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Abstract. Commonly, the strategy revision phase in evolutionary games relies
on payoff comparison. Namely, agents compare their payoff with the opponent,
assessing whether changing strategy can be potentially convenient. Even tiny
payoff differences can be crucial in this decision process. In this work, we study
the dynamics of cooperation in the public goods game, introducing a threshold
ϵ in the strategy revision phase. In doing so, payoff differences narrower than
ϵ entail the decision process reduces to a coin flip. Interestingly, with ordinary
agents, results show that payoff thresholds curb the emergence of cooperation.
Yet, the latter can be sustained by these thresholds if the population is composed
of conformist agents, which replace the random-based revision with selecting the
strategy of the majority. To conclude, agents sensible only to consistent payoff
differences may represent ‘real-world’ individuals unable to properly appreciate
advantages or disadvantages when facing a dilemma. These agents may be det-
rimental to the emergence of cooperation or, on the contrary, supportive when
endowed with a conformist attitude.
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1. Introduction

Understanding cooperation still represents an open challenge of paramount relev-
ance [1–4]. From social scenarios to ecological systems, cooperation plays a non-trivial
role in shaping the interactions among individuals, communities and groups. These
dynamics can be studied using the framework of evolutionary game theory [5–9]. The
latter allows testing mechanisms devised for supporting the emergence of cooperation
and modeling of real-world scenarios whose interactions rely on social dilemmas. The
simplest models relate to games with two strategies, i.e. usually cooperation and defec-
tion. More in detail, models represent a population whose agents interact through these
games and undergo the following steps: (i) strategy selection, (ii) payoff collection, and
(iii) strategy revision. The latter, performed during the strategy revision phase (SRP)
process, is at the core of this investigation. Before moving to details, let us remark
on a growing literature presenting several ideas to sustain cooperation and explain its
emergence. To cite a few, in [10] authors proposed the presence of weak cooperators
and weak defectors, in [11–14] authors studied the effect of punishing defectors, in [15–
17] a conformist attitude revealed to sustain cooperation, in [18] authors investigated
costly-access environments, in [19, 20] authors analyzed periodic payoff variations, then
in [21] payoff perturbations and risk perception (see also recent results on risk adver-
sion [22]) resulted a beneficial element for supporting cooperative behaviors. We end
this very brief list by mentioning relevant works based on complex interaction topolo-
gies (i.e. structures for connecting agents) [23–29], which are known to be fundamental
in driving the population towards cooperation. Most of these mentioned studies build
on Nowak’s seminal work [30] about the five rules for the evolution of cooperation,
proposing methods to exploit rules such as direct reciprocity, kin selection, and so on.

Going back to our investigation, we analyze an aspect related to the SRP considering
a usual mechanism requiring agents to compute the payoff difference, i.e. compare their
payoff with that of an opponent to take a decision. Commonly, the payoff difference,
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no matter its value, gets enhanced by the (inverse of) system temperature. Here, we
add a step introducing a threshold. The latter applies to the payoff difference so that
differences smaller than the threshold are set to zero, leading agents to ignore them.

Accordingly, agents alternate rational thinking (i.e. purely driven by payoff differ-
ences) with a coin flip-based method, which typically applies only when their payoff is
the same as the payoff of their opponents.

Therefore, the proposed model represents real-world social scenarios whose individu-
als may be sensitive only to consistent payoff differences or be unable to appreciate small
(dis/)advantages. Then, given the relevance of conformism in several social scenarios [31,
32], we include this behavior in our study. Eventually, among the games we can consider
for analyzing the proposed model, we choose the public goods game (PGG) [33–37], also
known as n-person Prisoner’s Dilemma. Interestingly, results achieved through numer-
ical simulations show that neglecting even tiny payoff differences can affect the usual
evolution of cooperation in the PGG. Also, the main difference relates to outcomes
obtained with game settings that sustain strategy co-existence. The remainder of this
manuscript is organized as follows. Section 2 introduces the proposed model, section 3
shows the results of numerical simulations and finally, section 4 discusses the main
findings and concludes by mentioning possible future developments.

