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A B S T R A C T   

This study comprises a critical review of modeling of pesticides in surface waters. The aim was to update the 
status of the use of models to simulate the fate of pesticides from diffuse sources. ISI papers were selected on 
Scopus and the information concerning the study areas, type of pesticides (herbicides, fungicides and in-
secticides), the model, and the methodology adopted (i.e., calibration and/or validation, spatial and temporal 
scales) were analyzed. The studies were carried out in Europe (55.5%), North America (22.3%), Asia (13.9%) and 
South America (8.3%). The Soil and Water Assessment Tool proved to be the most used model (45.95%). Her-
bicides were the most modeled pesticides (71.4%), followed by insecticides (18.2%) and fungicides (10.4%). The 
main herbicides modeled were atrazine, metolachlor, isoproturon, glyphosate, and acetochlor. Insecticides such 
as chlorpyrifos and metaldehyde. Chlorothalonil, and fungicides (i.e., tebuconazole) were the most widely 
investigated. Based on published studies, it was found that modeling approaches for assessing the fate of pes-
ticides are constantly evolving and the model algorithms work well with diverse watershed conditions, man-
agement strategies, and pesticide properties. Several papers reported concentrations of pesticides exceeding 
ecotoxicological thresholds revealing that water contamination with pesticides used in agriculture and urban 
areas is a priority issue of current global concern.   

1. Introduction 

Pesticides are largely used in agriculture for plant protection; they 
are useful in meeting global supply needs anticipated by the UN Sus-
tainable Development Goal 2 (United Nations, 2015; McDougall, 2018). 
However, the use of pesticides in agriculture has been constantly 
debated (Lykogianni et al., 2021). On the one hand, chemicals such as 
pesticides can contribute to increasing food production with the same 
cultivated surface areas (McDougall, 2018); on the other hand, their 
excessive use represents a threat for soil and water quality (Holvoet 
et al., 2007; Alletto et al., 2010; Zikankuba et al., 2019; Barreto et al., 
2020), non-targeted organisms (i.e. pollinators; Olaya-Arenas et al., 
2020) and human health (Lykogianni et al., 2021). Indeed, intensive 
agriculture, which is the main source of pesticides, is also considered 
one of the main drivers of land degradation, habitat loss and climate 
change (European Environment Agency (EEA), 2020; EU, 2020; Mon-
tanarella and Panagos, 2021; Ricci et al., 2022a). 

In recent years, the use of pesticides has also risen a lot in the urban 

environment due to weed control in parks, insect regulation and urban 
agriculture (Meftaul et al., 2020). Monitoring activities confirmed that 
pesticide concentrations are often higher than acceptable water quality 
limits (Proia et al., 2013; Stone et al., 2014; Wang et al., 2019) and that 
more of the 80% of European soil is characterized by the presence of one 
or more residue substance (Silva et al., 2019). To counteract this issue, in 
2015 the European Union (EU), with the aim of reaching the water 
standard quality expected by the Water Framework Directive (European 
Commission (EC), 2000), introduced a Watch List (WL) consisting of 10 
priority groups of substances that are potentially risky for the aquatic 
environment, an indication of the monitoring matrices and the possible 
methods of analysis (JRC Publications Repository, 2020. Moreover, the 
main environmental strategies on a global and European scale, such as 
the 2030 Agenda for Sustainable Development and the “Farm to Fork 
Strategy”, target improving water quality and minimizing the release of 
chemicals, such as pesticides, by 50% (United Nations, 2015; EC, 2020). 

In this context, it is necessary to monitor these substances to update 
the WL and to better define the water policy for implementing programs 
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of measures for reducing their use (Pietrzak et al., 2019). Sampling 
campaigns are an important aspect to be considered while carrying out 
studies on pollutants such as pesticides, which are considered of 
particular environmental interest due to their potential toxicity, high 
persistence and mobility (D’Ambrosio et al., 2019; Manjarres-López 
et al., 2021). The more accurate the monitoring program is, the more 
accurate the estimation of the potential ecological risks will be, thus 
making it possible to properly define the mitigation strategy to be 
adopted (Wang et al., 2019). Field activities are expensive and time 
consuming and may represent limited spatial areas (D’Ambrosio et al., 
2019; Ricci et al., 2022a). Hence, alongside sampling campaigns, 
eco-hydrological models are increasingly being used to assess pesticide 
concentration, fate and transport processes (Fohrer et al., 2014). 

The selection of the most appropriate model is subjective and de-
pends on the purpose of the work, on the input data availability and on 
the ability to represent the physical and chemical processes by means of 
parameterization (Abdelwahab et al., 2018; Wang et al., 2019). 
Different authors tried to address these aspects in their review articles. 
Quilbé et al. (2006), in its multi-criterial analysis based on model ease of 
use, model applicability, model characteristics and the possibility of 
simulating Best Management Practices (BMPs), identified thirty-six 
models. Payraudeau and Gregoire (2011) compared 10 models to 
assess their ability to simulate some principal hydrological processes 
and pesticide dynamics occurring in water, plants and the atmosphere 
and their ability to represent some mitigation measures. The authors 
showed that physically based models better represent the interaction 
between hydrological and chemical processes. Wang et al. (2019) 
focused their review on the different Soil and Water Assessment Tools 
(SWAT), (Arnold et al., 1998), applications considering aspects such as 
pesticide type, the link with other models to better represent some 
processes and possible algorithm improvements. In their review, Mottes 

et al. (2013) analyzed 16 models applied at the field scale to evaluate the 
effects of agricultural practices on the predicted distribution and 
transfer of pesticides. Starting from the results of the previous reviews, 
this work presents a review aimed at (i) updating the status of the 
development, use and diffusion, globally, of models to simulate pesti-
cides coming from diffuse pollution (ii) analyzing the models (e.g. 
spatial and temporal scales, input requirements and model outputs), and 
(iii) investigating possible relationships between the single compound 
and the models used for predicting its transport and fate. By providing 
an overview of the studies on modeling pesticides, the final aim of this 
work was to facilitate water resource managers in selecting a model to 
assess the transport and fate of pesticides. 

