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Abstract 

Background:  Propensity score matching is a statistical method that is often used to make inferences on the treat-
ment effects in observational studies. In recent years, there has been widespread use of the technique in the cardio-
thoracic surgery literature to evaluate to potential benefits of new surgical therapies or procedures. However, the 
small sample size and the strong dependence of the treatment assignment on the baseline covariates that often 
characterize these studies make such an evaluation challenging from a statistical point of view. In such settings, the 
use of propensity score matching in combination with oversampling and replacement may provide a solution to 
these issues by increasing the initial sample size of the study and thus improving the statistical power that is needed 
to detect the effect of interest.  In this study, we review the use of propensity score matching in combination with 
oversampling and replacement in small sample size settings.

Methods:  We performed a series of Monte Carlo simulations to evaluate how the sample size, the proportion of 
treated, and the assignment mechanism affect the performances of the proposed approaches.  We assessed the per-
formances with overall balance, relative bias, root mean squared error and nominal coverage. Moreover, we illustrate 
the methods using a real case study from the cardiac surgery literature.

Results:  Matching without replacement produced estimates with lower bias and better nominal coverage than 
matching with replacement when 1:1 matching was considered. In contrast to that, matching with replacement 
showed better balance, relative bias, and root mean squared error than matching without replacement for increasing 
levels of oversampling. The best nominal coverage was obtained by using the estimator that accounts for uncertainty 
in the matching procedure on sets of units obtained after matching with replacement.

Conclusions:  The use of replacement provides the most reliable treatment effect estimates and that no more than 
1 or 2 units from the control group should be matched to each treated observation. Moreover, the variance estimator 
that accounts for the uncertainty in the matching procedure should be used to estimate the treatment effect.
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Introduction
Inferences on the effects of treatments or exposures are 
increasingly found by using observational studies [1]. 
In such situations, the lack of randomization does not 
ensure the overall balance of individual baseline char-
acteristics. Thus, statistical methods that can detect the 
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treatment effect on an outcome of interest while control-
ling for potential confounders are needed. Propensity 
score (PS) methods are among the most used approaches 
in the medical literature for addressing the impacts of 
therapies or exposures. In particular, the use of propen-
sity score matching (PSM) is widespread in clinical stud-
ies because of its ability to mimic a randomized clinical 
trial (RCT) in which the effect of a therapy is evaluated 
by comparing the outcomes of treated and control sub-
jects belonging to the matched sample [1].

PSM methods have become very popular in cardiotho-
racic surgery [2–6], especially when the goal is to evaluate 
a new therapy or a new surgical procedure and compare it 
to the current standard approaches. In these settings, two 
main issues hamper the inference process: the selection 
bias and the small sample size. The former arises because 
performing a randomized study in this situation is com-
monly not ethically acceptable. The latter is of greater 
concern since the small number of subjects significantly 
undermines the statistical power that is needed to detect 
a clinical effect. A low number of individuals is a com-
mon feature of cardiothoracic surgery studies as sample 
sizes often range from less than 100 subjects to a few 
hundred subjects [7–10]. Constructing a matched sample 
using standard PSM methods, such as 1:1 matching with-
out replacement, could further reduce the initial sample 
size of the study, thus leading to an inaccurate compari-
son of different surgical procedures among matched sub-
jects. Some studies addressed this issue using PSM with 
oversampling, i.e., matching more than one control to 
each treated variable or more than one treated variable to 
each control [11, 12]. The main idea behind this approach 
is to create a matched set of individuals with a larger size 
than the one that would be obtained using classical 1:1 
matching to increase the statistical power that is needed 
to detect the potential effect of interest. Furthermore, the 
use of matching with replacement may be useful for find-
ing all the matched units from the control group, which is 
defined by the level of oversampling, e.g., 5 control units.

To the best of our knowledge, no previous study evalu-
ated the performances of the combination of replace-
ment and oversampling in PSM. This study aims to assess 
whether performing PSM with replacement and over-
sampling can eventually address the problem of small 
sample size and result in valid inference for treatment 
effect estimation. We carried out the investigation using 
Monte Carlo simulations, and we applied the proposed 
approaches to a real case study. As a motivating example, 
we use the data from the study of Bejko et al. (2018) [13], 
in which the outcomes of different continuous-flow left 
ventricular assist devices are compared. The remainder of 
this paper is organized as follows. In Sect.  3, we briefly 
introduce the PSM framework and describe PSM with 

replacement and oversampling. In Sect.  4, we describe 
the Monte Carlo simulations that are used to evaluate 
the performance of PSM with and without replacement 
for different levels of oversampling. In Sect. 6, we present 
the analysis of the case study. In Sect. 7, we summarize 
the findings and provide some recommendations for the 
implementation of the method.

Methods

PSM framework
The potential outcomes framework was proposed by 
Rubin (1974) [14]. We use i = 1, . . . , n to represent the 
i − th subject of the N  subjects that are enrolled in a 
study. When evaluating the effect of a binary treatment, 
one individual has two potential outcomes as follows: 
Yi(0) and Yi(1) . The former denotes the outcome that is 
observed if the subject is assigned to the control group, 
while the latter is the outcome that is observed if the 
subject is assigned to the treatment group. Let T  be an 
indicator of the binary treatment that denotes the actual 
group to whom the individual had been assigned ( T = 0 
if the subject is assigned to the control group and T = 1 if 
the subject is assigned to the treatment group). The fun-
damental problem of causal inference lies in the fact that 
only one of the two outcomes can be observed for each 
subject, i.e., the outcome under the actual group of treat-
ment, which is defined as Yi = TiYi(1)+ (1− Ti)Yi(0) . 
In such situations, the impact of a treatment can be eval-
uated using the average treatment effect (ATE), which 
is defined as the average difference between individual 
potential outcomes:

and the average treatment effect on the treated (ATT), 
which is the average difference between individual poten-
tial outcomes for subjects who had been assigned to the 
treatment group:

PS is defined as the individual probability of being 
assigned to the treatment group given the baseline char-
acteristics of the subject, i.e., P(T = 1|X) , where X is a 
set of baseline characteristics. As demonstrated in the 
seminal PS paper [15], the distributions of the pre-treat-
ment variables between treated and control subjects are 
similar when conditioning on the PS only if two condi-
tions are satisfied: (i) no unmeasured confounding, i.e. 
Y (1),Y (0) ⊥ T |X and (ii) positivity assumptions, i.e. 
0 < P(T = 1|X) < 1.

