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1 University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
2 Department of Mathematics, Aberystwyth University, Aberystwyth, Wales, United Kingdom
3 Department of Applied Mathematics, Hanyang University (ERICA), 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do, 426-791, Republic

of Korea
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Abstract
Mutually unbiased bases (MUBs) provide a standard tool in the verification of quantum states,
especially when harnessing a complete set for optimal quantum state tomography. In this work, we
investigate the detection of entanglement via inequivalent sets of MUBs, with a particular focus on
unextendible MUBs. These are bases for which an additional unbiased basis cannot be constructed
and, consequently, are unsuitable for quantum state verification. Here, we show that unextendible
MUBs, as well as other inequivalent sets in higher dimensions, can be more effective in the
verification of entanglement. Furthermore, we provide an efficient and systematic method to
search for inequivalent MUBs and show that such sets occur regularly within the Heisenberg–Weyl
MUBs, as the dimension increases. Our findings are particularly useful for experimentalists since
they demonstrate that a clever selection of MUBs allows for entanglement detection with fewer
measurements.

1. Introduction

Quantum entanglement is one of the key ingredients responsible for many of the recent advances in
quantum technologies, however, the detection of this fundamental property, even with full knowledge of the
quantum state, is in general an NP-hard problem [1]. In this contribution we exploit an experimentally
feasible protocol to detect entanglement in which the subsequent addition of measurement settings detect a
larger class of entangled states. The essential feature of this scheme is for the measurement settings to
exhibit complementarity, namely, that the measurements form a set of mutually unbiased bases (MUBs),
i.e. the overlap of any pair of vectors from different bases is constant [2]. Physically, this means that exact
knowledge of the measurement outcome of one observable implies maximal uncertainty in the other.

Utilising this property, MUBs play an important role in many information processing tasks, such as
quantum state tomography [3, 4], quantum key distribution [5], signal processing [6], and quantum error
correction [7], to name just a few. Unfortunately, the existence of maximal sets of these highly symmetric
bases is a difficult unresolved question: an equivalent formulation of the problem in terms of orthogonal
decompositions of the algebra sld(C) dates back almost forty years [8, 9]. While it is known that maximal
sets of d + 1 MUBs in Cd exist when d is a prime or prime-power, e.g. by a construction based on the
Heisenberg–Weyl group [10], it is conjectured that fewer MUBs exist in all other dimensions [11, 12]. The
classification of subsets of MUBs is an open problem for d > 5, and a rich structure of inequivalent MUBs
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(up to unitary transformations) exists [13]. Of particular relevance to this work is the property of
unextendibility, i.e. sets of MUBs which cannot be completed to a maximal set.

One striking feature of the entanglement witness, first introduced in [14], is that the value of the upper
bound (which is violated by entangled states) depends only on the number of MUBs and not on the choice
between inequivalent sets. For example, the experimenter is free to use extendible or unextendible MUBs.
The protocol has since been applied to two photons entangled in their orbital angular momentum, and
bound entangled (PPT-entangled) states have been verified experimentally for the first time [15, 16].
Further modifications of the witness have also been considered, e.g. with two-designs and orthogonal
rotations [17–19], as well as in applications to other scenarios [20, 21].

Recently, entanglement witnesses were also shown to have a lower bound [22, 23], which often turns out
to be non-trivial, i.e. entanglement is detectable. In this contribution, we compute the lower bounds of the
MUB-witness and reveal that, in contrast to the upper bound, the values depend strongly on the choice of
MUBs, as well as the number of measurements. One consequence of this sensitivity, as we will see, is that
unextendible MUBs can be more effective at entanglement detection than extendible ones. Furthermore,
this operational distinction between MUBs reveals the existence of inequivalent sets and hence the witness
provides a way to classify these sets. We use this criterion to establish inequivalences within the
Heisenberg–Weyl MUBs when d = 5, 7, 9, as well as for some continuous families and unextendible sets.