2. Material and methods 

To better organize the papers to be included in the review, the flow 
diagram illustrated in “The PRISMA 2020 statement” (Page et al., 2021) 
was taken as a model and adapted to the aims of this research. The 
bibliographic research was carried out on Scopus using the following 
keywords: “pesticides, model, watershed, hydrology, water quality, 
diffuse pollutant” 

The database, which was queried in May 2021, returned 596 records. 
Considering the aim of updating the status of the use of hydrological 
models, globally, to simulate pesticides, the years prior to 2013 were 
excluded because already analyzed by other review articles. Moreover, 
since 2021 was not yet concluded, and some other papers might still 
have been published, 2020 was adopted as the final year of investiga-
tion. This resulted in 254 records (Fig. 1), 79 records were removed 
since belonging to books, book chapters, editorial, notes and other re-
views. Subsequently, articles not in English, not available and papers 
focused on subjects not related to this paper (i.e., monitoring or 

Fig. 1. Diagram of the methodological approach adopted for the review.  
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sampling, modeling pesticides only in groundwater or aquifers, studying 
the effect of pesticides on human health, the use of pesticides to increase 
crop production) were also excluded. The resulting eligible articles were 
used as a start-set of papers for the snowballing procedure. The guide-
lines of the “Snowballing Approach” (Wohlin, 2014) were followed to 
select papers. Specifically, a new list of articles was defined by going 
through the reference list of the start-set of papers and looking at titles. 
The papers were examined, and those that do not fulfill the basic criteria 
defined above were excluded. The remaining papers were selected. This 
process was reiterated until no new papers were found. Six papers were 
added to the database since they were deemed fundamental to the topic. 
A total of 33 articles were therefore obtained (Fig. 1). 

Each article was analyzed and a database containing relevant in-
formation with respect to the aims of the study was built (Annex A1). 
The dataset was composed of seven main sections collecting general 
information (i.e. title, doi, year of publication, authors), the study area 
(i.e. geographical position, size), the model (i.e. model used, calibration 
or validation, temporal scale considered, modeled scenarios), the 
pesticide (i.e. herbicides, fungicides, insecticides), field activities (i.e. 
frequency, measurement period) and modeling results (i.e. spatial and 
temporal scale, average concentration). Whenever data were available 
in the paper analyzed, the table was completed appropriately. Multiple 
records for a single article were accepted when the study area belonged 
to more than one nation. In this case, one article was represented by two 
or more rows in the table (Annex AI). 

3. Results 

3.1. General data 

A database was compiled with the information derived from the 33 
articles, which were analyzed consistently with the aims of the study 
(Supplementary Material S1). During the study period, the number of 
papers per year ranged from 2 (2015 and 2019) to 11 (2017). 

There were 17 ISI journals; the most important information (authors, 
journal and keywords) was summarized in Table 1. Science of the Total 
Environment (5 papers) was the journal with the highest number of 
published papers, followed by Hydrology and Earth System Sciences (4 
papers) and Environmental Pollution, Water Research (3 papers) and the 
Journal of Environmental Management (3 papers). The most commonly 
used keyword was “pesticide”, followed by SWAT, pollution, model, 
water, quality, agriculture, diffuse pollution and water quality (Table 1). 

Regarding the global distribution of the study areas (Fig. 2), Europe 
was the continent with the highest incidence of records (70.7%), fol-
lowed by North America (14.6%), Asia (9.8%) and South America 
(4.9%). Considering the individual European countries, the highest 
number of studies was carried out in France (14.6%), followed by En-
gland and Switzerland (both 12.2%) and Belgium, Germany and Wales 
(4.8% each). 

3.2. Models 

The analysis of the models revealed that 17 different tools were cited 
and implemented to simulate the fate and transport of pesticides 
(Table 2). Among the models, SWAT was the one most used on a global 
scale (35.71%). In particular, the SWAT model was the only model 
utilized in the United States of America (USA), China and Thailand 
(Fig. 3, Table 2). The UK and France presented the greatest heteroge-
neity of methodological approaches adopted (Fig. 3). Indeed, SWAT, 
PSYCHIC (Phosphorus and Sediment Yield CHaracterisation In Catch-
ments), INCA (INtegrated CAtchment contaminants model), IMPT (In-
tegrated Model for Pesticide Transport) and PRZM (Pesticide Root Zone 
Model) were used in the UK, while SWAT, VFSMOD (Vegetative Filter 
Strip Modeling System), iWaQa (Integrated Water Quality Model) and a 
conceptual model were implemented in France. In all the other coun-
tries, except Switzerland in which 4 different models were applied (i.e. 

Table 1 
General data describing the analyzed papers.  

Author Year Journal Keywords 

Ammann et al. 2020 Journal of Hydrology Pesticide transport, 
Experimentalist knowledge, 
Controlled application, 
Conceptual model, High- 
frequency, Concentration 
data, Bayesian inference 

Cambien et al. 2020 Water Pesticide dynamics, Guayas, 
River basin agricultural 
intensification, Soil and 
Water Assessment Tool, Data 
scarcity, Freshwater, 
Ecosystem management 

D’Andrea et al. 2020 Science of the total 
Environment 

Risk assessment, 
Agriculture, Contamination, 
Agrochemicals, PWC, Water 
quality 

Purnell et al. 2020 Water Research SWAT, Metaldehyde, 
Pesticide, Management, 
Water framework directive 

Comber et al. 2019 Frontiers in 
Sustainable Food 
Systems 

big data & analytics spatial 
data integration, Pesticides, 
Metaldehyde, Web-based 
model RAPI (application 
program interface) United 
Kingdom 

Quaglia et al. 2019 Journal of 
Environmental 
Management 

Surface water, Diffuse 
pesticide pollution, GIS 
modeling, Catchment scale, 
Pesticide risk areas, Field 
observations 

Asfaw et al. 2018 Journal of Hydrology Metaldehyde, Diffuse 
pollution modeling, Rainfall 
runoff, Surface water 
quality, Water resources 

Lauvernet and 
Muñoz-Carpena 

2018 Hydrology and Earth 
System Sciences  

Morselli et al. 2018 Science of the total 
Environment 

Slope, Runoff, Curve 
number, DOC, Dynamic 
scenario, Orchard 

Moser et al. 2018 Hydrology and Earth 
System Sciences  

Carluer et al. 2017 Science of the total 
Environment 

Vegetative filter strip, Buffer 
zone modeling, Process- 
based model, VFS sizing, 
Shallow water table, 
Watershed 

Chen et al. 2017 Water Research Pesticide, SWAT, 
Calibration, Model 
evaluation, Uncertainty 
analysis, Delta 

Jones et al. 2017 Journal of Applied 
Ecology 

Axis II, Common 
Agricultural Policy, Diffuse 
agricultural pollution, 
LEAFPACS, Output 
measures, Policy evaluation, 
River Invertebrate 
Classification Tool, Tir 
Cynnal, Tir Gofal 

Lu et al. 2017 Environmental 
Science: Processes & 
Impacts  

Lutz et al. 2017 Hydrology and Earth 
System Sciences  

Ouyang et al. 2017 Water Research Pesticide, Diffuse pollution, 
Water quality, Agricultural 
exploitation, Watershed 
modeling 

Serpa et al. 2017 Environmental 
Pollution 

Agricultural pollution, 
Copper, Nitrogen, 
Phosphorus, Surface waters 

Vernier et al. 2017 Environmental 
Science and 
Pollution Research 

Agriculture, Data 
warehousing, Indicators, 
Integrated modeling, 

(continued on next page) 
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iWaQa, a perceptual model, a mathematical model and ZIN-AgriTra), 
the number of models implemented was limited to one or two (Fig. 3). 