PSM is a PS method used to remove residual confound-
ing when estimating treatment effect by forming matched 

E[Yi(1)− Yi(0)]

E[Yi(1)− Yi(0)|T = 1]
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sets of treated and control units with similar values of PS. 
The effect of a treatment can be then assessed by com-
paring the outcomes of the treated and control subjects 
included in the matched set, mimicking the standard sta-
tistical analysis of an RCT.

Several matching algorithms have been proposed when 
matching on the PS: pair matching, many-to-one match-
ing, full matching, nearest neighbour (NN) matching, 
matching with a calliper, optimal matching, matching 
with replacement, and matching without replacement 
[16–20]. The most classical implementation of PSM is 
1:1 NN matching without replacement, which can be 
performed with or without imposing a calliper. Each 
treated subject is paired with one control subject, and 
the matched control from the control “reservoir” is dis-
carded. The ideal situations for 1:1 matching without 
replacement are those when each treated individual 
received a match. Indeed, such a matching process is eas-
ier to implement when a large pool of controls is present 
in the study. The matched set formed with this approach 
allows the analyst to estimate the ATT when all the units 
from the treatment group receive a matched unit from 
the control group [21]. If some of the treated cannot be 
matched then the estimand of interest may not general-
ize to the target population defined by design. Matching 
with replacement represents a valuable approach when 
not all the treated are matched to control units. Indeed, if 
control subjects are used as candidate matching multiple 
times, each treated unit can be matched to a control unit.

PSM with replacement and oversampling
Classical 1:1 matching without replacement may not 
be the most suitable approach when the number of 
individuals enrolled in a study is small, and when an 
imbalance in terms of treated and untreated subjects 
is present. Moreover, the initial sample size of the 
study, which is generally small, can be further reduced, 
increasing the sampling variability associated with the 
treatment effect estimate and reducing the accuracy of 
the findings.

In the present paper, we propose the use of different 
PSM methods to face the issues that may be encoun-
tered using the classical PSM approach in clinical 
studies characterized by small sample sizes and a high 
imbalance in the distributions of pre-treatment covari-
ates. More specifically, we evaluate if the combination 
of matching with replacement and oversampling (1:K 
matching, where K > 1) can aid in increasing precision 
and accuracy of causal estimates. By matching treated 
subjects with more than one control with replacement, 
one can potentially ensure that all the treated units 
receive a matched control.

Monte Carlo simulations
The performances of PSM with different combinations 
of replacement and oversampling were compared using 
Monte Carlo simulations. We considered the setting with 
a binary outcome and a binary treatment for two rea-
sons. First, it is the most common setting in the medi-
cal literature and, second, it mimics the situation of our 
motivating example in which a dichotomous clinical out-
come is compared between subjects undergoing two dif-
ferent surgical procedures. Planification and description 
of Monte Carlo simulations were structured using the 
aims, data-generating mechanisms, estimands, and per-
formance measures (ADEMP) guidelines [22].

Aims
The aim of the Monte Carlo simulations is to compare 
PSM strategies with replacement and oversampling in 
terms of (1) overall balance of baseline covariates in the 
matched sample, (2) bias of the ATT estimator and (3) 
coverage of 95 % Confidence Intervals (CIs).

Estimand
The ATT was evaluated in terms of absolute risk reduc-
tion, a measure that is argued to be of greater importance 
for clinical decision making than relative measures such 
as relative risks and odds ratios [23, 24] when binary out-
comes are considered.

Data‑generating mechanism
In each dataset, we simulated 6 baseline covariates, 
which we represent as X = (X1,X2, . . . ,X6) , from a latent 
multivariate normal distribution, setting means equal 
to 0. The covariance matrix was derived from a correla-
tion matrix with all diagonal elements equal to 1 (which 
implies a standard deviation of 1 for all the variables) and 
the non-diagonal elements with values ranging from 0.1 
to 0.5. Indeed, we considered a scenario with different 
degrees of dependence among baseline covariates, which 
can often be encountered in practice. The first three 
covariates were transformed into binary variables by 
choosing the cutoff values such that the marginal prob-
abilities were approximately equal to 0.25, 0.3, and 0.2, 
respectively.

For each subject, we computed the probability of treat-
ment assignment using a logistic model as follows:

where pTi denotes the probability of treatment 
selection. We considered two situations where 
the baseline covariates have different impacts 
on the treatment assignment mechanism. The 

logit
(

pTi

)

= �0 + �1xi1 + �2xi2 + �3xi3 + �4xi4 + �5xi5 + �6xi6
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individual probabilities of being assigned to the treat-
ment group are governed by the vector of the treat-
ment model coefficients, i.e., β̃ = (β1,β2, . . . ,β6) . 
In the first situation, which we will denote as the 
"weak" treatment assignment, β̃  was set equal to (
log(1.25), log(1.5), log(1.25), log(1.5), log(1.25), log(1.5)

)
 . 

In the second situation, which we will denote as the 
“strong” treatment assignment, β̃  was set equal to (
log(1.5), log(1.75), log(1.5), log(1.75), log(1.5), log(1.75)

)
 . 

The value of the intercept β0 of the treatment model 
was imposed such that the proportions of treated sub-
jects were equal to 0.3 , 0.5, and 0.7 using a grid search 
approach (values are shown in Supplementary Table 
S11). Each subject treatment status T  was generated from 
a Bernoulli distribution with an individual probability 
that was computed from the treatment model.

For the main set of simulations, a binary outcome Y  
was generated from a Bernoulli distribution with a sub-
ject-specific probability pYi that was computed using a 
logistic model as follows:

The vector of the outcome model coefficients 
γ̃ = (γ1, γ2, . . . , γ6) associated with the base-
line covariates was fixed using the following values: (
log(1.25), log(1.25), log(1.5), log(1.5), log(1.75), log(1.75)

)
 . 

