
Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Stability and convergence of dynamical
decoupling with finite amplitude controls

Cite as: J. Math. Phys. 63, 112206 (2022); doi: 10.1063/5.0101259
Submitted: 30 May 2022 • Accepted: 25 October 2022 •
Published Online: 11 November 2022

Daniel Burgarth,1 Paolo Facchi,2 and Robin Hillier3,a)

AFFILIATIONS
1 Center for Engineered Quantum Systems, Macquarie University, Sydney 2109, NSW, Australia
2Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy and INFN, Sezione di Bari, I-70126 Bari, Italy
3Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, United Kingdom

a)Author to whom correspondence should be addressed: r.hillier@lancaster.ac.uk

ABSTRACT
Dynamical decoupling is a key method to mitigate errors in a quantum mechanical system, and we studied it in a series of papers dealing,
in particular, with the problems arising from unbounded Hamiltonians. The standard bangbang model of dynamical decoupling, which we
also used in those papers, requires decoupling operations with infinite amplitude, which is, strictly speaking, unrealistic from a physical
point of view. In this paper, we look at decoupling operations of finite amplitude, discuss under what assumptions dynamical decoupling
works with such finite amplitude operations, and show how the bangbang description arises as a limit, hence justifying it as a reasonable
approximation.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0101259

I. INTRODUCTION
The control of quantum noise and the suppression of decoherence in a quantum mechanical system have been the focus of quantum

information theory for a long time; cf. Ref. 5 for an overview. On the one hand, there are error-correcting methods that allow us to correct for
errors by encoding the information in subspaces and to correct for leakage by measurements and gates. On the other hand, there are error-
mitigation methods that aim to reduce errors before they happen by sequences of gates. Dynamical decoupling is a key tool in this regard.
First presented in 1998 in Refs. 1 and 2, the underlying idea goes back to nuclear magnetic resonance (NMR).3,4 It has been studied and used
by both theoretical and experimental physicists.5

The key idea of dynamical decoupling is to apply certain correction operations to a given quantum system interacting with a surrounding
bath or environment in an unknown and unwanted way. These decoupling operations act on the system as unitary operators, and usually,
they are applied in a cyclic pattern and at a constant frequency. The general hope is that as this frequency tends to infinity, decoherence
tends to zero. A formal proof not taking into account domain issues of unbounded Hamiltonians can already be found in Ref. 2. Intuitively
speaking, the idea is that for short times, the system drifts slowly into some fixed direction, and these correction operations quickly rotate this
fixed direction. These rotated drifts cancel each other to first order, and the net movement after some time is close to zero. Finding precise
mathematical conditions and making rigorous statements as to when this does actually work is an open question. A first important step in
that direction was made by us in Ref. 6, where we provided some necessary and sufficient conditions in order for dynamical decoupling to
work, and we also studied a number of specific models in more detail.13

In most investigations, dynamical decoupling is understood to be the so-called bangbang dynamical decoupling,2 where the correction
operations are carried out in the form of instantaneous pulses with a fixed frequency. This means that the correction operations need to have
infinite amplitude, which makes the description unrealistic from a physical point of view. Therefore, it makes sense to look at correction
operations, which are implemented by finite-amplitude pulses of certain shapes that last for a nonzero amount of time.7,8 We will call this
continuous dynamical decoupling in contrast to the usual bangbang dynamical decoupling. In the case of bounded Hamiltonians, this has been
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studied before5 from various points of view. In this paper, we would like to look at potentially unbounded Hamiltonians on a joint system
H =Hs ⊗He, where Hs is a finite-dimensional system of interest and He is a potentially infinite-dimensional environment.

The first question we deal with here is what happens when the relative pulse length (i.e., the actual pulse length divided by the time
difference between two consecutive operations) tends to zero and, hence, the amplitude tends to infinity. One might suspect that the time
evolution of the system should, in some sense, converge to the time evolution under bangbang dynamical decoupling. In Sec. III, we prove
that this is, indeed, the case. This means that bangbang dynamical decoupling is not some abstract unphysical framework, but instead, a
reasonable and mathematically simple approximation of the true situation, which, among other things, justifies the previous research on
bangbang dynamical decoupling.

The second question we ask is under what assumptions dynamical decoupling with finite amplitude pulses works directly, without having
to consider the limit of the relative pulse length tending to zero. It turns out that the assumptions one has to make are stronger than in the
bangbang case in order to overcome two obstacles. The first obstacle is analytic in nature and relates to domains of the bath Hamiltonians;
hence, it may arise in the case of infinite-dimensional environments only. The second obstacle is rather algebraic in nature and poses a problem
in the case of finite-dimensional environments as well.

In Sec. IV, we present a finite-dimensional example where the second obstacle is present and where continuous dynamical decoupling
does not work although the bangbang dynamical decoupling would work. However, in light of our first result, in the limit where the relative
pulse length becomes shorter and shorter, the overall time evolution of this example becomes that of bangbang dynamical decoupling, which,
in turn, does work. In Theorem 4.2, we study sufficient conditions in order to overcome the analytic obstacle, and we determine the resulting
time evolution. In the case of bounded Hamiltonians, we can also provide concrete estimates on the speed of convergence depending on the
norm of the Hamiltonian and a few other parameters; see Theorem 4.5.

Finally, in Sec. V, we deal with the assumptions to make in order to overcome the second of the above-mentioned obstacles, which is
a constraint on the order of the decoupling operations. For this part, we ask that the set of decoupling operations be arranged as a Cayley
graph and a full decoupling cycle be represented as an Euler cycle in this Cayley graph. In this case, we speak of Euler dynamical decoupling,
which, by construction, is a special case of continuous dynamical decoupling. Euler dynamical decoupling was first introduced in Ref. 9, but
without dealing with the sophisticated analytic problems of unbounded Hamiltonians. Here, we provide sufficient conditions in order for
Euler dynamical decoupling to work, and we close with an interesting example where this is, indeed, the case.