The spatial scales of the case studies included experimental plots (Lu 
et al., 2017), river basins (drainage areas from less than 5 km2 to 160, 
000 km2) (Gassmann et al., 2015; Pullan et al., 2016; Moser et al., 2018; 
Ammann et al., 2020; Cambien et al., 2020) and regional areas (Gagnon 
et al., 2014; D’Andrea et al., 2020). More than half of the studies 
(66.66%) applied only one model (Table 2), while the rest (33.33%) 
used a principal model to determine pesticides coupled with a second 
model (e.g., hydrological or hydrogeological model) for simulating river 
or groundwater flow, plant stress or to carry out the economic analysis. 

Among the studies adopting a cascade model strategy, SWAT was the 
model most used, since it makes it possible to simulate hydrology and 
water quality. Finally, among the studies aiming at a scenario analysis, 
BMP evaluation was the most frequently developed topic (Table 2), 
followed by land use change and climate change. 

Among the studies analyzed, 24 papers reported the model calibra-
tion, including 17 studies that also reported the validation. The cali-
bration was mostly performed on a daily basis for a multiple year period, 
ranging from about one to 20 years. Simulations on a monthly or yearly 
time scale were carried out to a lesser extent. Field data (measured 
streamflow and pesticides) were used in 24 studies to calibrate the 
model, whereas nine studies did not report any information about field 
activities. 

3.2.1. Models: description and data requirement 
The SWAT model (Soil and Water Assessment Tool) is a semi- 

distributed and physically based hydrological and water quality model 
developed by USDA (Arnold et al., 1998). For the model set-up, spatial 
information such as land use, soil properties, DEM, agricultural man-
agement practices (i.e., fertilizers, pesticides applications, tillage oper-
ation, irrigation) and punctual data (weather) are needed. It works at the 
basin scale, which is divided into subbasins and into hydrologic response 
units (unique land use, slope and soil units). It develops the water bal-
ance, sediment transport and nutrient cycles. The movement of soluble 
and sorbed forms of pesticides from land areas to the stream network is 
described by algorithms taken from EPIC (Williams, 1975). SWAT in-
tegrates the mass balance developed by Chapra (1997) with the trans-
formation and transport of pesticides in streams. Results are provided at 
the different temporal scales (daily, monthly, yearly) and spatial scales 
(basin, subbasin and reach scale). 

SPIDER is a distributed model whereby the landscape is divided into 
fields and ditches/streams. It works on an hourly basis, but there are no 
restrictions on the simulation’s duration. The model was developed for 
wet environments (Northern Europe) and for catchments of up to 10 
km2. Agricultural fields are hydrologically connected (via runoff, lateral 
flow, drain flow) to ditches and streams that receive pesticides that are 
dissolved in water and, directly, via spray drift. Water and pesticides are 
routed through the stream reach to the outlet of the catchment. SPIDER 
code was object-oriented (C++ language). The model allows several 
applications of pesticides throughout the simulation period. The main 
limitations are the input data requirements (e.g., hourly rainfall data 
and parameters for each field and river reach). SPIDER has been coupled 
with the MACRO model (Villamizar et al., 2017). 

The Model-based (Mb) risk map is a theoretical, spatialized approach 
that makes it possible to determine the non-point source export of pes-
ticides to surface waters (Quaglia et al., 2019). The model needs several 
input data (i.e., land cover, DEM, runoff map, soil properties, a potential 
erosion map and a mitigation measures map). The Mb model is 
composed of three different steps. The first, which determines the 
transported fraction of the applied compounds, is based on the Water 
Emission Inventory Support System (WEISS) approach. The second 
evaluates the reduction of the runoff transport capacity due to the 
presence of buffer strips. The third, based on topography and stream 
network, determines the connectivity between the different parcels of 
the basin. Lastly, for each parcel, the gross emission is calculated and the 
Mb risk map is generated (Quaglia et al., 2019). Results are provided 
annually and at the basin or parcel spatial scale. 

The DynAPlus model (a spatially explicit, dynamic model for pre-
dicting pesticide exposure in the surface waters of cultivated mountain 
basins) (Morselli et al., 2018) is a conceptual model composed of two 
sub-models: the water-sediment model for river networks (DynANet; Di 
Guardo et al., 2006) and the spatially resolved air-soil model (SoilPlus; 
Ghirardello et al., 2010). The first (DynANet) assesses the fate of 
chemicals in the water-sediment systems and the second (SoilPlus) as-
sesses the fate of chemicals in the air, litter and soil system. In both the 
sub-models, the chemical mass balance is described by a time-dependent 

Table 1 (continued ) 

Author Year Journal Keywords 

Pesticides, Scenarios, Water 
management 

Villamizar and 
Brown 

2017 Catena Pesticide, Preferential flow, 
MACRO, SPIDER, In-stream, 
Catchment 

Winchell et al. 2017 Integrated 
Environmental 
Assessment and 
Management 

SWAT model, Pesticide 
exposure, Ecological risk 
assessment, Model 
parameterization, Modeling 
monitoring comparison 

Bannwarth et al. 2016 Journal of 
Environmental 
Management 

SWAT, MPMAS, Thailand, 
Environment, Eco- 
toxicological threshold, 
Impact assessment, Multi- 
agent system 

Ouyang et al. 2016 Science of the total 
Environment 

Pesticide, Temporal–spatial 
pattern, Agricultural 
development, Diffuse 
pollution, Water risk, 
Uncertainty 

Pullan et al. 2016 Science of the total 
Environment 

Catchment scale model, 
Parameter-efficient, Diffuse 
pesticide transfer, 
Drainflow, Drinking water 
resources 