By using this model, we fixed the baseline covariates at 
different levels of confounding with characteristics that 
act both as weak and strong confounders, which is very 
common in the medical literature. We selected the value 
of the outcome model intercept γ0 such that the occur-
rence of the outcome Y  was equal to 0.20 using the same 
approach that was employed for β0 (values are shown in 
Supplementary Table S11). The value of the parameter 
γTwas chosen such that the ATT, measured as absolute 
risk reduction, was equal to approximately 0.15, using a 
data-generating method for binary outcomes in which 
the treatment produces a specified risk difference (values 
are shown in Supplementary Table S11) [25]. The data-
generating algorithm exploits the fact that the absolute 
risk reduction is a collapsible measure, i.e. the marginal 
or population absolute risk reduction equals the average 
subject-specific absolute risk reduction [26].

Finally, we allowed the sample size to vary to evalu-
ate how different PSM combinations of replacement 
and oversampling act in different sample size situations. 
We considered the four different settings as follows: 100 
subjects, 250 subjects, 500 subjects, and 1000 subjects. 
The situations that are of interest in this study are those 
with limited numbers of subjects (100 and 250), as in our 
motivating example.

logit
(

pYi

)

= �0 + �1xi1 + �2xi2 + �3xi3 + �4xi4 + �5xi5 + �6xi6 + �TT

In the main set of simulations, the choice of simulating 
the binary outcome from a logistic regression model was 
based on several considerations. First, the logit function 
allows any values of the linear predictor on the whole real 
line to be transformed into a valid expected probability 
constrained between 0 and 1. Second, logistic regression 
is widely used in medical settings where the interest is to 
relate the expected probabilities of a clinical event given a 
set of covariates. Thus, being the most popular model for 
medical binary data, several simulation studies used it as 
starting point when evaluating dichotomous outcomes. 
Third, logistic regression allows expressing the effects 
of covariates both on the relative scale, e.g. odds ratios, 
and absolute scale, risk difference, which can be of great 
relevance for clinical interpretation and decision-making 
[27, 28]. Given that the estimand of interest is expressed 
on the difference scale, the use of the logit transformation 
induced heterogeneity in the treatment effect. Despite 
this is not necessarily a concern and it might also reflect 
more realistic clinical situations, we performed a second 
round of simulations by simulating the outcome from a 
linear probability model, which assumes that the treat-
ment effect is additive and linear on the probability scale, 
to evaluate the statistical properties of the proposed esti-
mators both in presence and absence of treatment effect 
heterogeneity. The parameters used to set up the second 
round of simulations are reported in Supplementary 
Table S16.

For both the primary and secondary sets of simulations, 
we considered a total of 24 scenarios, which included all 
the possible combinations of the treatment assignment 
mechanisms, the proportions of treated subjects, and the 
sample sizes. For each scenario, we drew 10,000 datasets 
on which the statistical analysis was performed.

Methods
For each simulated dataset, the individual PSs were esti-
mated using a logistic model that included all the covari-
ates as main effects. Matching was then performed using 
the NN algorithm with a calliper set to 0.2 of the stand-
ard deviation of the logit of the PS distribution, a value 
that was shown to result in good performances in several 
settings [29]. Within every simulated dataset, we ran a 
total of 10 matching strategies over all the combinations 
of replacement (with and without replacement) and lev-
els of oversampling, which we defined by varying the 
number of matched controls K from 1 to a maximum of 
5. The balance of the distributions of the covariates in the 
matched set was assessed using the average standard-
ized mean difference (ASMD) and the overlapping coef-
ficient (OVL), two measures that quantify the degree of 
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imbalance for all the covariates simultaneously [30, 31]. 
The ASMD is the mean value of the standardized mean 
differences (SMDs) of the covariates between the com-
pared groups. The OVL corresponds to the proportion 
of overlap in the density functions of the PS estimated 
in treatment and control groups on the matched set. It 
ranges between 0 and 1, and the higher the value, the 
higher the balance. We used 1-OVL to make it compara-
ble with ASMD. Moreover, the goodness of the matching 
set of observations was also assessed by computing the 
Proportion of Matched Treated (PMT). A PMT closer 
to 1 indicates that most of the units from the treatment 
group are retained in the matched set, i.e. the estimated 
ATT is still generalizable to the target population of 
treated subjects. For each matched set of subjects, we 
evaluated the impact of the treatment by estimating the 
ATT as the weighted absolute risk reduction of the treat-
ment. Each paired set of observations was assigned a 
weight equal to the reciprocal of times the control unit 
was matched to a treated unit [32–34]. CIs at the 95 % 
level were computed using a method that accounts for 
the matched nature of the sample used to estimate the 
ATT [35, 36]. Moreover, we also evaluated the 95 % CIs 
obtained with the Abadie-Imbens (AI) method, which 
accounts for the uncertainty associated with the match-
ing procedure [37]. We will refer to the methods as 
“standard” and “AI”, respectively.

Performance measures
The performances of overall balance were assessed by 
averaging ASMD, OVL and PMT values over the 10,000 
datasets simulated in each scenario. The performances of 
the ATT estimator on the set of observations obtained 
using PSM with replacement and oversampling were 
evaluated using the following three criteria: the relative 
bias, the root mean squared error (RMSE), and the nomi-
nal coverage (NC). Bias is defined as the distance between 
the estimated and the true ATT, i.e., 
bias = ÂTT − ATTtrue , where ÂTT  is the average esti-
mated ATT across all the simulated datasets. To make it 
comparable across the scenarios, we considered a relative 
version of the bias, computed as 

∣∣bias/ATTtrue

∣∣ ∗ 100 , 
which ranges between 0 and 100, with higher values indi-
cating higher bias. RMSE is defined as the square root of 
the sum of the variance of the ATT estimates across the 
simulated datasets and the square of the bias, i.e., 

RMSE =

√
V
(
ÂTT

)
+ bias2 . RMSE is a measure that 

combines information from both the bias and the sam-
pling variance associated with the ATT estimate. Lower 
RMSEs denote better estimators of the ATT. Finally, NC 
denotes the percentage of times that the 95 % CI includes 

the true ATT across all the simulated datasets. If the 
method is valid, then the NC will be close to 0.95.