This contribution is perhaps the first application of MUBs in which unextendible sets may be the
preferred measurement choice over Heisenberg–Weyl subsets. In fact, most applications exhibit no
preference for a particular subset of MUBs, and hence the physical differences between inequivalent sets
have not been fully realised. Our results complement some recent observations on measurement
incompatibility [24] and quantum random access codes (QRAC) [25, 26]. In particular, inequivalent MUBs
contain varying degrees of incompatibility when quantified by their noise robustness, meaning that some
sets require additional noise to become jointly measurable. Furthermore, measuring different subsets of
MUBs in a QRAC protocol reveals ‘anomalies’ in the average success probability, which appear to coincide
with our different lower bounds of the witness. Here, by considering entanglement witnesses, we provide a
physically significant application which exploits these inequivalences.

2. Inequivalent and unextendible MUBs

Formally, we say a pair of bases in Cd, labelled Bk = {|ik>}d−1
i=0 and Bk′ , are mutually unbiased iff

|〈ik|i′k′ 〉|2 = δi,i′δk,k′ + (1 − δk,k′)
1

d
,

for all i, i′ = 0, . . . , d − 1. For prime dimensions the standard Heisenberg–Weyl group provides the essential
building blocks for the construction of a complete set of d + 1 MUBs, while for prime-powers d = pn the
generalised tensor product Heisenberg–Weyl group (as described in the appendix) is used. However, in
almost all dimensions, these provide only a small subset of all possible cases. In order to classify MUBs, we
need to introduce the notion of equivalence classes. Two sets of m MUBs are equivalent,
{B1, . . . ,Bm} ∼ {B′

1, . . . ,B′
m}, if one set can be transformed into the other by a unitary or antiunitary

transformation, permutations within (or of) bases, and phase factor multiplications. The task of
classification is challenging, with success currently limited to d � 5 [27, 28]. When d = 2, 3, 5 the
Heisenberg–Weyl MUBs exhaust all possibilities: no inequivalence occurs when d = 2, 3 and only two
inequivalent triples appear among all possible subsets in d = 5. In contrast, d = 4 yields a one-parameter
family of pairs, and a three-parameter family of triples, inequivalent to all Heisenberg–Weyl subsets [29]. In
higher dimensions d � 6 the situation is complicated and closely related to the (very old [30, 31]) problem
of searching for complex Hadamard matrices. A square matrix H is a complex Hadamard matrix if it is
unitary and its elements have equal modulus. In some instances, constructions of MUBs produce cases
which do not extend to complete sets, and are aptly named unextendible MUBs [32, 33]. In dimensions
d = pn, the first examples appear when d = 4 [28] and d = 7 [34], and more generally d = p2 [35, 36].

Finally, we fix some notation. It is often convenient to represent MUBs as sets of unitary matrices, where
the columns correspond to orthogonal basis vectors. Due to equivalence transformations, it is possible to
express a set of m MUBs for Cd in Hadamard form,

{B1,B2, . . . ,Bm} ∼ {I, H1, . . . , Hm−1},

where I is the identity matrix and Hi are (d × d) complex Hadamard matrices with |hij| = 1/
√

d. Wlog we
assume B1 ≡ I is the standard basis throughout.

2



New J. Phys. 23 (2021) 093018 B C Hiesmayr et al

3. Entanglement detection via MUBs

In reference [14] an experimentally friendly protocol was introduced that can verify the entanglement of a
bipartite state ρ on Cd ⊗ Cd, by subsequently measuring a set of MUBs. Both parties, which may be locally
separated, and usually called Alice and Bob, each possess the (same) set of m MUBs in Cd. Applying
identical projections from each basis, they calculate

Mm(ρ) :=
m∑

k=1

d−1∑
i=0

P(i, i|Bk,Bk), (1)

where P(i, i|Bk,Bk) = tr(|ik〉〈ik| ⊗ |ik〉〈ik|ρ) denotes the joint probability of Alice and Bob each obtaining
outcome i of the basis measurement Bk, given the state ρ. The authors of reference [14] showed that the
correlation function Mm is bounded above for all separable states by Um (see equation (3)). This is easily
seen when we assume that the source produces the separable state |ilil〉, with |il〉 ∈ Bl. Here, the
joint probability P(i, i|Bl,Bl) is obviously maximal, i.e. 1, and for any other basis choice k �= l, the
joint probabilities result in

