless, weighted global efficiency, by defini
tion, does not depend only on network weights but also on routing paths. 
Therefore, the significant enhanced in global efficiency and the signifi
cant reduction in weighted average shortest path length along all density 
range (2–72%) could also suggest an intrinsic alteration in brain wiring 
patterns that implies a hyperactive functional integration and a faster 
transmission between different brain regions. In addition to increased 
weighted global efficiency, participants with seizures occurring more 
than 1 week after injury had decreased weighted clustering coefficient 
compared with the seizure-free patients, which may be explained by an 
impaired functional segregation of late seizure-affected TBI patients. 
Thus, the resultant hyperconnectivity and hyperintegration within 
functional networks, and at the same time the lack of an efficient local 
connectedness and segregation may reflect the pathological mechanism 
of the functional networks responsible for seizure propagation and rapid 
uncontrolled information flow from the seizure onset zone. However, 
functional hyperconnectivity is a common phenomenon in brain disor
ders, and is thought to be due to the plasticity and compensatory 

Fig. 3. Characteristic clustering coefficient (left) and characteristic average shortest path length (right) as a function of network density for seizure-free TBI patients 
(blue) and TBI patients who developed seizure at least one week post-injury (green). 

Table 3 
Values and statistical significance of the network metrics (strength, weighted 
average shortest path length, weighted global efficiency, weighted clustering 
coefficient, characteristic clustering coefficient, characteristic average shortest 
path length) obtained from the comparison between seizure-free subjects and 
late seizure-affected subjects at a network density of 34%, the optimal threshold 
at which all the network metrics (except for the characteristic average shortest 
path length) are significantly different and all the ROIs are included in the 
network. The table reports also the 95 percent confidence interval (CI) for the 
difference between population medians and the effect size for non-paramentric 

test computed as 
Z̅
̅̅̅
N

√ where Z stands for Z statistic and N is the number of 

observables.  

Metric Seizure- 
free 

Late 
seizure- 
affected 

p-value CI Effect 
size 

Strength 7.64 ± 0.61 8.80 ± 0.74 8.89⋅10− 3 [0.93,
2.47]

0.59 

Average 
shortest path 
length 

8.91 ± 0.36 7.43 ± 0.30 2.20⋅10− 16 [ − 2.51,
− 1.19]

0.87 

Global 
efficiency 

0.14 ± 0.01 0.16 ± 0.01 6.70⋅10− 12 [0.02,
0.04]

0.71 

Clustering 
coefficient 

0.55 ± 0.01 0.51 ± 0.02 1.51⋅10− 3 [ − 0.05,
− 0.03]

0.87 

Characteristic 
clustering 
coefficient 

1.55 ± 0.04 1.44 ± 0.05 1.51⋅10− 3 [ − 2.34,
− 0.78]

0.67 

Characteristic 
average 
shortest path 
length 

1.06 ± 0.03 1.06 ± 0.03 > 0.01 – –  
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mechanisms of the human brain but specific biological mechanisms are 
not conclusive. Therefore another possible explanation is that the brains 
of TBI patients with epilepsy require a greater continuous selection of 
alternative paths to maintain normal function by adaptively reorganiz
ing regional connectivity profiles in response to TBI-induced damage 
(Mazrooyisebdani et al., 2020; Hillary et al., 2015). 

In this work, we also binarized the functional networks of TBI pa
tients to study their brain network topology and how this changes in 

association with seizure development. Although whole-brain functional 
networks of late seizure-affected subjects showed small-world properties 
like that of seizure-free subjects, characteristic clustering coefficient, 
reflecting the degree of closeness between neighboring brain regions 
compared with a random network, was lower in late seizure-affected 
subjects than in seizure-free network. In terms of characteristic 
average shortest path length, there is no apparent difference between 
seizure-free and late seizure-affected TBI patients at most density levels. 
Late seizure-affected, however, showed a lower characteristics average 
shortest path length at a few densities (4% and 10–20%). Nevertheless, 
the significant differences in average characteristic shortest path length 
occur at densities for which some nodes are isolated, and this might 
introduce a bias in the interpretation of the results for those densities. 
The characteristic clustering coefficient and average shortest path 
length trends suggest a greater tendency toward random network 
configuration of functional brain networks in TBI patients with epilepsy. 
Whereas seizure-free TBI subjects demonstrate to have a better balance 
between integration and segregation. 

Concerning the network hubs, we identified 11 nodes with a large 
number of connections in the late seizure-affected group, and 4 nodes in 
the seizure-free group. The higher number of hubs in the seizure- 
affected group is in line with the hyperconnectivity shown with the 
graph-theory metrics, but also with a compensatory mechanism that 
tends to form more lower betweenness hubs to replace the higher 
betweenness hubs compromised by the trauma that tends to reduce 
functional connectivity. Interestingly, in the seizure-affected group 6/11 
hubs were located in limbic structures (including amygdala, insula, and 
part of the opercula of the insula) and the temporal lobe, and 5/11 nodes 
were located in the cerebellum. Previous studies have shown that 

Fig. 4. Glass brain with the network hubs for the late seizure-affected group in red and the seizure-free group in cyan. From the left to the right the sagittal, axial and 
coronal views of the glass brain are shown for late seizure-affected vs. seizure-free subjects. The size of each hub is proportional to the corresponding node 
betweenness. 