All the analyses were conducted using the R statisti-
cal programming language (version 4.0.2) [38]. The R 
package Matching (version 4.9-7) was used to construct 
the matched samples, estimate the ATT, and the relative 
standard error [39]. The balance in the matched sam-
ples was evaluated using the cobalt R package (version 
4.2.2) [40]. The R code for reproducing the results of the 
simulations is available on Github (https://​github.​com/​
UBESP-​DCTV/​psm.​overs​ampli​ng).

Simulation results
We first evaluate the goodness of the PSM strategies in 
terms of the balance of the baseline characteristics in 
the matched sets, using the ASMDs and the OVL, and 
the PMT. Since the OVL results were in line with the 
ASMDs, only the latter are presented. All the measures 
were averaged over the 10,000 simulated datasets. Fig-
ure  1 shows the ASMDs and the PMT obtained across 
all the scenarios considered in the Monte Carlo simula-
tions. In all the scenarios, matching without replacement 
showed a better balance than matching with replacement 
when classical 1:1 matching was performed. For higher 
levels of oversampling (more than one control unit 
matched to each treated), the opposite relationship was 
observed. More generally, the overall balance was better 
for increasing levels of oversampling when matching was 
performed with replacement than when matching was 
done without replacement. Regarding the PMT, match-
ing with replacement discarded fewer observations from 
the treatment group than matching without replace-
ment. Moreover, the PMT decreased for increasing lev-
els of oversampling, both when matching was performed 
without and with replacement since not all the treated 
units received the prespecified number of control units. 
The decrease was less pronounced for larger sample sizes 
(500 and 1000 units) when matching was performed 
with replacement. Negligible differences were observed 
between weak and strong treatment assignment scenar-
ios for both ASMDs and PMT.

The relative bias, the RMSE, and the 95 % NC results 
for the main simulations are depicted in Fig.  2 (raw 
numbers are show in Supplementary Table S12-S15). In 
almost all the scenarios, matching with replacement pro-
duced less biased ATT estimates than matching with-
out replacement.  The relative bias increased for higher 
levels of oversampling in all the scenarios except when 
matching was performed without replacement in set-
tings with a low sample size (n=100) and 0.7 of subjects 
were assigned to the treatment group.  The pattern was 
less evident for higher sample sizes (500 and 1000 units) 
when matching was done with replacement, with a 

https://github.com/UBESP-DCTV/psm.oversampling
https://github.com/UBESP-DCTV/psm.oversampling
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relative bias always under 10 %. Higher bias values were 
observed when the treatment assignment was strong, 
as expected. Regarding the RMSE, the results are in line 
with those observed for the relative.

bias: higher RMSE values were observed when match-
ing was done without replacement and for higher levels 
of oversampling in almost all the scenarios.

The results observed for the 95 % NC obtained with the 
standard method (bottom-left plot of Fig. 2) were some-
what in contrast with those observed for relative bias 
and RMSE. Overall, the 95 % CIs obtained when match-
ing was performed with replacement were always lower 
than when matching was done without replacement. 
These differences were more apparent for higher propor-
tions of treated subjects, especially when it was equal 
to 0.7. In most of the scenarios, the estimates obtained 
with matching without replacement were closer to the 
nominal coverage except when the sample size was high 
(500 and 1000 units) and when the proportion of treated 
was 0.5 and 0.7. When oversampling was used, improved 
coverage was reached up to 2-3 control units matched to 
each treated subject. No improvement was observed for 
higher levels of oversampling. Overall, the NC was highly 
influenced by the proportions of treated subjects and the 
sample size.

The bottom-right plot of Fig.  2 shows the 95 % NC 
obtained with the AI method. The method was applied 

only when matching was done with replacement. Higher 
levels of oversampling were associated to lower 95 % NC, 
especially in low sample sizes (100 and 250 observa-
tions) and higher proportions of treated subjects settings. 
In contrast to that, the difference was negligible when 
the sample size was higher (500 and 1000 units), with 
coverage often close to the nominal value. Overall, the 
AI method produced more accurate coverage than the 
standard method when matching was performed with 
replacement.

 The results of the relative bias, the RMSE, and the 95 % 
NC from the second run of simulations are reported in 
Supplementary Figure S1 and Supplementary Table S17-
S20. Regarding the relative bias, findings were similar 
to those observed in main simulations for a sample size 
of 100 units, except that matching without replacement 
produced more biased estimates for higher oversam-
pling levels than the primary simulations. However, for 
higher sample sizes, the bias of the matching methods 
was nearly null in all the scenarios. Results from RMSE 
were equivalent to those from bias, as also observed in 
the primary simulations. For 95 % NC, correct cover-
ages were observed in almost all the scenarios when 1:1 
matching without replacement was used. However, for 
increasing levels of oversampling the coverage was always 
higher than the nominal level, suggesting that the estima-
tor of the standard error was too conservative. When 

Fig. 1  Balance assessment on the matched sets obtained in each scenario of the Monte Carlo simulations. The plot on the right shows the 
Average Standardized Mean Differences (ASMDs), and the left-graph the proportion of matched treated. On the x-axis, the level of oversampling is 
represented. Matching without and with replacement are identified by the colors. The shape of the dots distinguishes between weak and strong 
treatment assignment. The columns of the panel grids show the proportion of treated subjects in the dataset, whereas the rows show the sample 
size of the dataset
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replacement was considered, the coverage was always 
below the nominal level in all the scenarios but when the 
proportion of treated subjects was 0.3 and the match-
ing ratio was at least 3 or 4. When the AI estimator for 
standard errors was used, the coverage improved and the 
results were in line with the primary simulations.