To summarize, we can say that continuous dynamical decoupling or, at least, its more restrictive form of Euler dynamical decoupling
does, indeed, work under some fairly strong assumptions, even in the context of unbounded Hamiltonians. However, the description of
continuous dynamical decoupling is technically more involved and, moreover, often, only the weaker assumptions of bangbang dynamical
decoupling are met, and we can say that in that case, bangbang dynamical decoupling is a reasonable and useful approximation of reality.

II. PRELIMINARIES
Let us consider a finite-dimensional quantum system with Hilbert space Hs, say of dimension d, coupled to an environment with infinite-

dimensional separable Hilbert space He, with the total space H ∶=Hs ⊗He. The total Hamiltonian is given by a (possibly unbounded) densely
defined self-adjoint operator [H,D(H)]. We consider dynamical decoupling of this composite system; see Ref. 6, Definition 2.1. Moreover,
we frequently write u instead of u⊗ 1, for u ∈ U(Hs).

Definition 2.1. A decoupling set for Hs is a finite set of unitary operators V ⊂ U(Hs) such that

1�V ��v∈Vvxv∗ = 1
dimHs

tr(x)1Hs for all x ∈ B(Hs).
Let N be a multiple of the cardinality �V �. A decoupling cycle of length N is a cycle (v1, v2, . . . , vN) through V such that each element of V
appears the same number of times.

Remark 2.2. Sometimes, we consider “reduced” decoupling sets, namely sets V such that the above equation holds only for specific
given x. The idea behind this is that, often, one knows more about the Hamiltonian that has to be decoupled and, hence, does not need to
work in complete generality; moreover, having a smaller number of decoupling operations may simplify the physical implementation and
make the procedure more practicable.

Running through the cycle over a time period [0, t] results in the time evolution

F(t) ∶= e−i t
N HγN ⋅ ⋅ ⋅ e−i t

N Hγ2e−i t
N Hγ1

= v∗N�e−i t
N vN Hv∗N ⋅ ⋅ ⋅ e−i t

N v2Hv∗2 e−i t
N v1Hv∗1 �vN ,

where γk ∶= v∗k vk−1, for k = 1, . . . , N, with v0 ∶= vN . Write Γ ⊂ U(Hs) for the set of all those γk. Notice that there is a gauge freedom in the
choice of the cycle. Indeed, (v1, v2, . . . , vn) is equivalent to the cycle (ṽ1, ṽ2, . . . , ṽn) with ṽk = w∗vk for an arbitrary unitary w ∈ V : they
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generate the same control sequence, γk = v∗k vk−1 = ṽ∗k ṽk−1, and if one is decoupling, so is the other. Therefore, without loss of generality, in
the following, we will always fix the gauge w = vN ; that is, we will assume that the last element of the cycle is the identity ṽN = 1 (and drop the
tilde).

We repeat the cycle several times and, hence, write vk+jN ∶= vk, for every k ∈ {1, . . . , N} and j ∈ N. If the cycle is applied m times over a
time interval [0, t] with (standard) instantaneous decoupling operations, with the operation γk = v∗k vk−1 applied at time (k−1)t

mN , we have the
total time evolution (in the canonical gauge)

F� t
m
�m = e−i t

mN HγmN ⋅ ⋅ ⋅ e−i t
mN Hγ2 e−i t

mN Hγ1

= �e−i t
mN vmN Hv∗mN ⋅ ⋅ ⋅ e−i t

mN v2Hv∗2 e−i t
mN v1Hv∗1 �. (1)

We say that bangbang dynamical decoupling works for this given decoupling set V and decoupling cycle (v1, . . . , vN) if there is a self-adjoint
B on He such that

F� t
m
�m → 1⊗ e−itB, m→∞,

strongly and uniformly for t in compact intervals. For a slightly weaker notion of decoupling, see Ref. 10.
Since these instantaneous pulses require infinite amplitude, they are, strictly speaking, unphysical and one considers a finite amplitude

analog; namely, consider a smooth path γk(s) in U(Hs) such that

γk(s) =
�������

1, s ≤ 0,
v∗k vk−1, s ≥ 1.

(2)

Moreover, let Ak = A∗k ∈ B(Hs) be such that γk = v∗k vk−1 = e−iAk , and consider the path

Ak(s) ∶= iγ′k(s)γk(s)∗ ∈ B(Hs), (3)

with Ak(s) = Ak(s)∗. Physically, this describes the shape and direction of the smoothed out dynamical decoupling pulse. Often, as shown in
Fig. 1, one might be interested in Ak(s) = φk(s)Ak with φk being an integrable function with support in [0, 1] and ∫Rφk(s)ds = 1, but we try to

FIG. 1. An example of decoupling pulses for a cycle of length N = 2, with one element of the cycle being denoted by blue color and the other one by red color. For fixed
overall time t, we repeat the cycle m times. For each of the two elements of the decoupling cycle, we choose different pulse shapes Aλ

k(s), with k = 1, 2. We show the
dependence on the scaling parameter λ; namely, in addition to λ = 1 (full line), we include the case λ = 1

2 (dashed line) and the limit λ→ 0 (singular dotted line). Each pulse
has support on an interval of length λt

mN , and the area under each pulse is independent of λ. As λ→ 0, the pulses become δ pulses with infinite amplitude, which corresponds
to bangbang dynamical decoupling. Theorem 3.1 considers this convergence, while Theorems 4.2 and 5.2 work with the case λ > 0 corresponding to continuous dynamical
decoupling.
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keep things as general as possible. Now, for every fixed k and τ > 0, consider the time-dependent Schrödinger equation

d
ds

uk(τ; s) = −i�1
τ

Ak(s�τ) +H�uk(τ; s), uk(τ; 0) = 1, s ∈ [0, τ]. (4)

For time-dependent unbounded Hamiltonians, it is, in general, not obvious that solutions to the Schrödinger equation exist. However, in this
simple case with H time-independent and Ak(s) bounded, we know from Ref. 11, Theorem 5.3.1, or Ref. 12, Theorem 1.2, that a strongly
continuous solution, which preserves D(H), denoted by the time-ordered exponential

uk(τ; s) =←�exp�−i� s

0
�1

τ
Ak(r�τ) +H�dr�, s ∈ [0, τ],

exists. In analogy to the previous case, running once through a complete continuous decoupling cycle over a time period [0, t] results in the
time evolution

F(t) ∶= uN(t�N; t�N) ⋅ ⋅ ⋅u2(t�N; t�N) u1(t�N; t�N). (5)

In analogy to the previous definition, we say that continuous dynamical decoupling works for this system with given decoupling set
V , decoupling cycle (v1, . . . , vN), and pulse shapes γk(s) if there is a self-adjoint B on He such that

F� t
m
�m → 1⊗ e−itB, m→∞,

strongly and uniformly for t in compact intervals.