2. Model

Let us begin by briefly describing the PGG and the mechanism we introduce for study-
ing the potential effect of a threshold for the payoff difference. The PGG considers
a population of N agents, here arranged over a regular square lattice with continu-
ous boundary conditions. Agents can contribute to their communities of belonging or
behave as free riders. Namely, they can act as cooperators or defectors, respectively.
Communities are identified through direct interactions, while contributions are mapped
to a token whose collection represents the ‘public goods’. Then, the latter is enhanced
by a synergy factor r representing the parameter the system can exploit to support,
or less, cooperative behaviors. Eventually, the public goods accumulated in each com-
munity are divided among all the agents, no matter their strategy. Since agents do not
know the opponents’ strategy before acting, defection is much less risky than cooper-
ation. In a square lattice, communities have a size G =5, and each agent belongs to
5 different communities identified through direct connections. For instance, an agent
identifies its core community by considering itself and its four neighbors.

This game has the following payoff structure:{
πc = rN c

G − c

πd = rNd

G

(1)

where πd and πc denote the payoff of defectors and cooperators, respectively, while Nc

and Nd are the number of cooperators and defectors within a group, respectively. Then,
without loss of generality, we set to 1 the value of the token c. After each round of
the game, agents can change their strategy by undergoing the SRP that, as previously
mentioned, can be implemented according to various mechanisms.
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Here, we consider a stochastic SRP based on the following Fermi-like rule:

W (sx← sy) =

(
1+ exp

[
πx−πy

K

])−1

(2)

where T denotes the system temperature, πy the opponent’s payoff, and πx the pay-
off of the agent undergoing the strategy revision. So, equation (2) corresponds to the
probability the x -th agent selects the opponent’s strategy for the next round. Notice
that, in this work, exponents of π refer to a specific strategy, e.g. πc refer to the payoff
gained by the strategy c, as shown in equation (1). Instead, indices of π refer to agents
so that, as reported in equation (2), πx refers to the payoff the agent x receives.

The temperature parameter, also known as noise, allows tuning the degree of ration-
ality of agents [38]. Namely, low temperatures entail agents acting rationally, while high
temperatures make the SRP equivalent to a coin flip (i.e. a random process) so that
agents behave irrationally. In summary, a time step includes the following actions: agents
play the PGG in their groups of belonging, accumulate a payoff, and, if at least one of
their direct neighbours has a different strategy, undergo the SRP. The above dynamics
are repeated till an equilibrium of order, or a steady state, is reached. The order emerges
if one strategy prevails, while a steady state represents a stable strategy co-existence.

2.1. Payoff difference threshold

Now, we focus on the payoff difference agents compute in the SRP, i.e. the term ∆π =
πx−πy —see equation (2). Introducing a threshold ϵ to consider only relevant ∆π values
entails adding a simple step to the above-described dynamics. Thus, once defined ϵ, all
∆π smaller than this threshold are set to zero. For the sake of clarity, we consider the
absolute value, i.e. |∆π|< ϵ→∆π = 0, so the agent performing the comparison neglects
both advantages and disadvantages if not large enough.

According to the proposed model, the relevant variables are the synergy factor r
and the ϵ threshold. Notice that the latter has to be defined for each specific value of
the former. Also, we used the following methods to compute ϵ:

• ϵ= ⟨∆π⟩;
• ϵ= ⟨∆π⟩+σ

where ⟨∆π⟩ denotes the average value of the payoff difference measured in the classical
setting of the PGG during the first 1000 time steps. More specifically, at each time step
t, agents compare their payoff with that of their opponent, so we measure the average
payoff difference in the whole population at time t. After 1000 time steps, we obtain
1000 points (each being the average payoff difference at a given time t), and then we
calculate their average, whose value corresponds to ⟨∆π⟩. Similarly, we compute the
average standard deviation σ, in the second definition of ϵ.

Eventually, we study the proposed model on two populations, i.e. composed of ordin-
ary agents and conformist agents. Ordinary agents choose their strategy randomly when
∆π < ϵ. On the other hand, conformist agents are those that, in the same condition (i.e.
∆π < ϵ), prefer to choose the strategy of the majority in their core group (i.e. the group
containing all four nearest neighbors) —see also [39–41].
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Table 1. Synergy factor r and threshold ϵ defined according to the two presented
methods (see text). Results are averaged over 100 simulation runs.