∑
i P(i, i|Bk,Bk) = 1

d due to the unbiasedness condition. The bound follows by
exploiting the arithmetic mean and the convexity of separable states. Recently, it was shown in [22] that the
very definition of an entanglement witness also yields a non-trivial second bound, which for the
MUB-witness results in a lower bound. Thus, the quantity Mm has two bounds,

Lm

∀ separable states
� Mm(ρ)

∀ separable states
� Um (2)

and any violation of the above inequality detects entanglement of the state ρ. The upper bound has the
simple form

Um = 1 +
m − 1

d
, (3)

and is independent of the choice of MUBs, which implies that only the unbiasedness property is exploited
[14]. One should also note that although the upper bound is independent of the ordering of the MUBs, the
results depend on the initial correlation of the considered quantum state ρ. This in turn can be
compensated by Alice or Bob applying local unitaries to the state. Further note that observing entanglement
in any pure quantum state via the above inequality only requires measurements in (any) two MUBs. For a
complete set, the bounds are Ld+1 = 1 and Ud+1 = 2, which follow from the two-design property of MUBs
[17], and the witness is most effective at detecting entangled states.

4. Detection with inequivalent MUBs

In striking contrast with the upper bound of the function Mm(ρ), the lower bound Lm depends not only on
the dimension d and the number of MUBs, m, but also on the choice of MUBs. In other words, the bound
is highly sensitive to the particular set of MUBs chosen, and therefore inequivalent sets often yield different
values of Lm. In the following, we analyse this dependence to understand its effect on entanglement
detection. We restrict our analysis to dimensions d < 10 to ensure that the numerical optimisations of the
bounds are reliable, where we exploit the composite parameterization of unitaries introduced by [37]. For
higher dimensions alternative methods may be successful such as e.g. semidefinite programming [38]. Let
us first formulate three main observations in the form of theorems, which we will further discuss in the next
section:

Theorem A. If sets of m MUBs have different lower bounds Lm = min∀ ρSEPMm(ρSEP), they are inequivalent.

Theorem B. Unextendible MUBs can result in a stricter lower bound Lm and may therefore detect a larger set of
entangled states.

Theorem C. Unextendible sets of MUBs may detect a larger set of entangled states via both the upper and lower
bounds, Um and Lm.

5. Discussions

Unextendible MUBs in d = 4: the first inequivalent sets of MUBs appear in dimension four, and provide a
simple example of theorem A. There exists a one-parameter family of inequivalent pairs {I, F(x)} and a
three-parameter family of triples {I, F(x), H(y, z)} where H1 = F(x) is the Fourier family and H2 = H(y, z)

3
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Table 1. Lower (Lm) and upper (Um) bounds of the MUB-witness are
summarized for m MUBs and d = 2, 3, 4. For d = 4, the unextendible sets
lead to a stricter bound.

Figure 1. The graph shows entanglement detection of extendible and unextendible triples of MUBs in dimension d = 4, for the
family of magic states ρ(α,α). All states on the right-hand side of the vertical line are known to be entangled as detected by the
PPT-criterion. The dots represent the values of M3(ρ) optimized over local unitarities and exploiting the U ⊗ U∗ symmetry in
the case of unextendible (red) and extendible (blue) sets of MUBs. These provide examples for theorems B and C.

is a family of Hadamard matrices defined in the appendix with x, y, z ∈ [0,π]. These cover all pairs and
triples in d = 4 [28] and coincide with the Heisenberg–Weyl case when x = y = z = π

2 (for which it
extends to a complete set). The triple is unextendible for all other parameter choices. As summarized in
table 1 the upper bound is calculated by equation (3), but the lower bound L3 depends strongly on the
choice of triple. For the (extendible) Heisenberg–Weyl triple, we find Lext

3 = 1/4, whereas
Lunext

3 ∈ (1/4, 1/2] for all unextendible sets. The strongest possible bound Lunext
3 = 1/2 is reached when

x = π/2 and y = z = 0, and is achieved for any pure separable state ρ = |a, b〉〈a, b| with 〈a|b〉 = 0. In
contrast, the Heisenberg–Weyl triple saturates the lower bound only for particular separable states, e.g.