Case study
Data sources
The study aimed to compare two different left ventricular 
assist devices (LVADs) that were implanted during recent 
years at the cardio surgery “V. Gallucci” center at the Uni-
versity of Padova in Italy: the Jarvik 2000 LVAD (Jarvik 

Fig. 2  Performances of the Average Treatment effect on the Treated (ATT) estimator on the matched sets obtained in each scenario of the primary 
set of Monte Carlo simulations. The top-left plot shows the relative bias, whereas the Root Mean Squared Error (RMSE) is shown in the top-right 
plot. On the bottom-left side, the 95 % Nominal Coverage (NC) obtained with the standard method is depicted, whereas on the bottom-right side 
the 95 % NC obtained with the Abadie-Imbens (AI) method is shown. On the x-axis, the level of oversampling is represented. Matching without and 
with replacement are identified by the colors. The shape of the dots distinguishes between weak and strong treatment assignment. The columns of 
the panel grids show the proportion of treated subjects in the dataset, whereas the rows show the sample size of the dataset
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Heart, Inc., New York, USA) and the Heartware HVAD 
(HeartWare, Inc., Framingham, MA). LVADs are used to 
treat patients with end-stage heart failure that is nonre-
sponsive to medical and conventional surgical therapy. 
The endpoints of the study were the in-hospital mortal-
ity, long term survival, all causes of death, early and late 
driveline infections (DLI), acute post-LVAD, and chronic 
right ventricular failure (RVF), and antithrombotic-ther-
apy related complications. In our study, we focused our 
attention on the occurrence of both early and late DLI.

The data on the patient demographics, medical history, 
analysis tests, and clinical characteristics were collected 
for this sample. The descriptive statistics of the sample 
are reported in Table  1. The differences in the variable 
distributions by LVAD groups are reported in terms of 
the SMDs. Several variables were highly different from 
one treatment group to the other, thereby denoting that 
the assignment to the device group was highly depend-
ent on individual baseline characteristics. Overall, 103 
patients were enrolled in the study, of which 46 ( 44.5% ) 
were treated with the HeartWare HVAD and 57 ( 55.5% ) 
were treated with the Jarvik 2000 LVAD.

Statistical analysis
Among the 36 baseline covariates, we selected the fol-
lowing: age_at_implant (age of the patient at the time of 
the LVAD implant treatment), BSA (body surface area), 
days_cvvh_preo >1 (if the patient was treated with Con-
tinuous Veno-Venous Hemofiltration in the preoperative 
period due to renal insufficiency for more than 1 day), EF 
(ejection fraction), INTERMACS IV profiles (if the patient 
was assigned to the fourth level of the Interagency Registry 
for Mechanically Assisted Circulatory Support scale) and 
REDO (reintervention). We chose these 6 baseline covari-
ates following the suggestion of Brookhart et  al. (2006) 
[41], which was that including only those.

covariates that were associated with the outcome and 
not with the treatment assignment in a small sample size 
setting is a good choice for the bias-variance trade-off. 
Patients with missing information were excluded from 
the initial sample. The final dataset was then composed 
of 8 variables and 102 subjects. The only subject that was 
removed was treated with the HeartWare HVAD.

For the present analysis, the Jarvik2000 LVAD group 
was considered the treatment group. A logistic regres-
sion model with only the selected 6 covariates as main 
effects was used to model the treatment assignment 
mechanism. The predicted probabilities of being assigned 
to the treatment group, i.e. the Jarvik2000 group, were 
used as the individual PS values. Ten different matched 
sets were formed using PSM, one for each combination 
of matching with and without replacement and for the 

different levels of oversampling (from 1 to 5 , as in the 
Monte Carlo simulations). The nearest neighbour with 
the calliper was used as the matching algorithm, and we 
set the calliper to 0.2 of the standard deviation of the logit 
of the PS distribution. The covariate balance of the over-
all matched sets was investigated using both the ASMD 
and the OVL. Moreover, we evaluated the goodness of 
the matching sets by computing the PMT and Proportion 
of Resampled Controls (PRC). The latter measure was 
used to check the proportion of controls that were used 
as candidate matching more than one time when match-
ing was done with replacement. In each matched set, we 
computed the ATT as the absolute risk reduction of both 
early and late LDI occurrence attributed to Jarvik2000 
LVAD implantation. The 95 % CIs were calculated using 
both the standard and AI methods, as in the Monte Carlo 
simulations.

Results
The distributions of the estimated PS in the LVAD groups 
are depicted in Fig. 3. The plot suggests weak-to-moder-
ate common support of baseline characteristics between 
the two groups. Subjects that underwent Jarvik2000 
LVAD implantation had different characteristics on 
average.

from the patients treated with HeartWare HVAD. As 
can be seen from Table  1, Jarvik2000 individuals were 
on average older, had larger body surface area, were 
treated more frequently with Continuous Veno-Venous 
Hemofiltration in the preoperative period for more than 
1  day, were more frequently assigned to the INTER-
MACS IV profile, and were more likely to undergo to 
reintervention.

Table 2 reports the ASMDs, the PMT, and the PRC in 
each matched set obtained with the different PSM strate-
gies. The OVL results are not shown since they were in 
line with the ASMDs, as in the Monte Carlo simulations. 
Classical 1:1 matching without replacement achieved 
superior performance in terms of balance than 1:1 match-
ing with replacement, with lower ASMD value. However, 
the more the number of controls matched to each treated 
unit, the lower the ASMDs values when matching was 
performed with replacement than when matching was 
done without replacement. These findings are in line with 
the Monte Carlo simulations results of the scenario.

with N = 100 and half of the observations assigned to 
the treatment group, a setting aligned with the LVADs 
study.

Matching with replacement discarded less treated 
units from the final set than matching without replace-
ment, as in the Monte Carlo simulations. The matched 
sets created when matching with replacement are more 
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Table 1  Descriptive statistics of the case study sample stratified by LVAD groups. Continuous variables are represented with I quartile/
median/III quartile and categorical variables with percentage (relative frequencies). The Standardized Mean Differences (SMDs) on the 
unbalanced case study sample are reported in the last column of the table

Combined (N=103) N HeartWare HVAD (N=46) Jarvik2000 LVAD (N=57) SMD

Sex (Female) 15 % (15) 103 17 % ( 8) 12 % ( 7) -0.14

Intermacs I 42 % (43) 103 39 % (18) 44 % (25) 0.10

Intermacs II 27 % (28) 103 39 % (18) 18 % (10) -0.49

Intermacs III 15 % (15) 103 13 % ( 6) 16 % ( 9) 0.08

Intermacs IV 17 % (17) 103 9 % ( 4) 23 % (13) 0.39

Age (years) 50/60/66 103 42/53/62 58/63/67 0.89

BSA 1.8/1.9/2.0 103 1.7/1.8/2.0 1.8/1.9/2.0 0.48

Cardiomyopathy : DCM 38 % (39) 103 52 % (24) 26 % (15) -0.55

IHD 55 % (57) 43 % (20) 65 % (37) 0.44

Other 7 % ( 7) 4 % ( 2) 9 % ( 5) 0.18

Severe Right Coronaropathy 27 % (28) 103 24 % (11) 30 % (17) 0.13

CI (L/min/m2) 1.5/1.7/2.0 103 1.5/1.6/2.0 1.4/1.7/1.9 -0.14

Preoperative VO2 at peak (ml/min/m2) 9.2/11.0/11.9 78 9.8/11.4/12.4 9.1/10.9/11.7 -0.26