III. APPROXIMATION OF INSTANTANEOUS SINGULAR DECOUPLING PULSES
This section deals with the question whether bangbang dynamical decoupling is a good approximative description of the actual physical

continuous dynamical decoupling. We will not make any assumption as to whether continuous dynamical decoupling works, but we will
assume that bangbang dynamical decoupling works, for a given system and dynamical decoupling cycle.

We consider the time evolution unitary,

�e−i t
mN HγN ⋅ ⋅ ⋅ e−i t

mN Hγ1�m = �e−i t
mN He−iAN ⋅ ⋅ ⋅ e−i t

mN He−iA1�m
, (6)

under bangbang (instantaneous) dynamical decoupling, where we repeat a given decoupling cycle (v1, . . . , vN)m times over a time period[0, t], realized through pulses γk = v∗k vk−1 = e−iAk , with k = 1, . . . , N, as introduced above.
Given the smooth function Ak(s) from (3), for every λ ∈ (0, 1], let

A(λ)k (s) ∶= 1
λ

Ak� s
λ
� (7)

and γk,λ(s) ∶= γk(s�λ). Then, we consider the time-dependent Hamiltonian

Hλ(s) = H + N�
k=1

A� λt
N �

k �s − (k − 1) t
N
�, s ∈ [0, t], (8)

with constant domain D(Hλ(s)) = D(H). The kth pulse A(λt�N)
k (s − (k − 1)t�N) has a finite width λt�N and is supported in [(k − 1)t�N,(k − 1 + λ)t�N], as shown in Fig. 1. We can see that the conditions in Ref. 11, Theorem 5.3.1, or alternatively, the slightly simplified conditions

in Ref. 12, Theorem 1.2, are fulfilled, individually for each k, with Y = D(H) and � ⋅ �Y the graph norm of H; hence, the time-dependent
Schrödinger equation for Hλ(s) has got a strongly continuous solution, and hence, the corresponding analog of (5) is

Fλ(t) ∶= uN(t�N, λ; t�N) ⋅ ⋅ ⋅u2(t�N, λ; t�N) u1(t�N, λ; t�N), (9)

where

uk(τ, λ; s) =←�exp�−i� s

0
�A(λτ)

k (r) +H�dr�, s ∈ [0, τ].
The time evolution after m decoupling cycles is then Fλ(t�m)m.
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We have

Theorem 3.1. Suppose that bangbang dynamical decoupling works for a given quantum system with decoupling cycle. Then, dynamical
decoupling with finite-amplitude pulses A(λ)k works arbitrarily well by choosing λ > 0 sufficiently small. More precisely, there is a self-adjoint B
on He such that

lim
m→∞ lim

λ→0
Fλ(t�m)mξ = 1⊗ e−itBξ,

for all ξ ∈H and uniformly for t in compact intervals.

Roughly speaking, the theorem tells us that, under reasonable assumptions, the bangbang model is an adequate mathematical
approximation of a physical setup with finite amplitude decoupling pulses.

Proof. First, we notice that, for every ξ ∈H,

�Fλ(t�m)mξ − 1⊗ e−itBξ� ≤ �Fλ(t�m)mξ − F(t�m)mξ� + �F(t�m)mξ − 1⊗ e−itBξ�, (10)

where F(t�m)m has been defined in (1). We choose B and m such that the second term on the RHS becomes sufficiently small, which is
possible if the standard bangbang dynamical decoupling scheme works. Moreover, for this m, we will show below that we can then choose
λ > 0 small enough such that the first term on the RHS becomes sufficiently small, which proves the theorem.

Now rather than looking at the whole interval [0, t] with mN decoupling operations, we would like to look at one of the subintervals[(k − 1)τ, kτ] of width τ = t�(mN). The overall time evolution is a product of the time evolutions over these mN subintervals, so if we can
show strong convergence on these subintervals,

uk(τ, λ; τ) ξ → e−iτHγk ξ, λ↓0,

for all ξ ∈H, then by the strong continuity of multiplication, it follows for the total time evolution. We get

uk(τ, λ; τ) =←�exp�−i� τ

0
�A(λτ)

k (s) +H�ds� =←�exp�−i� 1

0
�A(λ)k (s) + τH�ds�

= e−iτH←�exp�−i� 1

0
eisλτHAk(s)e−isλτHds�.

Thus, all we need to show is that ←�exp�−i� 1

0
eisλτHAk(s)e−isλτHds�→←�exp�−i� 1

0
Ak(s)ds� = γk,

strongly, as λ→ 0.
Recall, for example from Ref. 12, Eq. (5.3), that if Uj(t) =←�exp(−i∫ t

0 Hj(s)ds) are the unitary propagators generated by two bounded
self-adjoint time-dependent operators Hj(t), for j = 1, 2, then

U1(t) −U2(t) = −i� t

0
U1(t)U1(s)∗(H1(s) −H2(s))U2(s)ds,

whence
�(U1(t) −U2(t))ξ� ≤ � t

0
�(H1(s) −H2(s))U2(s)ξ�ds.