1√
2
(|0〉 − |2〉) ⊗ 1√

2
(|1〉+ |3〉). We note that L2 = 0 for all inequivalent pairs.

Unextendible MUBs are more efficient: let us now study whether unextendible MUBs are more efficient at
detecting entanglement (theorems B and C), which is suggested by the stricter lower bounds. However, this
need not be the case since the witness itself is also altered and may act differently on any given state.

Let us consider a state from the magic simplex [39–41], e.g. ρα,β = (1 − α− β)𝟙/d2 + αP0,0 + βP0,1 (it
applies for any two Bell states), where the entanglement properties are also fully known. Here
P0,0 =

1
d

∑d−1
s,t=0|ss〉〈tt| denotes a Bell state and any other Bell state Pk,l can be obtained by locally applying in

one subsystem a unitary Weyl operator W(k,l) =
∑d−1

j=0 ω
j k
d |j〉〈j + l| with ωd = e

2πi
d . The results for d = 4 and

α = β are summarized in figure 1 and show the unextendible sets are more efficient in detecting
entanglement, as described in theorems B and C.

A second example is provided by Werner states ρW, which are invariant under any local unitary U ⊗ U
[42]. The lower bound of (2) detects all entangled Werner states for a complete set of MUBs, and becomes
less effective as the number of measurements is reduced. Due to U ⊗ U invariance, the quantity Mm(ρW) is
independent of the choice of MUBs, therefore the value of the bound plays a fundamental role in its
effectiveness. For three MUBs, the unextendible triple with the strictest lower bound Lunext

3 = 1/2 detects
the largest set of entangled states.

Inequivalent subsets: we now analyse the lower bound Lm for all subsets of Heisenberg–Weyl MUBs when
d = 5, . . . , 9, to search for inequivalent sets.

4
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Table 2. Lower (Lm) and upper (Um) bounds of the function Mm

for the Heisenberg–Weyl MUBs in d = 5.

Table 3. Lower (Lm) and upper (Um) bounds of the function Mm

for the Heisenberg–Weyl MUBs and unextendible MUBs in d = 7.

Dimension d = 5: here, a full classification is already known [27, 28], and our search recovers all
equivalence classes. All subsets of equal cardinality are equivalent except for triples, which can be grouped
into one of two classes: {B1,B2,B3} � {B1,B2,B4}. Computing the lower bound L3 over all

( 6
3

)
= 20

triples, we find two different bounds, as summarized in table 2. No other inequivalent sets appear from the
26 permutations, in agreement with previous results.

Dimension d = 7: searching over all subsets, we find only two inequivalent quadruplets

Q1 := {B1,B2,B3,B4} � {B1,B2,B3,B5} :=Q2.

These appear by observing LQ1 = 0.1514 and LQ2 = 0.201 01. There are
( 8

4

)
= 70 combinations of size

four, with 42 sets achieving the first bound and 28 the second (higher bound). To explain this distribution,
note that no inequivalent triples exist, i.e. any triple is equivalent to {B1,B2,B3}. Hence, there are only five
possible extensions to a quadruplet, namely {B1,B2,B3,Bk}, k = 4, . . . , 8. If k = 4, 6, 8/5, 7 the quadruplets
are equivalent to Q1/Q2, therefore the distribution is split as above rather than evenly. We note that two
inequivalent quadruplets were also found by analysing the incompatibility content of these subsets [24] and
their success in a QRAC protocol [26]. This case is also interesting due to the existence of an unextendible
triple, {B1,B2,A7}, defined in the appendix. For this set, the lower bound L3 = 0.0557 is smaller than the
Heisenberg–Weyl bound (0.0698). Again, we have examples of the above theorems. The results are
summarized in table 3.