Smoker 46 % (45) 98 41 % (19) 50 % (26) 0.18

Dislipidemia 42 % (43) 103 30 % (14) 51 % (29) 0.43

Hypertension 48 % (49) 103 41 % (19) 53 % (30) 0.23

Preoperative AF 42 % (43) 103 39 % (18) 44 % (25) 0.10

Cancer 10 % (10) 103 4 % ( 2) 14 % ( 8) 0.34

Diabetes 24 % (25) 103 17 % ( 8) 30 % (17) 0.30

Peripheral Vascular disease 24 % (25) 103 22 % (10) 26 % (15) 0.11

COPD 5 % ( 5) 103 4 % ( 2) 5 % ( 3) 0.04

ICD 62 % (64) 103 48 % (22) 74 % (42) 0.55

Reoperation 16 % (16) 103 7 % ( 3) 23 % (13) 0.47

Preoperative platelets (103/mm3) 156/214/285 103 170/237/310 152/205/265 -0.40

BNP 3592/ 6362/12,460 89 2970/ 6173/13,247 3800/ 6961/11,751 -0.06

GFR (mL/min/m3) 50/68/90 96 58/72/90 44/58/90 -0.26

Creatinine (mg/dL) 0.94/1.26/1.58 99 0.93/1.23/1.47 0.96/1.32/1.64 0.30

ASA classification : 3 29 % (30) 103 30 % (14) 28 % (16) -0.05

4 70 % (72) 67 % (31) 72 % (41) 0.10

5 1 % ( 1) 2 % ( 1) 0 % ( 0) -0.21

PAPS 37/44/55 94 38/43/55 35/46/56 0.02

EF 16/19/22 103 16/20/23 17/19/21 -0.07

VTD (mL/m2) 109/130/154 100 100/130/156 114/130/154 -0.01

TAPSE 12/14/18 103 12/14/16 13/15/19 0.37

AF right ventricular 25/31/38 103 21/29/38 28/33/38 0.37

IT : 0 2 % ( 2) 103 0 % ( 0) 4 % ( 2) 0.27

1 49 % (50) 48 % (22) 49 % (28) 0.03

2 35 % (36) 35 % (16) 35 % (20) 0.01

3 9 % ( 9) 11 % ( 5) 7 % ( 4) -0.14

4 6 % ( 6) 7 % ( 3) 5 % ( 3) -0.05

IM : 0 14 % (14) 103 11 % ( 5) 16 % ( 9) 0.15

1 25 % (26) 15 % ( 7) 33 % (19) 0.43

2 48 % (49) 59 % (27) 39 % (22) -0.41

3 10 % (10) 11 % ( 5) 9 % ( 5) -0.07

4 4 % ( 4) 4 % ( 2) 4 % ( 2) -0.04

IAO : 0 69 % (71) 103 74 % (34) 65 % (37) -0.20

1 30 % (31) 24 % (11) 35 % (20) 0.25

3 1 % ( 1) 2 % ( 1) 0 % ( 0) -0.21

Preoperative CVVH 13 % (13) 103 7 % ( 3) 18 % (10) 0.34

More than 1 days with preoperative CVVH 13 % (13) 103 7 % ( 3) 18 % (10) 0.34
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likely to target the estimand of the reference population 
of treated. Nevertheless, the proportion of controls that 
were sampled more than one time increased for higher 
levels of oversampling. This feature may undermine the 

reliability of the final treatment effect estimates, as sug-
gested by the higher bias and the lower 95 % NC observed 
in the Monte Carlo simulations for increasing levels of 
oversampling when matching was done with replace-
ment. The descriptive statistics of the covariates included 
in the PS models in the matched samples are provided in 
the supplementary material.

The ATT estimates are shown in Fig. 4, along with their 
relative 95 % CIs. No significant differences in terms of 
both early and late LDI occurrence between the HVAD 
and JARVIK 2000 were observed, with the 95 % CIs that 
always included the value of no absolute risk reduc-
tion. The length of the CIs obtained with the standard 
method increased when more controls were matched to 
each treated, especially when matching was done with-
out replacement. In such settings, the higher number of 
discarded treated may have increased the variability asso-
ciated with the final treatment effect estimates. The 95 % 
CIs computed with the AI method were more similar 
to each other than the ones obtained with the standard 
method when matching was done with replacement.

Fig. 3  Distributions of estimate Propensity Score (PS) in the unbalanced dataset of the case study. Colors identify the Jarvik2000 LVAD and the 
HeartWare HVAD groups, which were the treatment and control groups, respectively

Table 2  Average Standardized Mean Differences (ASMDs), 
Proportion of Matched Treated (PMT), and Proportion of 
Resampled Controls (PRCs) in the matched sets of the case study 
obtained with all the evaluated PSM strategies

Replacement Oversampling ASMD PMT PRC

No 1 0.089 0.526 0.000

2 0.086 0.316 0.000

3 0.185 0.193 0.000

4 0.147 0.140 0.000

5 0.183 0.105 0.000

Yes 1 0.193 0.895 0.375

2 0.110 0.737 0.645

3 0.139 0.596 0.636

4 0.142 0.579 0.771

5 0.150 0.509 0.800
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Discussion
While the performances of matching with oversam-
pling and with replacement have already been studied 
[20, 32, 42], to the best of our knowledge, the combina-
tion of both replacement and oversampling has not been 
explored so far. Moreover, PSM approaches were usually 
evaluated using simulation studies or real-word data with 
large sample sizes. The performances of PSM methods 
with a low number of enrolled subjects, often encoun-
tered in clinical settings, have been assessed by a limited 
number studies [43, 44]. In the present study, we com-
pared PSM with and without replacement for different 

levels of oversampling, with a particular focus on small 
sample size settings, in terms of the overall balance of the 
matched sets and the performances of the ATT estima-
tor. We employed a popular PSM approach, i.e. NN with 
a calliper, an algorithm known to perform well in several 
situations [20]. In addition, we considered the situation 
with a binary treatment status and a binary outcome, 
which, to our knowledge, was not assessed in the previ-
ous studies that considered PSM in small sample size set-
tings. The approaches were compared using an extensive 
series of Monte Carlo simulations and a case study from 
cardiothoracic surgery.