Applying this with
H1(s) = eisλτHAk(s)e−isλτH , H2(s) = Ak(s),

and using our above computations, we obtain

��uk(τ, λ; τ) − e−iτHγk�ξ� = ��eiτHuk(τ, λ; τ) − γk�ξ�
≤ � 1

0
��eisλτHAk(s)e−isλτH − Ak(s)�γk(s)ξ�ds

= � 1

0
��Ak(s), e−isλτH� γk(s)ξ�ds→ 0,

as λ ↓ 0, by dominated convergence, using the strong continuity of λ� e−isλτH , and hence, pointwise convergence of the integrand together
with its boundedness by 2�Ak�∞�ξ�.
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So far, this has been for one specific choice of k. However, Fλ(t�m) is actually an mN-fold product, where strong convergence holds for
each of the mN factors. Due to the strong continuity of multiplication of uniformly bounded factors, we see that the first term on the RHS of
(10) can be made arbitrarily small as λ ↓ 0. �

Remark 3.2. If D ⊂ D(H) is a subspace that is invariant under all γk(s) and Ak(s) and such that

s ∈ [0, 1]� �HAk(s)γk(s)ξ�, �Hγk(s)ξ�
are integrable for every ξ ∈ D, the above proof also gives us a simple estimate on the speed of convergence in Theorem 3.1 relative to a given
vector. Namely, for every ξ ∈ D, we have

��uk(τ, λ; τ) − e−iτHγk�ξ� ≤ � 1

0
��Ak(s), e−isλτH� γk(s)ξ�ds→ 0

= � 1

0
�Ak(s)� ��e−isλτH − 1�γk(s)ξ �ds +� 1

0
��e−isλτH − 1�Ak(s)γk(s)ξ�ds

≤ λτ� 1

0
(�Ak(s)� �Hγk(s)ξ� + �HAk(s)γk(s)ξ�)ds,

which is linear in λτ. Taking the sum over k removes τ and turns this into an upper bound proportional to λ, so the convergence to bangbang
dynamical decoupling is of order O(λ).

IV. CONTINUOUS DECOUPLING
One may ask the question whether continuous dynamical decoupling works automatically, provided bangbang dynamical decoupling

works. The following example shows that this is not the case.

Example 4.1. Let us consider the simplest case of a qubit, with a trivial environment He = C, so our Hilbert space is H =Hs = C2. This
means that the total Hamiltonian H is bounded. Let us denote the Pauli matrices as {X, Y , Z}. The standard decoupling set V for which
bangbang dynamical decoupling works is given by the finite group generated by the Pauli matrices. Due to the cancellation of phases, it
suffices to focus on the decoupling cycle (X, Y , Z, 1) of length N = 4. The bangbang evolution is given by

�1e−i t
4m H1Ze−i t

4m HZYe−i t
4m HYXe−i t

4m HX�m
,

and this tends to 1 as m→∞. We can use the properties of Pauli matrices to simplify this expression as

(−1)m�e−i t
4m HZe−i t

4m HX�2m = (−1)m�e−i t
4m He−i π

2 Ze−i t
4m He−i π

2 X�2m
.

Let us imagine, instead, that the experimentalist performs the sequence in a continuous fashion with rectangular pulses of full length t�(4m),
which means λ = 1 in the notation of Sec. III. The overall time evolution then becomes

F1� t
m
�m = (−1)m�e−i π

2 Z−i t
4m He−i π

2 X−i t
4m H�2m

.

For a large m, we can split the exponentials as

e−i π
2 σ−i t

4m H = e−i π
2 σe−i t

4m Hσ +O� 1
m
�,

where Hσ is the Zeno Hamiltonian14 of H with respect to the strong part σ = X, Z. The hope is that this recovers dynamical decoupling even
with the pulses spread out. However, the error term might accumulate to something of O(1) under exponentiation, and we will show now
that this is, indeed, sometimes the case.

To this end, consider the choice H = X so that

F1� t
m
�m = (−1)m�e−i π

2 Z−i t
4m Xe−i π

2 X−i t
4m X�2m

.

In the large m limit, only terms up to order 1�m contribute, so we neglect all higher order terms.
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For the first term on the right-hand side, we have

e−i π
2 Z−i t

4m X = −iZ − i
t

4m�
1

0
e−i(1−s) π

2 ZXe−is π
2 Zds +O� 1

m2 � = −iZ − i
t

2πm
X +O� 1

m2 �,

while for the second term, we get

e−i π
2 X−i t

4m X = (−iX)�1 − i
t

4m
X +O� 1

m2 ��.
Thus,

lim
m→∞F1� t

m
�m = lim

m→∞(−1)m��−iZ − i
t

2πm
X�(−iX)�1 − i

t
4m

X��2m

= lim
m→∞(−1)m�−iY − t

2πm
1 + i

t
4m

Z�2m
.

Finally, squaring out the right-hand side and using anti-commutativity of Pauli matrices, we obtain

lim
m→∞F1� t

m
�m = lim

m→∞(−1)m�−1 + i
t

πm
Y�m = e−i t

π Y ,

which is different from a multiple of 1, in general. So, indeed, continuous dynamical decoupling does not work for the standard decoupling
set.

The next theorem provides some sufficient criteria as to whether limm→∞Fλ� t
m�m exists in the case of continuous pulses and what it is

equal to, in general.

Theorem 4.2. Consider a (not necessarily decoupling) cycle (v1, v2, . . . , 1) through U(Hs). Assume that

(i) there is a dense subspace D ⊂ D(H) that is invariant under uk(t�N, λ; t�N) and γk(s), for all k, s, t, and such that s ∈ [0, 1]� �Hγk(s)ξ�
is integrable, for all ξ ∈ D;

(ii) the operator

1 − λ
N

N�
k=1

vkHv∗k + λ
N

N�
k=1

vk−1� 1

0
γk(s)∗Hγk(s)ds v∗k−1

is essentially self-adjoint on D, and we denote its closure by Hλ.

Then,

Fλ� t
m
�m

ξ → e−itHλ ξ, m→∞,

for all ξ ∈H and uniformly for all t in compact intervals.