Synergy factor r ϵ := ⟨π ⟩ ϵ := ⟨π ⟩+σ

3.7 0.07 0.42
3.75 0.32 1.21
4.0 1.74 3.3
4.25 1.83 3.47
4.5 1.67 3.34
4.75 1.33 2.93
5.0 0.92 2.33
5.25 0.64 1.82
5.5 0.45 1.42

3. Results

Numerical simulations, performed with a population of N =10000 agents arranged over
a regular square lattice with continuous boundary conditions at a temperature T =0.5,
consider an initial density of cooperators ρc = 0.5 (randomly distributed) —see also [42].
In the described conditions, there is a critical threshold for the synergy factor rth = 3.72
(e.g. see [33]), such that values r < rth lead the population to converge towards an
equilibrium of full defection. On the other hand, values of the synergy factor in the
range rth < r < 5 lead to a steady state characterized by the co-existence of strategies.
Eventually, for values r > 5, cooperation becomes the dominant strategy, leading the
population towards an ordered equilibrium. Given this premise, our first task is com-
puting the ϵ value on varying the synergy factor r. To this end, for each specific r,
we perform 100 numerical simulations with the above-described setting (i.e. number of
agents, temperature, etc). Table 1 shows the results of this preliminary analysis.

So, now we have all the elements to implement the main simulations. For clarity,
we study the dynamics of the PGG by implementing an SRP based on equation (2),
introducing as an additional step the comparison between the |∆π| term and the ϵ
threshold. We recall that ∆π appears in explicit form in equation (2), i.e. πx−πy, and
here we consider its absolute value. Thus, using the ϵ values shown in table 1, if |∆π|< ϵ,
the payoff difference is set to zero. Notice that the above rule applies only to ordinary
agents since conformist agents choose the strategy of the majority in their neighborhood
if |∆π| is below the threshold.

Following the same method implemented for computing the ϵ values, we measure
the fraction of cooperators and the payoff trends resulting from the two strategies
in different conditions. Figure 1 shows the result of the first comparison between the
density of cooperators in the two populations, i.e. ordinary agents and conformist agents,
on varying the synergy factor, using the threshold ϵ defined according to the average
payoff (i.e. first definition). In populations composed of ordinary agents, using low and
intermediate synergy factors, the threshold ϵ curbs cooperation. In addition, its effect
vanishes as r gets close to 5 (or higher). On the other hand, populations composed

https://doi.org/10.1088/1742-5468/ad2449 5

https://doi.org/10.1088/1742-5468/ad2449


Strategy revision phase with payoff threshold in the public goods game

J.S
tat.

M
ech.(2024)

023404

Figure 1. The density of cooperators achieved by ϵ= ⟨π ⟩, with three different
synergy factors: r =3.75 (ϵ=0.32), r =4.25 (ϵ=1.83), and r =5.00 (ϵ=0.92) (see
the legend). On the left, ordinary agents and, on the right, conformist agents.
Results are averaged over 100 simulation runs.

Figure 2. The density of cooperators achieved by ϵ= ⟨π ⟩+σ, with three different
synergy factors: r =3.75 (ϵ=1.21), r =4.25 (ϵ=3.47), and r =5.00 (ϵ=2.33) (see
the legend). On the left, ordinary agents and, on the right, conformist agents.
Results are averaged over 100 simulation runs.

of conformist agents reach a higher density of cooperation for all considered synergy
factors. Notice that we cannot compare this specific population with another one that
includes conformists and does not use a payoff threshold. Regarding this, we recall that
here the conformist behavior emerges only when |∆π|< ϵ. Since conformism supports
cooperation for all values of r, our results confirm its beneficial effect for this strategy,
as already observed in previous studies on dilemma games [16]. Then, the same analysis
is performed by considering the second definition of ϵ, i.e. the one including the
average standard deviation of the payoff difference—see figure 2. In general, results
show that the higher the ϵ, the smaller the final density of cooperators. Yet, beyond
observing that conformist agents are more likely to cooperate, we find an interesting
phenomenon in this population. Namely, intermediate values of synergy factors enhance
cooperation less than small values (all higher than r th). That is due to the combination
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Figure 3. The payoff of cooperators and defectors for three different synergy
factors: r =4.25 (top left) with ϵ=1.83, r =4.5 (top right) with ϵ=1.67, r =5.0
(bottom left) with ϵ=0.92, and r =5.25 (bottom right) with ϵ=0.64, achieved with
ordinary agents. The higher the synergy factor, the smaller the difference between
the classical PGG and the proposed model. Results are averaged over 10 simulation
runs.