Fig. 4  Estimates of the Average Treatment effect on the Treated (ATT), expressed as absolute risk reduction, in the matched sets of the case study 
obtained with all the evaluated PSM strategies. The dots represent the ATT estimates and the errorbars the 95 % CIs
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From main simulations, we found that 1:1 matching 
without replacement achieved a greater overall balance 
than matching with replacement. Nonetheless, the oppo-
site pattern was observed when the level of oversampling 
increased, i.e. higher balance for matching with replace-
ment. The overall balance measured with the OVL had 
the same pattern as the one observed with ASMDs. Using 
both ASMD and OVL offers several advantages since 
they provide a measure of balance that simultaneously 
considers the distributions of all the baseline covariates 
and not just the separate low-dimensional statistics [34, 
45]. Although no information on single covariates are 
provided, they can be very useful when many PS strate-
gies are implemented and the analyst needs to choose the 
final set of matched units [31].

As expected, PSM with replacement discarded less 
treated observations than PSM without replacement. 
Thus, the use of replacement is more likely to decrease 
the bias due to incomplete matching. This phenomenon 
occurs when not all the treated subjects are matched to 
controls [16]. Incomplete matching narrows the general-
izability of the treatment effect estimates only to the sub-
jects that are included in the matched set, and it does not 
ensure that the new set of individuals is representative of 
the entire population of treated. Moreover, higher levels 
of oversampling reduced the PMT, suggesting that it can 
be tough to find all the pre-specified K matching controls 
for each treated when K is greater than 1.

Regarding the performances of the ATT estimator, 
matching with replacement delivers less biased ATT 
estimates in almost all the settings of the Monte Carlo 
simulations. These findings are in line with the results 
of previous studies, which found that matching with 
replacement increases the number of matched treated 
which improves generalizability at the expanse of slight 
bias in not having exact matches [32, 34, 46]. Moreover, 
the relative bias pattern is consistent with the ASMDs 
and PMT results: except for 1:1, matching with replace-
ment provided on average more balanced datasets, 
thus reducing the likelihood of selection bias, and dis-
carded fewer subjects, which may attenuate the bias 
due to incomplete matching. In contrast to that, over-
sampling increased the relative bias in all the scenarios 
except those with low sample size and the number of 
treated equal or higher than controls. As previously 
found in the literature, selecting more than one con-
trol for each treated subject generally involves a bias-
variance tradeoff [34, 46–48]. K greater than 1 usually 
decreases the variance of the treatment effect estimates 
at the expense of a higher bias. In the study from Austin 
(2010), the author recommended matching either 1 or 
2 units from the control group [42], which is agreeing 
with the larger relative bias increase observed in our 

Monte Carlo simulations when K is equal or greater 
than 3. Furthermore, the use of oversampling involved a 
high number of unmatched treated units, increasing the 
risk of incomplete matching bias. A valuable alterna-
tive to oversampling in these situations is represented 
by the full matching algorithm [49–51]. The algorithm 
creates a series of matched sets of units containing at 
least one treated and control by minimizing the dis-
tance defined by the estimated PS between treated and 
control individuals in each matched group. The RMSE 
results are consistent with the relative bias, suggesting 
that the ATT estimates obtained when matching is per-
formed with replacement are more precise than those 
obtained with matching without replacement in most 
of the scenarios.

The coverage of the 95 % CIs was affected by many fac-
tors, such as the settings of the simulations, the PSM 
strategy, and the methods used to compute them. First 
of all, when they were calculated using the standard 
method, matching without replacement resulted in a 
coverage closer to the nominal value in many scenarios 
but the ones with large sample size and more treated 
than control units. NC was lower in almost all sce-
narios with replacement. The difference was more pro-
nounced when the number of treated was greater than 
the number of controls. One possible explanation lies 
in the fact that the standard method does not account 
for the uncertainty involved in the matching procedure 
when replacement is used, thus leading to an incorrect 
NC. The use of the AI method, which in turn accounts 
for the randomness in the matching process, was evalu-
ated to overcome this issue. As observed in a previous 
study [52], we found that correct coverage was reached 
in almost all the scenarios with large sample size. In 
contrast, in lower sample size settings the coverage 
worsened for higher levels of oversampling and in situ-
ations where more treated than controls are present in 
the dataset. Increasing levels of oversampling resulted in 
higher NC in all the settings where the standard method 
was used. However, higher levels of oversampling are 
associated with more discarded treated subjects, which 
may also lead to a reduction of the initial sample size 
and, thus, to an inflation of the variance associated with 
treatment effect estimates. This could explain the higher 
NC values, which in some situations were greater than 
the 95 % nominal value.

From the second run of simulations, the bias of the ATT 
estimator was almost negligible in all scenarios, indepen-
dently of replacement, except when increasing oversam-
pling levels are considered, with better performances for 
matching with replacement. Matching without replace-
ment resulted in correct coverage only with a 1:1 match-
ing ratio, whereas, for matching with replacement the 
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coverage was good in most of the scenarios when the AI 
estimator was considered, suggesting the importance 
of accounting for uncertainty in the matching proce-
dure. Considering both bias and coverage aspects, differ-
ences between matching with and without replacement 
from secondary simulations were less evident than main 
simulations. The second setup of simulations assumed 
homogeneity of treatment effect, a simplified situation 
for which the estimation of ATT might be more straight-
forward regardless of the strategy used to perform PSM, 
as particularly evidenced by the relative bias findings. 
However, in practice, the assumption of treatment effect 
heterogeneity is often more reasonable and the present 
findings suggest that matching with replacement can be a 
reasonable starting point for a broad range of situations.