Remark 4.3. Under the assumptions of Theorem 4.2 for all λ ∈ [0, 1], it follows from the Trotter–Kato theorem (Ref. 15, Theorem 3.4.8)
that

e−itHλ ξ → e−itH0 ξ, λ→ 0,

for all ξ ∈H and uniformly for all t in compact intervals. Comparing with Theorem 3.1, we, thus, have

lim
m→∞ lim

λ→0
Fλ� t

m
�m

ξ = lim
λ→0

lim
m→∞Fλ� t

m
�m

ξ,

for all ξ ∈H and all t ∈ R; that is, we can swap the limits of letting the number of repetitions of the decoupling cycle go to infinity and that of
the relative pulse length going to 0.
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Proof. Using (i), we see that F(t) as defined in (5) leaves D invariant, and hence, by setting uk ∶= uk(t�N, λ; t�N), we obtain

Fλ(t) − 1
t

ξ = ∏N
k=1 uk(t�N, λ; t�N) − 1

t
ξ

= ∏N
j=1 uj −∏N

l=1 γl

t
ξ

= ∏N
j=1 uj − �∏N

j=2 uj�γ1

t
ξ + �∏N

j=2 uj�γ1 − �∏N
j=3 uj�γ2γ1

t
ξ + ⋅ ⋅ ⋅ + uN�∏N−1

l=1 γl� −∏N
l=1 γl

t
ξ

= N�
k=1

�
�

N�
j=k+1

uj
�
�

uk − γk

t
�k−1�

l=1
γl�ξ

= N�
k=1

�
�

N�
j=k+1

uj(t�N, λ; t�N)��
uk(t�N, λ; t�N) − γk

t
v∗k−1ξ,

which is well-defined on D.
We have

uk(t�N, λ; t�N) = e−i t
N (1−λ)Hγk

←�exp�−i
λt
N �

1

0
γk(s)∗Hγk(s)ds�,

and the first term on the right-hand side is clearly differentiable with respect to t. In order to study the second one, let us make the following
consideration: if Uα(t, s) solves the differential equation

d
ds

Uα(t, s) = iUα(t, s)αH(s),
with α ∈ R, then it also solves the following integral equation

Uα(t, s) − 1 = −iα� t

s
Uα(t, r)H(r)dr.

Thus,

�Uα(1, 0) − 1
α

ξ+ i� 1

0
H(r)ξdr� = � − i� 1

0
(Uα(1, r) − 1)H(r)ξdr� ≤ � 1

0
�(Uα(1, r) − 1)H(r)ξ�dr

for suitable ξ. Now, the integrand is dominated by 2�H(r)ξ�, and we require ξ to be in all D(H(r)) and such that this is integrable on [0, 1];
furthermore, the integrand converges to 0 as α→ 0, pointwise for every r ∈ [0, 1]. Thus, by Lebesgue’s dominated convergence theorem, we
get that the right-hand side converges to 0 as α→ 0; in other words,

Uα(1, 0) − 1
α

ξ → −i� 1

0
H(r)ξ dr.

We apply this to our setting with α = t and

H(r) = λ
N

γk(r)∗Hγk(r)
to obtain the differentiability of Ut(1, 0) =←�exp�−i λt

N ∫ 1
0 γk(s)∗Hγk(s)ds� with respect to t, and hence, by the product rule,

uk(t�N, λ; t�N) − γk

t
ξ → �−i

λ
N

γk� 1

0
γk(s)∗Hγk(s)ds − i

1 − λ
N

Hγk�ξ,

as t → 0, for all ξ ∈ D as in assumption (i). Hence, we obtain

lim
t→0

Fλ(t) − 1
t

ξ = N�
k=1

vk�−i
λ
N

γk� 1

0
γk(s)∗Hγk(s)ds − i

1 − λ
N

Hγk�v∗k−1ξ,

for all ξ ∈ D.
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By assumption (ii),

N�
k=1

vk� λ
N

γk� 1

0
γk(s)∗Hγk(s)ds + 1 − λ

N
Hγk�v∗k−1 = λ

N

N�
k=1

vk−1�� 1

0
γk(s)∗Hγk(s)ds�v∗k−1 + 1 − λ

N

N�
k=1

vkHv∗k (11)

is essentially self-adjoint on D with closure Hλ. We can apply Chernoff’s theorem (Ref. 16, Theorem 11.1.2) to obtain that

Fλ� t
m
�m

ξ → e−itHλ ξ, m→∞,

uniformly for all t in compact intervals and ξ ∈H. �
Remark 4.4. In the special case where λ = 0 and (v1, . . . , vN) is a decoupling cycle, we are in the situation of bangbang dynamical

decoupling and we see that the first sum on the right-hand side in (11) vanishes and we obtain H0 = 1⊗ B for some self-adjoint operator B on
He, hence, dynamical decoupling works. For general λ, this is not the case, as Example 4.1 showed, where H1 = 1

π Y ≠ 1⊗ B.

In the special case of a bounded Hamiltonian, we can provide estimates on the speed of convergence in Theorem 4.2.

Theorem 4.5. If H is bounded, we have

�Fλ� t
m
�m − e−itHλ� ≤ 2t

m
�H�(1 + 2t�H�) (12)

and

�Fλ� t
m
�m − e−itH0� ≤ 2t

m
�H�(1 + 2t�H�) + λt�H1 −H0�, (13)

with Hλ as in Theorem 4.2.

Proof. We start with some preparation: let us write

HC
λ (s) = mN�

k=1
A� λt

mN �
k �s − (k − 1) t

mN
�, s ∈ [0, t],

for the part of H in (8) that describes the control operations, and

UC
λ (s) =←�exp�−i� s

0
HC

λ (r)dr�, s ∈ [0, t],
for the corresponding unitary time evolution. Then,

� kt�mN

(k−1)t�mN
UC

λ (s)∗HUC
λ (s)ds = t

mN�
1

0
vk−1γk,λ(s)∗Hγk,λ(s)v∗k−1ds

= t
mN�

λ

0
vk−1γk,λ(s)∗Hγk,λ(s)v∗k−1ds + t

mN�
1

λ
vk−1γ∗k Hγkv

∗
k−1ds

= λ
t

mN�
1

0
vk−1γk(s)∗Hγk(s)v∗k−1ds + (1 − λ) t

mN
vkHv∗k .