of large ϵ values (for those synergy factors) and the uncertainty about the considered
social behavior in supporting cooperation in these conditions. In a few words, in most
cases, conformity clearly supports cooperation, albeit with high thresholds its beneficial
effect is reduced. Before moving further, let us emphasize that in ordinary populations,
the higher the threshold, the higher the difference in the final density of cooperators
between the classical PGG and the proposed model. We can now focus on another
parameter of interest, i.e. the payoff trend of the two strategies measured during the
system evolution. Looking at the results in figure 3, the higher the synergy factor, the
smaller the difference between the proposed model and the classical PGG. The difference
between the payoff trends for both strategies becomes larger by reducing the value of
r. Then, we analyse the difference in the density of cooperators ∆ρ, achieved in each
considered condition, on varying the synergy factor with the normal PGG dynamics.
This comparison includes both populations, i.e. ordinary and conformist agents—see
figure 4. In the population composed of ordinary agents, the highest differences are
obtained for intermediate synergy factors, i.e. 4⩽ r ⩽ 4.5. Yet, a clear peak at r =4.5 is
detected using the threshold defined through the average and the standard deviation of
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Figure 4. The difference in density of cooperators ∆ρ achieved in ordinary popula-
tions (left-hand) and conformist populations (right-hand), compared to the classical
PGG, on varying the synergy factor r. As indicated in the legend, for each pop-
ulation, we include both ϵ values (see main text for the definitions). Results are
averaged over 100 simulation runs.

Figure 5. On the left-hand side, a heatmap illustrating the density of cooperators
after 1000 time steps in function of the synergy factor r and threshold ϵ. On the
right-hand side, the density of cooperators for different ϵ values and fixed synergy
factor r =4.25. Results are averaged over 100 simulation runs.

the payoff differences (i.e. the second definition of ϵ). In the conformist population, the
distribution of ∆ρ is different as the peaks are obtained for low values of synergy factors,
and ∆ρ decreases as r becomes larger than 4.5. In both populations, synergy factors
higher than 5 tend to make poorly relevant the effect of ϵ in the SRP. Eventually,
we study the final strategy distribution in function of the synergy factor r and the
threshold ϵ. Results are shown in the left-hand plot of figure 5 while, on the right-hand
side, an additional plot reports the density of cooperators obtained at a fixed r =4.25
and on varying ϵ within a relevant range. Notice that ϵ=1.8 seems a critical value, as a
sharp decrease in the density of cooperators occurs as soon as the threshold is slightly
bigger than it. Finally, ‘critical thresholds’ like that (i.e. ϵ=1.8) are responsible for
edges delineating the shadowed areas in the heatmap of figure 5.
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4. Discussion and conclusion

In this work, we analyzed the strategy profile of a population interacting through an
evolutionary game whose agents are, by design, unable to give value to payoff differences
below a given threshold. To this end, we focused on the PGG, which is particularly useful
for studying social dilemmas (as well as other scenarios, e.g. [43, 44]). The proposed
model introduces a tiny variation to the classical setting of this game. More specifically,
starting with a population arranged over a square lattice and at a low temperature,
we enriched the SRP, adding a threshold to the payoff difference. In doing so, payoff
differences which do not satisfy the introduced constraint are set to zero, making the
SRP equivalent to a coin flip. Then, given the high relevance of conformism in supporting
cooperation [15, 17], we considered ordinary and conformist agents separately. In both
cases, the above-mentioned low temperature ensures agents behave rationally when
the payoff difference is higher than/equal to the threshold. On the other hand, in the
opposite event, i.e. with a payoff difference tinier than the threshold, conformist agents
select the strategy of the majority holding in their core group, while ordinary agents, as
described, take a coin flip-based decision. Results of numerical simulations suggest that
introducing a threshold in the SRP with ordinary agents may curb cooperation. More in
detail, if agents ignore even ‘tiny’ payoff differences, cooperation survives/prevails when
the synergy factor is big enough. On the other hand, as mentioned, conformity plays a
fundamental role in curbing defection. So, although conformism relates to a fraction of
SRP processes, we confirmed its relevance in these dynamics.