Baffaut et al. 2015 Journal of 
Environmental 
Quality  

Gassmann et al. 2015 Journal of 
Environmental 
Management 

SWAT, MPMAS, Thailand, 
Environment, Eco- 
toxicological threshold, 
Impact assessment, Multi- 
agent system 

Ahmadi et al. 2014 Environmental 
Pollution 

Climate change, Hydrology, 
Water quality, Modeling, 
Nutrients, SWAT 

Bannwarth et al. 2014 Environmental 
Pollution 

Pesticide simulation, SWAT, 
Tropical catchment, 
Atrazine, Chlorothalonil, 
Endosulfan, ANSELM 

Boithias et al. 2014 Catena Application timing, Sorption 
properties, Metolachlor, 
Aclonifen, SWAT model, 
Save river 

Gagnon et al. 2014 Integrated 
Environmental 
Assessment and 
Management 

Stochastic modeling, 
Pesticide fate modeling, 
Water quality, Pesticide risk 
assessment, Canada 

Fohrer et al. 2014 Journal of 
Environmental 
Quality  

Ahmadi et al. 2013 Water Resources 
Research 

Nonpoint source pollution, 
Soil and water conservation, 
Mixed-variable 
multiobjective optimization, 
Atrazine, Nitrate, SWAT 

Bertuzzo et al. 2013 Advances in Water 
Resources 

Herbicide transport, Travel 
time, Residence time, 
Atrazine 

Gassmann et al. 2013 Hydrology and Earth 
System Sciences   
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equation solved using the Runge-Kutta numerical integration procedure 
(Di Guardo et al., 2006; Ghirardello et al., 2010). Data on land use, soil 
characteristics (i.e., texture, organic carbon fraction) and topography 
(DEM) are necessary to build up the model. In addition, meteorological 
data and chemical application rates are needed. The model divides the 
basin into sub-basins (each corresponding to a stream reach). Results are 
provided on a sub-basin or basin scale on an hourly, daily, monthly and 
annual basis. 

The IMPT (Integrated Model for Pesticide Transport) model is a semi- 
distributed conceptual model used to predict the fate and transport of 
pesticides at the basin outlet (Pullan et al., 2016). The model set-up 
requires several input data such as a soil map, land cover data and 
meteorological data (i.e., rainfall and temperature). Pesticide proper-
ties, such as “disappearance time” of 50% (DT50) and the organic 
carbon-water partition coefficient (KOC) are also needed. The transport 
of pesticides from soil is described with different equations assuming 
that the compounds’ mass bypasses the soil matrix and is transported 
into the surface water (Pullan et al., 2016). Results are provided at the 
basin outlet on a daily basis. 

iWaQa (Integrated Water Quality Model) is a semi-distributed and 
conceptual pesticide management model. It was originally developed by 
the Swiss Federal Institute of Aquatic Science and Technology for the 
management of small streams (Honti et al., 2017). iWaQa was further 
modified to be applied in large basins by including an explicit routing 
component (Moser et al., 2018). The model is characterized by two 
modules including different equations: the substance transfer module 
(transfer of pesticide from the field to the outlet of one sub-basin) and 
the routing module (transfer of pesticide in the stream to the outlet). 
Rainfall, temperature, discharge, land use and chemical compounds are 
the main inputs of the iWaQa model. Results are provided at different 
temporal scales (daily, hourly) and spatial scales (basin, subbasin). 

MACRO is a hydrological and water quality, physically based, one- 
dimensional numerical model developed by the Swedish University of 
Agricultural Sciences (Jarvis, 1995). To set up the model, weather data, 
soil characteristics, crop data and pesticide properties (i.e., half-lives, 
sorption constant) are needed. The model works at the field level and 
simulates both macropore and micropore flow with a two-flow system 
domain. The soil water flow and the transport of solutes in micropores 
were calculated with the Richards’ equation, while the flow in macro-
pores is computed with a similar approach to the kinematic wave (Jar-
vis, 1994). The model can be applied at the basin scale and it provides 
outputs on a daily basis and at the field level. 

The United State (US) Environmental Protection Agency (EPA) 
Pesticide Water Calculator (PWC) is a software, applicable to different 

water bodies (i.e., reservoir, ponds, custom water bodies), which in-
cludes the PRZM and Variable Volume Water Body Model (VVWM, 
Young, 2016). The first (PRZM) is used to compute the runoff, water 
erosion and pesticide transport (Suarez et al., 2006). The second 
(VVWM) is a model composed of specific mathematical modules to 
simulate the transport processes of chemical substances in water bodies 
(Burns, 2004). PWC input data include pesticide application (time, rate, 
physiochemical properties), climate variables, soil characteristics, water 
body characteristics, erosion and runoff processes. The software, which 
can be also applied at a regional scale (D’Andrea et al., 2020), provides 
compound concentrations at events or on a daily basis. 

The Vegetative Filter Strip Modeling System (VFSMOD) 
(Muñoz-Carpena et al., 1993) is a storm-based mathematical model for 
simulating runoff, infiltration sediment and pollutants filtered by 
vegetated strips. It works at the field or basin scale. It needs several input 
data such as, rainfall, soil properties, pesticide properties (i.e., transport, 
decay), DEM and filter strip properties (i.e., length, width). The pesticide 
transport and reduction due to the filtering capacity of the vegetation is 
computed using a generalized regression-based approach (Sabbagh 
et al., 2009). Results are provided in terms of efficiency reduction of the 
vegetated filter strip considered in the model simulation. 

Zin-AgriTra is a distributed conceptual hydrological and water 
quality model (Gassmann et al., 2013). The model works at the basin 
scale, which is divided into raster cells based on soil and land use 
characteristics (Gassmann, 2013). Rainfall data, pesticide properties, 
land use and soil properties are the main input data required for the 
model set up. Pesticide mass transport processes (sorption, trans-
formation) are calculated using first-order sorption kinetics and a 
first-order decay function, respectively (Gassmann et al., 2013). The 
model can be run at hourly or smaller intervals. Results are provided at 
the basin or sub-basin scale. 

Bertuzzo et al. (2013) defined a mathematical model to assess hy-
drology and herbicide transports. Weather, pesticide application rates 
and properties (half-life) are needed to build up the model. The model 
works at the basin scale and its theoretical framework is based on three 
sections. The first is named travel time formulation of transport, which is 
composed of different equations formalizing the hydrological cycle, 
water storage, water and solute fluxes. The second, named mixing 
assumption, is specific for the determination of the travel time distri-
bution of the water particles. The third, named solute transport, com-
putes the mass flux of solute associated with the flow considering the 
quantity of solute lost via evapotranspiration (Bertuzzo et al., 2013). 
Results are provided at the outlet on an annual, monthly or daily scale. 