Over one complete cycle, we, therefore, obtain

� t�m
0

UC
λ (s)∗HUC

λ (s)ds = t
m
(λH1 + (1 − λ)H0),

where

H0 = 1
N

N�
k=1

vkHv∗k , H1 = 1
N

N�
k=1

vk−1� 1

0
γk(s)∗Hγk(s)ds v∗k−1,
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as in Theorem 4.2, and

Fλ� t
m
�m =←�exp�−i� t�m

0
UC

λ (r)∗HUC
λ (r)dr�m =←�exp�−i� t

0
UC

λ (r)∗HUC
λ (r)dr�.

We will make use of the bound of the ring,17

�Ua −Ub�∞ ≤ �Sab�∞(1 + �Ha�1 + �Hb�1),
where Uj(s) is the unitary propagator generated by a bounded integrable Hamiltonian Hj(s), � ⋅ �∞ and � ⋅ �1 are the norms in L∞[0, t] and
L1[0, t], respectively, and

Sab(s) = � s

0
(Ha(r) −Hb(r))dr

is the integral action.
In our case, we are interested in

�Fλ� t
m
�m − e−itHλ�,

so let

Ua(t) = Fλ� t
m
�m

, Ub(t) = e−it(λH1+(1−λ)H0),

and

Ha(s) = UC
λ (s)∗HUC

λ (s), Hb(s) = Hλ = λH1 + (1 − λ)H0.

Thus, if s is somewhere in the (` + 1)th cycle, i.e., `t�m ≤ s ≤ (` + 1)t�m, where 0 ≤ ` ≤ m − 1 is an integer, we have

� s

0
Ha(r)dr = � s

0
UC

λ (r)∗HUC
λ (r)dr

= � `t�m
0

UC
λ (r)∗HUC

λ (r)dr +� s

`t�mUC
λ (r)∗HUC

λ (r)dr

= `t
m
(λH1 + (1 − λ)H0) +� s

`t�mUC
λ (r)∗HUC

λ (r)dr,

and obviously,

� s

0
Hb(r)ds = s(λH1 + (1 − λ)H0).

Combining the two, we get

Sab(s) = � `t
m
− s�(λH1 + (1 − λ)H0) +� s

`t�mUC
λ (r)∗HUC

λ (r)dr.

Since �s − `t�m� ≤ t�m by construction, we get

�Sab�∞ ≤ t
m
�λH1 + (1 − λ)H0� + t

m
�H� ≤ 2t

m
�H�.

Moreover,

�Ha�1 = t�H�, �Hb�1 ≤ t�H�,

J. Math. Phys. 63, 112206 (2022); doi: 10.1063/5.0101259 63, 112206-10

© Author(s) 2022

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

so
�Fλ� t

m
�m − e−it(λH1+(1−λ)H0)� ≤ 2t

m
�H�(1 + 2t�H�),

and by the triangle inequality, we have

�Fλ� t
m
�m − e−itH0� ≤ 2t

m
�H�(1 + 2t�H�) + λt�H1 −H0�.

�
Remark 4.6. Theorem 4.5 tells us how well dynamical decoupling works for given finite values of m and λ; it works perfectly in the limit

m→∞, λ→ 0. For a generic decoupling cycle, H1 ≠ H0, as shown in Example 4.1, where H1 = Y�π, and dynamical decoupling does not work
for λ ≠ 0, or, in general, for pulses of width O(t�(mN)). However, scaling λ together with m, e.g., with λ = O(1�log m), makes it work as can
be seen from (13). In order to have dynamical decoupling with the optimal convergence rate O(t�m), one should take λ = O(1�m), i.e., a
pulse width of order O(t�(m2N)). As we shall show in Sec. V, it is possible to achieve convergence even in the case where λ remains constant,
provided we choose the decoupling cycle as a so-called “Euler cycle,” as H1 = H0 in that special case.

Remark 4.7. The above results hold for an arbitrary cycle (v1, v2, . . . , 1) of unitaries (not necessarily decoupling). While our paper
focuses on decoupling, applications to average Hamiltonian theory4 are immediate.

V. EULER DYNAMICAL DECOUPLING
Suppose V is a projective representation of a group, and let Γ ⊂ V be a set of generators of V . Recall that the Cayley graph of (V , Γ)

has got vertices V and, at each vertex, outgoing edges labeled by Γ. This means every vertex has also got �Γ� incoming edges, and altogether,
there are N ∶= �V ��Γ� edges in the graph. Let (v1, v2, . . . , vN) be an Euler cycle of decoupling operations, i.e., a cycle in the Cayley graph
of (V , Γ) that travels through each edge precisely once. The kth edge is γk ∶= v∗k vk−1 ∈ Γ and v0 = vN = 1. Now, for an Euler cycle, each γk
does, in fact, only depend on the edge and not the corresponding vertex in the Cayley graph; the same is true for its generator A(k), and
hence, we may also write A(γ) = A(k) and uγ(t; s) = uk(t; s) if γ = γk. We use the notation of continuous dynamical decoupling introduced
in Sec. II.

We say that, for given decoupling set V , Euler cycle, pulse shapes, and relative pulse width λ ∈ (0, 1], Euler continuous dynamical
decoupling works if there is a self-adjoint B on He such that

F� t
m
�m

ξ → 1⊗ e−itBξ, m→∞,

for all ξ ∈H and uniformly for all t in compact intervals. See Ref. 9 for the origin of this and applications.