To conclude, results suggest that individuals unable to give value to limited payoff
differences can be detrimental to cooperation. Yet, this attitude, with conformist beha-
vior, can lead to the opposite scenario where cooperation is supported. That leads us to
further observations. First, in social contexts, stimulating cooperation is far from trivial.
So, the presence of individuals behaving similarly to our ordinary agents may constitute
one of the possible motivations. Yet, mixing conformity and rationality resulted in a
highly beneficial support for cooperation. Regarding this, we find reasonable individu-
als may behave extremely rationally when observing their payoff is much higher/lower
than that collected by an opponent and imitate their peers when such difference is less
evident. In summary, the ability to compute and appreciate even tiny advantages and
disadvantages can be fundamental for the evolution of cooperation in dilemma games.
To conclude, further investigations into this direction may concern other social dilem-
mas, more complex population structures (e.g. scale-free networks [45]), additional SRP
mechanisms, more social behaviors such as anti-conformity [46–48], and the application
of the proposed model beyond social scenarios, e.g. ecological systems [49], economic
systems [50, 51], and many others.

Acknowledgment

M A J is supported by the PNRR NQSTI (Code: PE23).

https://doi.org/10.1088/1742-5468/ad2449 9

https://doi.org/10.1088/1742-5468/ad2449


Strategy revision phase with payoff threshold in the public goods game

J.S
tat.

M
ech.(2024)

023404

References

[1] Szolnoki A and Perc M 2018 Evolutionary dynamics of cooperation in neutral populations New J. Phys.
20 013031

[2] Duh M, Gosak M and Perc M 2021 Public goods games on random hyperbolic graphs with mixing Chaos
Solitons Fractals 144 110720

[3] Perc M, Jordan J J, Rand D G, Wang Z, Boccaletti S and Szolnoki A 2017 Statistical physics of human
cooperation Phys. Rep. 687 1–51

[4] Quan J, Liu W, Chu Y and Wang X 2017 Stochastic evolutionary voluntary public goods game with punishment
in a Quasi-birth-and-death process Sci. Rep. 7 16110

[5] Perc M and Grigolini P 2013 Collective behavior and evolutionary games-An introduction Chaos Solitons
Fractals 56 1–5

[6] Traulsen A, Santos F C and Pacheco J M 2009 Evolutionary games in self-organizing populations Adaptive
Networks: Theory, Models and Applications (Springer) pp 253–67
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[27] Gómez-Gardenes J, Reinares I, Arenas A and Floria L M 2012 Evolution of cooperation in multiplex networks

Sci. Rep. 2 620
[28] Wang Z, Wang L, Szolnoki A and Perc M 2015 Evolutionary games on multilayer networks: a colloquium Eur.

Phys. J. B 88 1–15
[29] Allen B, Lippner G and Nowak M A 2019 Evolutionary games on isothermal graphs Nat. Commun. 10 5107
[30] Nowak M A 2006 Five rules for the evolution of cooperation Science 314 1560–3
[31] Nyczka P, Byrka K, Nail P R and Sznajd-Weron K 2018 Conformity in numbers-Does criticality in social