Lutz et al. (2017) implemented a conceptual model aimed at 

Fig. 2. Global distribution of the study areas.  
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upscaling, at the basin scale, the sample-based Compound Specific 
Isotope Analysis (CSIA) information on pesticide degradation. The 
model is composed of two storage reservoirs: the first (source) represents 
the upper soil layer upon which the pesticide is applied, while the sec-
ond (transport zone) represents the unsaturated soil and the ground-
water layers (Benettin et al., 2013; Bertuzzo et al., 2013). Daily data of 
rainfall and potential evapotranspiration (ET0) are necessary to set-up 
the model, as well as punctual pesticide application rates and dates. 
The results (i.e., quantification of pesticide transport and degradation) 
are provided on a daily basis. 

Ammann et al. (2020) translated a perceptual model into a spa-
tialized conceptual model, working into the “SUPERFLEX” hydrological 
modeling framework (Fenicia et al., 2011; Kavetski and Fenicia, 2011). 
It defines the water balance as well as the processes of transport 
degradation and sorption of pollutants. The model works at the basin 
scale, which is subdivided into homogenous HRUs based on the different 
paths existing in the study area (i.e., impervious, connected, drained, 
groundwater). Several equations describing the water balance and the 
main elements of the pollutant mass balance formalize the processes in 
the SUPERFLEX model (Ammann et al., 2020). The conceptual model 

makes it possible to record results sub daily and at the basin level. 
Asfaw et al. (2018) proposed a physical distributed model, based on 

the travel time of surface runoff, to assess metaldehyde concentrations. 
The model can be applied at the basin scale and it requires rainfall data, 
land use, soil type and DEM. Surface runoff generation is computed with 
the Soil Conservation Service – Curve Number method (SCS–CN, 
Hjelmfelt, 1991). The runoff routing, within the flow pathways, is 
determined using a time variant travel time computation technique, 
which is composed of the kinematic wave approach proposed by Wong 
(1995). The metaldehyde wash-off is defined by the simplified formula 
for indirect loadings caused by runoff (Berenzen et al., 2005). Results are 
provided at the event scale. 

Gagnon et al. (2014) constructed a stochastic model and coupled it 
with the Pesticide Root Zone Model (PRZM) to evaluate the change in 
the risk of water contamination by pesticides across Canada between 
1981 and 2006. The pesticide fate model PRZM version 3.12.3 (Suarez, 
2006) was developed by the United States Environmental Protection 
Agency (freely available at http://www2.epa.gov/exposure-assessm 
ent-models/przm3-version-3123). 

Comber et al. (2019) developed a complex landscape scale 

Table 2 
Principal data of the papers: Authors and year, study area, model, substance, scenario.  

Author, year Study area Km2 Model Coupled models Pesticides Model scenarios      

H F I BMP CC LUC 

Ammann et al., 2020 Swiss, Eschibach basin 1.2 Perceptual model  x      
Cambien et al., 2020 Ecuador, Guayas basin 34,000 SWAT  x x     
D’Andrea et al., 2020 Argentina, Pampa regionD 500,000 PWC  x      
Purnell et al., 2020 England, Medway basin 2409 SWAT    x    
Comber et al., 2019 England, Wissey basin; Wales, Teifi 

basin  
Landscape model WaSim PSYCHIC x  x    

Quaglia et al., 2019 Belgium, Cicindria basin 10.7 Model-based (Mb) 
risk 

WEISS x   x   

Asfaw et al., 2018 England Leam basinB 300 Physical model    x    
Lauvernet and Munõz-Carpena 

2018 
FranciaA  VFSMOD SWINGO x x  x x  

Morselli et al., 2018 Italy, Novella basin 133 SoilPlus DynANet 
(DynAPlus)   

x    

Moser et al., 2018 Rhine basin 160,000 iWaQa AQUASIM x      
Carluer et al., 2017 France, Fontaine du Theil basin 1.28 VFSMOD        
Chen et al., 2017 USA, San Joaquin basin 15,000 SWAT  x   x   
Jones et al., 2017 Wales  MACRO     x  x 
Lu et al., 2017 England, Thames basin  INCA        
Lutz et al., 2017 France, Bas RhinA 0.47 Conceptual model  x      
Ouyang et al., 2017 China, Abujiao basin 141.5 SWAT  x   x   
Serpa et al., 2017 Portugal, São Lourenço basin 6.2 SWAT      x x 
Vernier et al., 2017 France, Charente basin 10,000 SWAT GenLU2 x x x x   
Villamizar and Brown 2017 Norwich, Wensum basin 650 MACRO&SPIDER  x      
Winchell et al., 2017 USA, Twenty-seven basin  SWAT  x      
Bannwarth et al., 2016 Thailand, Mae Sa basin 77 SWAT MPMAS  x x x  x 
Ouyang et al., 2016 China  SWAT  x x x x   
Pullan et al., 2016 England, Cherwell basinB  IMPT  x   x   
Baffaut et al., 2015 USA, Mississippi basin 73.4 SWAT  x   x   
Gassmann et al., 2015 Swiss, Ror basinB 1.95 ZIN-AgriTra  x      
Ahmadi et al., 2014 USA, Eagle Creek basin 248 SWAT  x    x  
Bannwarth et al., 2014 Thailand, Mae Sa basin 77 SWAT ANSELM x x x    
Boithias et al., 2014 France, Save basin 1110 SWAT  x      
Gagnon et al., 2014 Canada, 2290 SLC polygonsC  PRZM Stochastic model      x 
Fohrer et al., 2014 Germany, Kielstau basin 50 SWAT  x      
Ahmadi et al., 2013 USA, Eagle Creek basin 248 SWAT NSGA-II x   x   
Bertuzzo et al., 2013 Swiss, Aabach-Mönchaltorf basin 46 Mathematical model  x      
Gassmann et al., 2013 Swiss, Ror basin 1.95 ZIN-AgriTra  x      

A = Plot, part or strips. 
B= Subbasin. 
C= Polygon. 
D = Region. 
H= Herbicides. 
F= Fungicides. 
I= Insecticides. 
BMP= Best Management Practices. 
CC= Climate Change. 
LUC = Land Use Change. 