Example 5.1. To see how Euler cycles can change the situation, let us revisit Example 4.1, for which we saw that continuous dynamical
decoupling does not work. There the decoupling set was V = {1, X, Y , Z} and H = X and λ = 1; a natural choice of an Euler cycle would be(Z, Y , X, 1, X, Y , Z, 1). Going through the discussion of Example 4.1, we obtain the overall time evolution

F1� t
m
�m = �e−i π

2 Z−i t
8m He−i π

2 X−i t
8m He−i π

2 Z−i t
8m He−i π

2 X−i t
8m H ⋅ e−i π

2 X−i t
8m He−i π

2 Z−i t
8m He−i π

2 X−i t
8m He−i π

2 Z−i t
8m H�m

= ���−iY − t
2πm

1 + i
t

4m
Z +O� 1

m2 ��
2��iY − t

2πm
1 + i

t
4m

Z +O� 1
m2 ��

2�m

= �1 +O� 1
m2 ��

m → 1, m→∞,

so continuous dynamical decoupling with the above Euler cycle works in this case.

We generalize this in the following.

Theorem 5.2. Under the assumptions of Theorem 4.2 and if the given decoupling cycle is an Euler cycle, Euler continuous dynamical
decoupling works.
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Proof. It follows from the property of the Euler cycle that

N�
k=1

vk� λ
N�

1

0
γk+1(s)∗Hγk+1(s)ds + 1 − λ

N
H�v∗k = �

v∈V�γ∈Γv�
λ
N�

1

0
γ(s)∗Hγ(s)ds + 1 − λ

N
H�v∗

= 1
N �v∈Vv�γ∈Γ�λ� 1

0
γ(s)∗Hγ(s)ds + 1 − λ

N
H�v∗,

which we know from Theorem 4.2 to be essentially self-adjoint on D. Here, the first equality follows from the particular structure of the Euler
cycle. It then follows from Ref. 6, Theorem 3.1, and the decoupling property of V in Definition 2.1 that the closure of the right-hand side is of
the form Hλ = 1⊗ B and that

Fλ� t
m
�m

ξ → e−itHλ ξ, m→∞,

uniformly for t in compact intervals and all for ξ ∈H. �
Remark 5.3. We see that Euler dynamical decoupling works independently of the choice of λ.
Moreover, in the case of bounded H, one can show that H1 = H0 and, hence, Hλ = H0, independently of λ. Thus, Theorem 4.5 yields

�Fλ� t
m
�m − e−itH0� ≤ 2t

m
�H�(1 + 2t�H�).

In order to prove H1 = H0, we notice that by construction,

H0 = 1�V ��v∈VvHv∗ = 1Hs ⊗ 1
dimHs

trHs H,

where trHs H denotes the partial trace of H with respect to Hs. We then calculate as follows:

H1 = 1
N

N�
k=1

vk−1� 1

0
γk(s)∗Hγk(s)ds v∗k−1 = 1�V�Γ��v∈V�γ∈Γv�

1

0
γ(s)∗Hγ(s)ds v∗

= 1�Γ��γ∈Γ
1�V ��v∈Vv�

1

0
γ(s)∗Hγ(s)ds v∗ = 1�Γ��γ∈Γ1Hs ⊗ 1

dimHs
trHs�� 1

0
γ(s)∗Hγ(s)ds�

= 1�Γ��γ∈Γ1Hs ⊗ 1
dimHs

trHs H = H0,

where the last equality follows from the fact that γ(s) is a unitary acting only on Hs and, hence, the partial trace trHs is invariant under
conjugation by γ(s).

If H is unbounded but D(H) factorizes, namely, it is of the form Hs ⊗De, we can still use the Schmidt decomposition to get a finite sum,

H =�
k

Hs,k ⊗He,k,

which is essentially self-adjoint on Hs ⊗De. In that case, we can use the partial traces again and the same argument goes through.

Example 5.4. If H factorizes as H = Hs ⊗He and is self-adjoint on D(H) =Hs ⊗D(He), then, for any choice of decoupling set, generator
set, Euler cycle, and pulse shape, Euler continuous dynamical decoupling works. It can easily be seen that the conditions in Theorem 4.2 are
fulfilled with D = D(H) and Hλ = tr(Hs)1Hs ⊗He.

Example 5.4 covers a variety of models, but many other models do not fall into this class; yet, Theorem 5.2 can be applied, as in the
following.

Example 5.5. We consider the “deep-pocket model” developed in Ref. 18; namely, we let

H ′ = C2 ⊗ L2(R−)
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and H′ = Z ⊗ i d
dx on the domain

D(H′) = {ϕ ∈ C2 ⊗H1(R−) : ϕ(0) = (X ⊗ 1)ϕ(0)}.
Physically, this describes a spin-1/2 particle moving along the negative half-axis and being reflected at 0 at the price of a spin flip. A suitable
(canonical and reduced; see Remark 2.2) decoupling set consists of V′ = {X ⊗ 1, 1⊗ 1}.

It is evident that the domain D(H′) of the model does not factorize as a tensor product, so Example 5.4 does not apply here. However,
D(H′) is invariant under V′ and one realizes that H′ + XH′X = 0. Let us define

F(t) = e−i t
2 He−i t

2 XHX , t ∈ R.

Then,
F(t) − 1

t
→ i

2
(H + XHX) = 0,

which is essentially self-adjoint on D(H), so Ref. 6, Theorem 3.1, implies that bangbang dynamical decoupling works.
In order to treat Euler continuous dynamical decoupling, it is useful to pass to a unitarily equivalent version of this model (cf. Ref. 18):

namely, let
H = L2(R)

and H = i d
dx on the domain D(H) = H1(R), which is self-adjoint. The corresponding decoupling set is V = {X0, 1}, where

(X0ξ)(x) = ξ(−x), x ∈ R.

Let D = D(H). We see that D is invariant under V and that

HnX0 = (−1)nX0Hn. (14)

We use Γ = {γ = X0} and V = {1, X0}, and the continuous dynamical decoupling operation is modeled by the function

γ(s) = e−iφ(s) π
2 (X0−1) = eiφ(s) cos�φ(s)π

2
�1 − ieiφ(s) sin�φ(s)π

2
�X0, s ∈ [0, 1],

where φ is a fixed continuous function such that φ(0) = 0 and φ(1) = 1. We immediately see that γ(1) = X0, that γ(s) leaves D invariant, and
that �Hγ(s)ξ� ≤ 2�Hξ� as follows from (14), and hence, assumption (i) of Theorem 4.2 is fulfilled.