responses exist? PLoS One 13 e0209620

https://doi.org/10.1088/1742-5468/ad2449 10

https://doi.org/10.1088/1367-2630/aa9fd2
https://doi.org/10.1088/1367-2630/aa9fd2
https://doi.org/10.1016/j.chaos.2021.110720
https://doi.org/10.1016/j.chaos.2021.110720
https://doi.org/10.1016/j.physrep.2017.05.004
https://doi.org/10.1016/j.physrep.2017.05.004
https://doi.org/10.1038/s41598-017-16140-8
https://doi.org/10.1038/s41598-017-16140-8
https://doi.org/10.1016/j.chaos.2013.06.002
https://doi.org/10.1016/j.chaos.2013.06.002
https://doi.org/10.1098/rsif.2012.0997
https://doi.org/10.1098/rsif.2012.0997
https://doi.org/10.1016/j.plrev.2009.08.001
https://doi.org/10.1016/j.plrev.2009.08.001
https://doi.org/10.1038/s41598-018-36486-x
https://doi.org/10.1038/s41598-018-36486-x
https://doi.org/10.1038/nature06723
https://doi.org/10.1038/nature06723
https://doi.org/10.1126/science.1183665
https://doi.org/10.1126/science.1183665
https://doi.org/10.1088/1367-2630/12/8/083005
https://doi.org/10.1088/1367-2630/12/8/083005
https://doi.org/10.1016/j.physleta.2023.128879
https://doi.org/10.1016/j.physleta.2023.128879
https://doi.org/10.1098/rsif.2014.1299
https://doi.org/10.1098/rsif.2014.1299
https://doi.org/10.1371/journal.pone.0137435
https://doi.org/10.1371/journal.pone.0137435
https://doi.org/10.1209/0295-5075/114/38001
https://doi.org/10.1209/0295-5075/114/38001
https://doi.org/10.1088/1367-2630/ac7b9d
https://doi.org/10.1088/1367-2630/ac7b9d
https://doi.org/10.1038/s41598-019-49075-3
https://doi.org/10.1038/s41598-019-49075-3
https://doi.org/10.1063/5.0099444
https://doi.org/10.1063/5.0099444
https://doi.org/10.1103/PhysRevE.101.062309
https://doi.org/10.1103/PhysRevE.101.062309
https://arxiv.org/abs/2306.05971
https://doi.org/10.1016/j.physrep.2007.04.004
https://doi.org/10.1016/j.physrep.2007.04.004
https://doi.org/10.1103/PhysRevLett.95.098104
https://doi.org/10.1103/PhysRevLett.95.098104
https://doi.org/10.1103/PhysRevLett.98.108103
https://doi.org/10.1103/PhysRevLett.98.108103
https://doi.org/10.1038/nature06940
https://doi.org/10.1038/nature06940
https://doi.org/10.1038/srep00620
https://doi.org/10.1038/srep00620
https://doi.org/10.1140/epjb/e2015-60270-7
https://doi.org/10.1140/epjb/e2015-60270-7
https://doi.org/10.1038/s41467-019-13006-7
https://doi.org/10.1038/s41467-019-13006-7
https://doi.org/10.1126/science.1133755
https://doi.org/10.1126/science.1133755
https://doi.org/10.1371/journal.pone.0209620
https://doi.org/10.1371/journal.pone.0209620
https://doi.org/10.1088/1742-5468/ad2449


Strategy revision phase with payoff threshold in the public goods game

J.S
tat.

M
ech.(2024)

023404

[32] Sznajd-Weron K, Tabiszewski M and Timpanaro A M 2011 Phase transition in the Sznajd model with inde-
pendence Europhys. Lett. 96 48002

[33] Szolnoki A and Perc M 2010 Reward and cooperation in the spatial public goods game Europhys. Lett. 92 38003
[34] Szolnoki A and Perc M 2010 Impact of critical mass on the evolution of cooperation in spatial public goods

games Phys. Rev. E 81 057101
[35] Han T A, Moniz Pereira L and Lenaerts T 2017 Commitment and participation in public goods games Proc.

16th Conf. on Autonomous Agents and MultiAgent Systems (IFAAMAS) pp 1431–2 (available at: https://
dl.acm.org/doi/10.5555/3091125.3091322)

[36] Wang M, Kang H, Shen Y, Sun X and Chen Q 2021 The role of alliance cooperation in spatial public goods
game Chaos Solitons Fractals 152 111395

[37] Flores L S, Vainstein M H, Fernandes H C and Amaral M A 2023 Heterogeneous contributions can jeopardize
cooperation in the Public Goods Game Phys. Rev. E 108 024111

[38] Javarone M A and Battiston F 2016 The role of noise in the spatial public goods game J. Stat. Mech. 073404
[39] Galam S 2013 Modeling the Forming of Public Opinion: an approach from Sociophysics Glob. Econ. Manage.

Rev. 18 2–11
[40] Galam S 2008 Sociophysics: a review of Galam models Int. J. Modern Phys. C 19 409–40
[41] Crokidakis N and de Oliveira P M C 2015 Inflexibility and independence: Phase transitions in the majority-rule

model Phys. Rev. E 92 062122
[42] Galam S and Walliser B 2010 Ising model versus normal form game Physica A 389 481–9
[43] Kurokawa S and Ihara Y 2009 Emergence of cooperation in public goods games Proc. R. Soc. B 276 1379–84
[44] Zhang H, Shi D, Liu R and Wang B 2012 Dynamic allocation of investments promotes cooperation in spatial

public goods game Physica A 391 2617–22
[45] Estrada E 2012 The Structure of Complex Networks: Theory and Applications (Oxford University Press)
[46] Calvelli M, Crokidakis N and Penna T J 2019 Phase transitions and universality in the Sznajd model with

anticonformity Physica A 513 518–23
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