M. Centanni et al.                                                                                                                                                                                                                              

http://www2.epa.gov/exposure-assessment-models/przm3-version-3123
http://www2.epa.gov/exposure-assessment-models/przm3-version-3123


Environmental Pollution 316 (2023) 120553

7

framework (Landscape scale model) to assess the distribution of pesti-
cide risk areas. The model is based on the 
source-mobilization-delivery-impact model of the water pollutant 
transfer continuum (Lemunyon and Gilbert, 1993) and is composed of 
different modules. The portion of pesticides susceptible to runoff losses 
are computed based on the amount of applications net of soil absorption. 
Then, the SCS-CN (Hjelmfelt, 1991) method, included in the soil water 
balance model (WaSim, Hess and Counsell, 2000), was used to define the 
amount of pesticides mobilized by any rainfall event. Finally, the par-
titioning of pesticides transported in surface and drain flow pathways 

was determined using the Phosphorus and Sediment Yield CHaracteri-
sation In Catchments (PSYCHIC, Collins et al., 2007). The model input 
data are land cover, soil, slope, pesticide application rate, climatic data 
and digital elevation model. The outputs concern the spatial distribution 
of pesticide loads mobilized and delivered to the receiving watercourses 
(Comber et al., 2019). 

3.3. Pesticides 

Regarding the pesticides, 34 different compounds were modeled. 

Fig. 3. Relationship between geographical area and model.  

Fig. 4. Distribution of pesticides into three categories: herbicides, fungicides and insecticides.  
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Atrazine was the most studied (27.57%), followed by metolachlor 
(17.14%), isoproturon, glyphosate, acetoclhor, metaldehyde and 
chlorpyrifos (8.57%; Fig. 4). Pesticides were grouped into three cate-
gories: herbicides (with a frequency of 76%), insecticides (14%) and 
fungicides (10%) (Fig. 4). Atrazine was the most widely studied herbi-
cide (ten records), chlorpyrifos and metaldehyde were the most 
commonly modeled insecticides (three records). Finally, three records 
were found for fungicides: chlorothalonil and tebuconazole (Fig. 4). 

Isoproturon, metolachlor, and terbuthylazine were the most studied 
compounds (Fig. 5a). Indeed, isoproturon was investigated in nine 
countries, while, metolachlor and terbuthylazine were analyzed in eight 
studies. However, it should be noted that Austria, Belgium, France, 
Germany, Liechtenstein, Luxembourg, Netherlands and Switzerland 
were included in a single paper (Moser et al., 2018), which considered 
the whole Rhine basin as the study area (Fig. 5a). Other compounds 
investigated in more than two countries included atrazine (USA, Swiss, 
China and Thailand), chlorpyrifos (China, France and Italy), MCPA 
(England, France and Norway) and glyphosate (Argentina, Belgium and 
France) (Fig. 5a). 

Regarding the number of studies related to a single compound, 
metolachlor showed the highest number of records (Berenzen et al., 
2005), followed by isoproturon (Barreto et al., 2020) and atrazine 
(Bannwarth et al., 2014). France, Switzerland and the USA showed 
multiple records for the same substance because more than one study 
was found (Fig. 5a). 

Lastly, Fig. 5b shows the relation between the single compound and 
the model used. SWAT is the model that simulated the highest number of 
pesticides, followed by IMPT and MACRO. In addition, iWaQa was also 
frequently used, especially for modeling isoproturon, metolachlor and 
terbuthylazine (Fig. 5b). 

4. Discussions 

4.1. General comments on the results 

In this work, a dataset concerning modeling applications to simulate 
the fate of pesticides in surface waters was built up by analyzing 33 ISI 
papers (2013–2020). A set of 34 attributes, such as information about 

the model used, the study area, the calibration and the validation pro-
cesses, the compound investigated and the results in terms of loads, 
concentrations or critical sources areas were retrieved from the 
reviewed papers. The resulting dataset is an important source of infor-
mation that can be used and expanded for future studies. In addition, it 
can help users in selecting an appropriate model based on their objec-
tives. Further analysis could be related to specific issues such as the 
modeling of the drift of the pesticide or the fate of pesticides in small or 
intermittent streams (Lorenz et al., 2017; Szöcs et al., 2017; Wang et al., 
2019). Physical and chemical properties of pesticides and environmental 
factors (e.g., types of crops, soil properties, climate) influence the 
amount of substance that is released into the river system. Intermittent 
streams and spring waters tend to receive greater inputs of pesticides 
both because they are more interconnected with the surrounding land-
scape and because the dilution effect is low due to low streamflow. 
Therefore, proportionately higher pesticide contamination can be ex-
pected compared to large perennial rivers (Szöcs et al., 2017). However, 
a very limited number of studies on monitoring and modeling pesticides 
in small streams has been conducted and published in ISI journals 
(Lorenz et al., 2017; Szöcs et al., 2017). 

In the papers analyzed papers, 17 different models were applied to 
assess the fate of pesticides. MACRO, PRZM and SWAT were already the 
subject of other reviews (Quilbé et al., 2006; Payraudeau and Gregoire, 
2011; Mottes et al., 2013; Wang et al., 2019). Mottes et al. (2013) 
showed that MACRO and PRZM make it possible to apply pesticides with 
tillages as input, above the canopy or directly on the soil, while SWAT 
considers the transfer of pesticides in soils only after an aboveground 
application. However, PRZM and MACRO consider the effect of tillage 
on pesticide distribution only if tillage practices take place on the same 
day as the pesticide’s application (Mottes et al., 2013). Gagnon et al. 
(2014) showed that PRZM only estimates the amount of pesticides in the 
surface runoff and not in the stream, leading to an overestimation. Vil-
lamizar and Brown (2017), comparing MACRO with SPIDER, noted that 
MACRO does not account for the sub-lateral flow routing of pesticides 
and may underestimate compound concentrations, for example, of 
Clopyralid. On the other hand, SWAT was found to be one of the best 
performing models for assessing pesticide contamination under different 
conditions and within different BMPs (Quilbé et al., 2006; Mottes et al., 

Fig. 5. Relationship between pesticides and study area (a) and between pesticides and model (b). The black rectangle indicates all the records belonging to the 
Rhine basin. 

M. Centanni et al.                                                                                                                                                                                                                              



Environmental Pollution 316 (2023) 120553

9

2013). Indeed, SWAT is one of the most widely used models globally 
(Wang et al., 2019). The results of this overview confirmed that SWAT is 
currently the most used model, both in terms of model applications (15 
of 33) and in terms of geographical areas (8 of 19). This work also 
revealed that PRZM and MACRO are among the most commonly used 
models, with two case studies each. PRZM was included in the PWC 
model for pesticide risk assessment used by D’Andrea et al. (2020) in 
their study in the Pampa Region (Argentina). 