Table 4 
Betweenness values and anatomical regions of the AAL atlas corresponding to 
the hubs of the two groups: seizure-free and late seizure-affected subjects. In the 
table R stands for right, L for left, Sup for superior, Inf for inferior and Mid for 
Middle.  

Group Region Hub betweenness 

Seizure-free R Lingual Gyrus 5.04 
Seizure-free R Sup Temporal Gyrus 4.45 
Seizure-free L Mid Temporal Gyrus 4.32 
Seizure-free R Cerebelum 4 5 3.46 
Seizure-affected R Inf Frontal Operculum 4.27 
Seizure-affected R Rolandic Operculum 4.14 
Seizure-affected R Insula 3.30 
Seizure-affected L Amygdala 3.27 
Seizure-affected R Sup Parietal Gyrus 3.11 
Seizure-affected R Sup Temporal Pole 3.05 
Seizure-affected R Cerebelum 7b 2.93 
Seizure-affected R Cerebelum 8 2.89 
Seizure-affected Vermis 3 2.60 
Seizure-affected Vermis 4 5 2.60 
Seizure-affected Vermis 7 2.34  

Fig. 5. This figure shows, for the seizure-affected subjects, the original positive connectivity matrix (left), the connectivity matrix at the optimal density of 34 
(center) and connections between AAL regions that are affected by lesions in the highest number of seizure-affected subjects (right). 
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patients with epilepsy present functional hyperconnectivity in the 
temporal lobe, limbic system, and the cerebellum (Haneef et al., 2014; 
Zhong et al., 2011). For example, the insular cortex, a structure involved 
in diverse functions such as motor control, somatosensory processing, 
cognition and emotional experience, is affected in patients with tem
poral lobe epilepsy, evidenced by histological and volumetric changes 
(Sudbury and Avoli, 2007); is involved in the epileptic manifestations 
and seizure propagation (Isnard et al., 2000); and is activated during 
generalized seizures (Gotman et al., 2005). Similarly, increased con
nectivity, perfusion, and atrophy in the cerebellum of patients with 
Focal and Generalized Epilepsy has also been reported in previous 
studies (Haneef et al., 2014; Zhong et al., 2011; Gotman et al., 2005; 
Norden and Blumenfeld, 2002). The cerebellum contains somatotopic 
representations of the face and limbs, with potential implications in the 
the motor manifestations of an epileptic seizures (Norden and Blu
menfeld, 2002). Moreover, previous experimental models have 
demonstrated a significant involvement of the cerebellum during spike- 
and-wave discharges, independently of rhythmic movement, suggesting 
that cerebellar neurons may play a critical role in the development and 
maintenance of the spike-and-wave rhythmicity and seizures (Kandel 
and Buzsáki, 1993). 

Our results are consistent with many previous studies reporting 
altered functional connectivity and structural connectivity in subjects 
with epilepsy (Jiang et al., 2017), even though a direct comparison is not 
possible for two main factors: (i) This is the first study that examines 
functional connectivity in patients with seizures occurring after a TBI 
using graph theory; (ii) Prior literature has performed functional brain 
network studies comparing subjects with epilepsy and normal controls, 
in the proposed work we analyze a cohort of only TBI patients who have 
or have not developed late seizures. Even though graph theory applied 
to the study of functional connectivity in TBI patients are proved to be a 
promising and powerful instrument to detect alterations connected to 
seizure development, further investigations are necessary to obtain 
conclusive results on the integration and segregation of TBI patients’ 
functional networks. Moving graph metrics into the clinic should be still 
approached with caution, indeed TBI heterogeneity and the fact that 
fMRI acquisition protocols and brain network construction and analysis 
vary substantially across studies make study reproducibility very chal
lenging. We hope that this work could help to carry on the research in 
this direction in order to understand which graph metrics can be used as 
clinical biomarkers. In upcoming years, EpiBioS4Rx will enroll up to 300 
patients and will conduct longitudinal follow-ups for two years to assess 
seizure outcomes. Therefore, we will be able to validate these results on 
a larger and more reliable dataset. In the future, with a larger dataset, we 
plan also to investigate the debated topic of the negative functional 
correlation coefficients and we plan to use machine learning techniques 

to assess the sensitivity and specificity of the proposed graph metrics in 
detecting PTE patients. 

5. Conclusions 

In this work, we used graph theory to examine functional connec
tivity in TBI patients who have and have not developed late seizures. Our 
results show that the late seizure-affected group has functional networks 
that are hyperconnected, hyperintegraed but at the same time hypose
gregated compared with seizure-free patients. This may reflect the rapid 
but uncontrolled ‘flow of information’ responsible for seizure onset and 
propagation. In addition, seizure-affected group show a more compro
mised balance between integration and segregation and a greater 
number of hubs that however have a less strategical role in terms of 
connections that crosses them. 
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