In order to verify (ii), note that

(γ(s)∗Hγ(s))ξ(x) = i cos2�φ(s)π
2
�ξ′(x) − 2 sin�φ(s)π

2
� cos�φ(s)π

2
�ξ′(−x) − i sin2�φ(s)π

2
�ξ′(x)

= i cos(φ(s)π)ξ′(x) − sin(φ(s)π)ξ′(−x)
= cos(φ(s)π)(Hξ)(x) + i sin(φ(s)π)(X0Hξ)(x)

and, hence,

� 1

0
γ(s)∗Hγ(s)ξds = c1Hξ + cX0 X0Hξ,

with certain c1, cX0 ∈ C. Finally, for all ξ ∈ D, we have

�
v∈V�γ∈Γv�γ� 1

0
γ(s)∗Hγ(s)ds�v∗ξ = �

v∈Vv(c1X0H + cX0 H)v∗ξ

= (c1X0H + cX0 H + c1HX0 + cX0 X0HX0)v∗ξ = 0,

where the last equality follows from (14) again, so

�
v∈V�γ∈Γv�λγ� 1

0
γ(s)∗Hγ(s)ds + (1 − λ)H�v∗ = 0

is essentially self-adjoint on D, proving (ii).

J. Math. Phys. 63, 112206 (2022); doi: 10.1063/5.0101259 63, 112206-13

© Author(s) 2022

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

ACKNOWLEDGMENTS
D.B. acknowledges funding from the Australian Research Council (Project Nos. FT190100106, DP210101367, and CE170100009). P.F.

was partially supported by the Italian National Group of Mathematical Physics (GNFM-INdAM), Istituto Nazionale di Fisica Nucleare (INFN)
through the project “QUANTUM,” and Regione Puglia and QuantERA ERA-NET Cofund in Quantum Technologies (Grant Agreement No.
731473), project PACE-IN.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Daniel Burgarth: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Writing – original draft
(equal); Writing – review & editing (equal). Paolo Facchi: Conceptualization (equal); Formal analysis (equal); Investigation (equal);
Methodology (equal); Writing – original draft (equal); Writing – review & editing (equal). Robin Hillier: Conceptualization (equal); Formal
analysis (equal); Investigation (equal); Methodology (equal); Writing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

REFERENCES
1L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A 58, 2733 (1998).
2L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417 (1999).
3U. Haeberlen and J. S. Waugh, “Coherent averaging effects in magnetic resonance,” Phys. Rev. 175, 453 (1968).
4U. Haeberlen, High Resolution NMR in Solids: Selective Averaging (Academic Press, 1968).
5D. A. Lidar and T. A. Brun, Quantum Error Correction (Cambridge University Press, 2013).
6C. Arenz, D. Burgarth, P. Facchi, and R. Hillier, “Dynamical decoupling of unbounded Hamiltonians,” J. Math. Phys. 59, 032203 (2018).
7P. Facchi, D. A. Lidar, and S. Pascazio, “Unification of dynamical decoupling and the quantum Zeno effect,” Phys. Rev. A 69, 032314 (2004).
8P. Facchi and S. Pascazio, “Kick and fix: The roots of quantum control,” Proceedings 12, 30 (2019).
9L. Viola and E. Knill, “Robust dynamical decoupling of quantum systems with bounded controls,” Phys. Rev. Lett. 90, 037901 (2003).
10D. Burgarth, P. Facchi, M. Fraas, and R. Hillier, “Non-Markovian noise that cannot be dynamically decoupled,” SciPost Phys. 11, 027 (2021).
11A. Pazy, Linear Operators and Applications to Partial Differential Equations (Springer, 1983).
12T. Kato, Abstract Differential Equations and Nonlinear Mixed Problems, Lezioni Fermiane (Scuola Normale Superiore Pisa, 1985).
13D. Burgarth, P. Facchi, and R. Hillier, “Control of quantum noise: On the role of dilations,” Ann. Henri Poincaré (published online, 2022).
14D. Burgarth, P. Facchi, H. Nakazato, S. Pascazio, and K. Yuasa, “Generalized adiabatic theorem and strong-coupling limits,” Quantum 3, 152 (2019).
15K.-J. Engel and R. Nagel, One-Parameter Semigroups of Linear Evolution Equations (Springer, 1995).
16P. R. Chernoff, “Product formulas, nonlinear semigroups and addition of unbounded operators,” Memoirs of the American Mathematical Society, No. 140 (American
Mathematical Society, Providence, RI, 1974), pp. v+121.
17D. Burgarth, P. Facchi, G. Gramegna, and K. Yuasa, “One bound to rule them all: from Adiabatic to Zeno,” Quantum 6, 737 (2022).
18P. Facchi, G. Garnero, G. Marmo, J. Samuel, and S. Sinha, “Boundaries without boundaries,” Ann. Phys. 394, 139–154 (2018).

J. Math. Phys. 63, 112206 (2022); doi: 10.1063/5.0101259 63, 112206-14

© Author(s) 2022

https://scitation.org/journal/jmp
https://doi.org/10.1103/physreva.58.2733
https://doi.org/10.1103/physrevlett.82.2417
https://doi.org/10.1103/physrev.175.453
https://doi.org/10.1063/1.5016495
https://doi.org/10.1103/physreva.69.032314
https://doi.org/10.3390/proceedings2019012030
https://doi.org/10.1103/PhysRevLett.90.037901
https://doi.org/10.21468/scipostphys.11.2.027
https://doi.org/10.1007/s00023-022-01211-y
https://doi.org/10.22331/q-2019-06-12-152
https://doi.org/10.22331/q-2022-06-14-737
https://doi.org/10.1016/j.aop.2018.04.030