ZIN-AgriTra was found in two applications, which were carried out 
by the same authors (Gassmann et al., 2013; Gassmann et al., 2015) and 
in the same study area (Ror headwater basin, Swiss). This model does 
not include erosion and sediment transport; hence, the concentrations of 
sediment related substances could be underestimated. However, the 
authors affirmed that ZIN-AgriTra could also be applied in other areas 
(Gassmann et al., 2013; Gassmann et al., 2015). 

All the other models discussed in this review were applied in a single 
case study; thus, it is difficult to evaluate their performance in different 
environment conditions. 

In their multi-criteria analysis, Quilbé et al. (2006) pointed out that 
BASIN and GIBSI are two functional models to simulate the fate of 
pesticides both based on the equations used by the SWAT model. 
However, the use of these models seems to be very limited since neither 
the new nor the old reviews reported applications in case studies 
(Payraudeau and Gregoire, 2011; Mottes et al., 2013). 

Considering the global distribution of the studies, the main clusters 
were found in Europe, North and South America and Asia. These results 
are in line with what was reported by Wang et al. (2019) and Borrelli 
et al. (2021). In contrast with the latest reviews, this study highlighted 
that Europe was the continent with the highest number of model ap-
plications, while no studies were found in Africa and Australia. More-
over, it is important to underline that in some countries such as Russia, 
the limited number of ISI papers (or their absence) does not necessarily 
correspond to a lack of studies since the results have probably been 
published in the local language. 

Another key point that emerged from our analysis concerned the 
calibration and validation of the models. Among the 33 studies 
analyzed, 24 performed the calibration, of which 17 also reported the 
validation. In most cases, calibration and/or validation was performed 
for conceptual or physically based models (e.g., SWAT, ZIN-AgriTra) 
(Payraudeau and Gregoire, 2011; Wang et al., 2019). The calibration 
techniques (e.g., manual or automatic procedures) were extremely 
variable and specific for each study; thus, it is difficult to find a specific 
trend and to make some classifications. The causes of the difference 
between the number of studies performing the calibration and the 
number of studies performing the validation depend on the limited 
availability of observed data (i.e. concentrations and streamflow), which 
often makes authors lean towards calibration only to reduce model 
uncertainty (Gassmann et al., 2013; Wang et al., 2019; Ammann et al., 
2020; Ricci et al., 2022b). Field measurements, samplings and analytical 
determinations are expensive and, for this reason, monitoring is gener-
ally not carried out in developing countries (e.g., African countries) for 
some types of streams, such as intermittent rivers (De Girolamo et al., 
2022a). In other cases, field data are missing, making model calibration 
and validation impossible (Gagnon et al., 2014; Carluer et al., 2017; 
D’Andrea et al., 2020). Indeed, several authors pointed out that limited 
data availability is a limiting factor in model applications (Borrelli et al., 
2021; Ricci et al., 2022b; De Girolamo et al., 2022b). 

4.2. Level of pollutants in surface waters 

Regarding surface waters, the legally accepted concentrations of 
pesticides are very different from one country to another. This issue was 

already underlined by Li and Fantke (2022) who investigated the 
pesticide regulations for surface waters from 53 countries. The authors 
pointed out that large variations in pesticide regulations, standard types, 
and related numerical values exist and they concluded that regulatory 
inconsistencies accentuate the need for international collaboration on 
environmental management as well as specific water quality standards. 
The European Union (EU) regulates pesticides more tightly than China, 
Canada and the United States (Ouyang et al., 2017; EPA, 2022). EU 
directive 2013/39 (EU, 2013) identified priority substances for river 
ecosystems, defining the Annual Average (AA) and the Maximum Ad-
missible Concentrations (MAC). Moreover, in 2015, the EU published a 
list of substances for Union-wide monitoring in the field of water policy 
(Watch List) (Directive, 2015/495) and in 2018 published the second 
Watch List, which integrated and amended the previous one (Pietrzak 
et al., 2019). For the non-priority substances, in contrast, no limits are 
provided by the EU with reference to surface waters. However, several 
authors point out that non-priority substances can play a key role in the 
ecological status of aquatic environments (Brack et al., 2018; Posthuma 
et al., 2020; Wolfram et al., 2021). With EU directive 2020/2184 (EU, 
2020), the EU fixed the limits for pesticides in drinking waters at 0.1 μg L 
− 1 for a Single Generic Pesticide (SGP) and 0.5 μg L − 1 for the Total Of 
Pesticides (TOP). 

In this study, to give some information about the level of pesticides 
reported in the papers analyzed, it was chosen to compare the concen-
trations with the EU surface water quality standard for the priority 
substances and the EU drinking water quality standard for the non- 
priority substances. Among the main substances, the average concen-
tration of atrazine (0.685 μg L− 1; range 0.378–1.270 μg L− 1) was found 
to be slightly over the EU AA (0.6 μg L− 1) in the study carried out by 
Ouyang et al. (2017), who applied the SWAT model in the Abujiao basin 
(Northeast China). Ammann et al. (2020), applying a perceptual model 
included in the SUPERFLEX hydrological framework in the Eschibach 
basin (Northeast Switzerland), found atrazine concentrations at the 
event scale ranging from 0.02 to 40 μg L− 1. These values are much 
higher than the EU MAC (2 μg L− 1). Metolachlor ranged from 0 to 10 μg 
L− 1 in the work carried out by Boithias et al. (2014), who applied the 
SWAT model in the Save River Basin (South France). Moreover, Lutz 
et al. (2017) found concentrations of S-metolachlor on average higher 
than 10 μg L− 1, with a peak of 64.1 μg L− 1, by applying a conceptual 
model in the Alteckendorf basin (Bas-Rhin, France). In both these 
studies, the concentrations reported are higher with respect to the SGP 
limit (0.1 μg L− 1). Moser et al. (2018), who studied the transport of 
pesticides in the Rhine Basin by applying the iWaQa transfer model, 
found concentrations of S-metolachlor (0.01 μg L− 1) lower than the SGP 
limit and concentrations of the isoproturon lower than the EU AA (0.3 
μg L− 1). Morselli et al. (2018), who applied the DynAPlus model at the 
event scale in Northern Italy, found the peak of Chlorpyrifos (0.35 
μg L− 1) to be higher than the EU MAC (0.1 μg L− 1). Bannwarth et al. 
(2016) studied the transport of chlorothalonil using the SWAT model in 
the Mae Sa basin (Northern Thailand); they reported concentration 
values (0.005–0.006 μg L− 1) below the SGP limit. Among the other 
substances retrieved from the dataset analysis, aclonifen (0–5 μg L− 1) 
and cypermethrin (0.006–0.008 μg L− 1) have exceeded the limits re-
ported in the EU AA (aclonifen: 0.012–0.12 μg L− 1; cypermethrin: 
0.0005–0.005 μg L− 1) (Boithias et al., 2014; Bannwarth et al., 2016). 
Similarly, concentrations of terbuthylazine (0.04–35 μg L− 1 at event 
scale), isoprothiolane (0.571 μg L− 1), acetochlor (1.8 μg L− 1) and pro-
pyzamide (1.4 μg L− 1) were higher than the SGP limit (0.1 μg L− 1) 
(Pullan et al., 2016; Lu et al., 2017; Ouyang et al., 2017; Ammann et al., 
2020). 