The overall balance observed in each matched set 
formed using the case study data was consistent with 
the results of the Monte Carlo simulations: classical 1:1 
matching without replacement returned lower ASMD 
value than 1:1 matching with replacement. Moreover, 
higher level of oversampling resulted in lower imbal-
ance in matching with replacement, and higher ASMDs 
when matching was done without replacement. As in 
the simulations, PSM with replacement discarded less 
treated subjects and, both in matching without and with 
replacement, the PMT was lower for higher K. Further-
more, in matching with replacement, more control units 
were resampled as candidate matching for higher levels 
of oversampling. No ATT estimates showed a significant 
absolute risk reduction of LDI in patients that under-
went Jarvik2000 LAVD. When the standard method was 
used, the width of the 95 % CIs increased when more 
than one control subject was used as candidate matching. 
Moreover, 95 % CIs were wider when matching without 
replacement was performed. The reduction of the initial 
sample obtained using matching without replacement 
with increasing K matching controls may have inflated 
the variance of the ATT estimate, a pattern that likely 
occurred in the Monte Carlo simulations. In contrast to 
this, absolute risk reduction estimates obtained with the 
AI method produced 95 % CIs with lower width than the 
standard method.

Furthermore, the width was fairly stable across the 
matched sets of patients. Based on the findings of the 
Monte Carlo simulations, the most reliable ATT esti-
mates were those obtained with 1:1 or 1:2 matching 
with replacement and when the AI method was used to 
compute the 95 % CIs. The estimates suggest that Jar-
vik2000 LVAD led to an absolute risk reduction of 0.039 
(95 % CI -0.125; 0.204) and 0.036 (95 % CI -0.100; 0.171), 
respectively.

In the case study, patients with missing data were dis-
carded from the analysis. The presence of missing data 
in baseline covariates is one of the major issues in PS 
analyses since PS cannot be estimated for those indi-
viduals with missing information in baseline character-
istics. Classical approaches to deal with missing data in 
PS analysis are complete case (CC) analysis and missing 
indicator method (MIND). However, these approaches 
might be problematic in several situations [53, 54]. Alter-
natives are represented by methods that include missing 
values during the estimation of PS [55, 56] and methods 
based on multiple imputation (MI) [57]. A comparison of 
several methods for handling missing data in PS analy-
sis with a binary exposure has been recently performed 
by some studies [58–60]. In the present study, missing 
data in PS analysis issues were not considered since they 
are not the focus of the work. We would not expect to 
observe important differences between methods for han-
dling missing data and PSM strategies given that only 
one patient was discarded with the CC analysis. How-
ever, further research studies are needed to understand 
how to properly deal with missing data in PSM analysis, 
especially when sample sizes are small and matching with 
replacement and oversampling is considered.

Our study has several limitations. First, our Monte 
Carlo simulations examined a binary outcome, which is 
similar to the one in the case study. In the future, the 
proposed approaches should be evaluated in the pres-
ence of other types of endpoints, such as time-to-event 
outcomes, which are of particular interest in clinical 
practice. Moreover, even if we implemented an exten-
sive set of Monte Carlo simulations, our results should 
be replicated in different scenarios, such as by consid-
ering different proportions of outcome occurrences and 
different treatment effect magnitudes, which we treated 
as fixed. Furthermore, other models of the treatment 
assignment may be explored, such as the use of machine 
learning techniques [61–63], and the use of different 
matching algorithms should be considered [50, 64, 65]. 
Other studies explored the performances of PS methods 
in small sample size settings [41, 43, 44]. In Pirracchio 
et  al. (2012), the authors found that classical PS-based 
approaches, such as PSM and using PS as the Inverse 
Probability of Treatment Weighting (PS-IPTW), led to 
substantially unbiased treatment effect estimates. How-
ever, the difference between settings makes findings 
hardly comparable. In the future, PSM with replacement 
and oversampling may be replicated in settings simi-
lar to the one proposed by Pirracchio et al. (2012) and 
compared with more classical PS-based approaches. 
Furthermore, we compared only two matching ATT 
estimators: the standard method that accounts for the 
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matched nature of the sample and the AI method. There 
is considerable debate in the PSM literature about the 
variance estimation. Some researchers argued that 
the matching procedure and the uncertainty associ-
ated with the PS estimation should not be taken into 
account and that ATT should be estimated conditional 
on the covariates, which are assumed to be fixed [66]. 
Other researchers found that the variance that accounts 
for the matched nature of the sample provides correct 
nominal coverage and should be used to compute 95 % 
CIs [1, 21, 67, 68]. When one wants to account for the 
uncertainty in the matching procedure, some empirical 
formulas and bootstrap methods for variance estima-
tion have been proposed [69–72]. Furthermore, there is 
debate on whether to account for the uncertainty of PS 
estimation in the variance estimator. Previous studies 
argued its importance to get valid confidence intervals 
in the context of PS-IPTW [73, 74]. To the best of our 
knowledge, the topic has not been explored in-depth 
so far in the case of PSM, especially when matching 
approaches alternatives to classical 1:1 without replace-
ment are used [67, 75]. In the present study, we did not 
consider variance estimators that account for PS esti-
mation uncertainty and we recognize it as a limitation 
of our work that might explain the incorrect coverage 
of 95 % CIs obtained in most of the scenarios, especially 
those with small sample sizes. Future research stud-
ies are needed to compare further the performances of 
variance estimators that account for different sources 
of uncertainty when PSM is used with replacement and 
oversampling.

In summary, the treatment effect estimation in small 
sample size settings remains an open issue. Further 
work should be aimed in this direction, especially in 
the medical field, where observational studies are the 
only alternative when randomization is unethical, and 
the number of eligible subjects is low. Suppose the 
researcher wants to estimate the treatment effect using 
a PSM method. In that case, we recommend using the 
NN algorithm with replacement and matching no more 
than 1 or 2 control units to each treated unit. Indeed, 
the researchers should weight each control unit by 
the reciprocal of the number of times it was used as a 
matching candidate. Moreover, the AI method should 
be used as the variance estimator, since it provided the 
best NC in most of the settings considered in the Monte 
Carlo simulations.
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