Particular mention should be made of oxadiazon: a selective herbi-
cide studied by Ouyang et al. (2017). Although this compound 
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(0.016–0.107 μg L− 1) slightly exceeded the SGP limit, it was the only 
substance found in this review that was reported in the first Watch list 
(EU, 2015/495). Finally, substances such as pendimethalin, fenpropi-
morph, metazachlor, flufenacet, chlorotoluron, carbetamide, clopyralid, 
dimethoate, dichlorvos and malathion showed low concentrations from 
below to slightly over the SGP limit (Fohrer et al., 2014; Ouyang et al., 
2016; Villamizar and Brown, 2017; Cambien et al., 2020). 

Based on the results of this study, it is evident that several areas are 
facing water quality issues relating to pesticides, confirming the study by 
Wang et al., 2019). Several pesticides exceed ecotoxicological thresh-
olds. Hence, mitigation measures to reduce exposure in aquatic systems 
should be designed. Another key point arising from this study is that, 
alongside a good number of studies that standardized the representation 
of the results (e.g. concentrations in μg L− 1), there are other studies that 
reported only the maps of the critical source areas (Gagnon et al., 2014; 
Gassmann et al., 2015; Quaglia et al., 2019), the pesticide loads (Gass-
mann et al., 2013; Bannwarth et al., 2014; Baffaut et al., 2015; Chen 
et al., 2017) or the concentrations in ppb (Winchell et al., 2018). This 
contributes to the loss of some information about specific compounds 
and to making the comparison incomplete. For instance, in this work, no 
concentrations data were available for chlorpyrifos, diuron, tebucona-
zole and glyphosate. 

5. Conclusions and recommendations for future works 

The increased use of pesticides in agriculture is a threat to soil and 
water, ecosystems, and human health. The awareness of the potential 
risks of the excessive use of pesticides led to a social demand for quan-
tifying their presence in the environment (i.e., soil and water resources) 
and for improving cropping systems in order to reduce their use. 

This review summarizes the current state of knowledge on the 
modeling of pesticide surface waters. The results showed that water 
contamination with pesticides is a priority issue of global concern. Based 
on current published studies, it was found that modeling approaches for 
assessing the fate of pesticides are constantly evolving. Several models 
were developed that operate at the field, sub-basin and basin scale and 
the model algorithms work well with diverse watershed conditions, 
management strategies and pesticide properties. However, this review 
showed that data availability is still a limiting factor in model imple-
mentation; for this reason, most of the studies have been developed in 
Europe, North America and China. In particular, pesticide concentra-
tions measured in the field, which are needed to calibrate models, are 
the main limiting factor. 

The research gaps that have not been filled by the studies analyzed 
include the followings: (i) integration of models operating at the field 
and watershed scales, as well as the integration of in-pond and instream 
modules; (ii) specific modules for simulating physically based BMPs for 
managing pesticide excess; (iii) modules able to prioritize the measures 
for reducing pesticide losses and to develop the relative economic 
analysis; (iv) engagement of local stakeholders in model implementation 
processes. 

Future development should also assess the presence and impact of 
the possible effects of multiple substances operating in combination on 
the aquatic environment around the world in the context of water supply 
and human safety. 
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Quilbé, R., Rousseau, A.N., Lafrance, P., Leclerc, J., Amrani, M., 2006. Selecting a 
pesticide fate model at the watershed scale using a multi-criteria analysis. Water 
Quality Research Journal 41 (3), 283–295. https://doi.org/10.2166/wqrj.2006.032. 

Ricci, G.F., D’Ambrosio, E., De Girolamo, A.M., Gentile, F., 2022a. Efficiency and 
feasibility of Best Management Practices to reduce nutrient loads in an agricultural 
river basin. Agric. Water Manag. 259, 107241 https://doi.org/10.1016/j. 
agwat.2021.107241. 

Ricci, G.F., Zahi, F., Ambrosio, E.D., Girolamo, A. M. De, Parete, G., Debieche, T., 
Gentile, F., 2022b. Evaluating Flow Regime Alterations Due to Point Sources in 
Intermittent Rivers: A Modelling Approach. 

Sabbagh, G.J., Fox, G.A., Kamanzi, A., Roepke, B., Tang, J.-Z., 2009. Effectiveness of 
vegetative filter strips in reducing pesticide loading: quantifying pesticide trapping 
efficiency. J. Environ. Qual. 38 (2), 762–771. https://doi.org/10.2134/ 
jeq2008.0266. 

Serpa, D., Nunes, J.P., Keizer, J.J., Abrantes, N., 2017. Impacts of climate and land use 
changes on the water quality of a small Mediterranean catchment with intensive 
viticulture. Environ. Pollut. 224, 454–465. https://doi.org/10.1016/j. 
envpol.2017.02.026. 

Silva, V., Mol, H., Zomer, P., Tienstra, M., Ritsema, J., Geissen, V., 2019. Pesticide 
residues in European agricultural soils – a hidden reality unfolded. Sci. Total 
Environ. 653, 1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441. 

Stone, W., Gilliom, R., Ryberg, K., 2014. Pesticides in U.S. Streams and rivers: occurrence 
and trends during 1992–2011. Environ. Sci. Technol. 48 (19), 11025–11030. 
https://doi.org/10.1021/es5025367. 

Suarez, L.A., 2006. PRZM-3: A Model for Predicting Pesticide and Nitrogen Fate in the 
Crop Root and Unsaturated Soil Zones: User’s Manual for Release 3.12.2 [Internet]. 
US Environmental Protection Agency, National Exposure Research Laboratory, 
Athens (GA). Ecosystems Research Division. EPA/600/R-05/111. [Cited 2012 April 
9]. Available from:  
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