Dimension d = 8: we find a very distinct picture within the Heisenberg–Weyl set, with no inequivalent
sets found, in contrast with odd prime and prime-power dimensions. In particular, the bounds are given by
Lm=2,...,4 = 0, L5 =

1
8 , L6 =

2
8 , L7 =

3
8 , L8 =

1
2 , L9 = 1.

Dimension d = 9: within the Heisenberg–Weyl set we find no inequivalences for m = 2, 3 with
L2 = L3 = 0, but three inequivalent sets for m = 4 (L4 = 0, 0.077, 1

6 ) with occurrence 15 : 180 : 15, three
inequivalent sets for m = 5 (L5 = 0.140, 0.191, 0.198) with occurrence 90 : 72 : 90, three inequivalent sets
for m = 6 (L6 =

2
11 , 0.259, 1

3 ) with occurrence 15 : 180 : 15, two inequivalent sets for m = 7 (L7 =
1
3 , 0.331)

with occurrence 60 : 60 and no inequivalent sets for m = 8, 9, 10 (L8 = 0.418, L9 =
1
2 , L10 = 1). We note

that these results depend heavily on numerical optimizations. The inequivalences are in full agreement with
those found in [24, 26], except when d = 9, m = 3, where we detect no inequivalent triples (L3 = 0) unlike

5
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the two cases found in [24] and the anomaly in [26]. Furthermore, we observe that Lm < Lm+1 does not
always hold, which is of particular importance for experimental realisations.

Dimension d = 6: this is the first dimension where a maximal set has not been found, and it is
conjectured four MUBs do not exist [43]. The Heisenberg–Weyl construction yields only three bases,
although many inequivalent pairs and triples exist [44, 45]. There is only one known unextendible pair,
{B1, S6}, where S6 is the Tao matrix [46, 47] defined in the appendix. The lower bound for any pair
(extendible and unextendible) results in L2 = 0. The lower bound for the unextendible Heisenberg–Weyl
triple is L3 = 0.1056.

6. Summary and outlook

We have studied the role that inequivalent MUBs play in the detection of entanglement, as well as providing
a method to systematically distinguish inequivalent sets. The dual bounds of the witness exhibit contrasting
behaviours, as the choice of MUBs plays a fundamental role in the effectiveness of the lower bound. This is
a crucial observation for experimentalists who want to maximise their success in detecting entanglement.
Little is known about the physical significance of inequivalent MUBs, and our witness is perhaps the first
application where unextendible MUBs are the preferred choice. This leads to questions of whether other
applications exist which prioritise one set over another (as is the case for QRACs [26]), or if inequivalent
MUBs have other properties responsible for their varying degrees of usefulness. One such possibility is their
incompatibility content, which also distinguishes between equivalence classes of MUBs [24]. Exploring
connections between incompatibility, inequivalent MUBs, and entanglement detection, such as the role
incompatibility plays in the effectiveness of entanglement witnesses, may reveal new insights into these
topics. Finally, we point out that our findings provide an alternative method to study the structure of the
convex set of separable states and subsequently, the rich structure of entanglement.
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Appendix A. Heisenberg–Weyl MUBs

The unitary Heisenberg–Weyl shift and phase operators, acting on Cd, are defined by

X =

d−1∑
j=0

|j + 1〉〈j|, Z =

d−1∑
j=0

ω
j
d|j〉〈j|, (A.1)

respectively, where ωd = exp(2πi/d). For prime dimensions, d = p, the eigenstates of Z, X, XZ,
XZ2, . . . , XZd−1 form a complete set of d + 1 MUBs, and can be written in the concise form

|jk〉 =
1
√

p

p−1∑
�=0

ω
(k�2+j�)
p |�〉 , (A.2)

where k, j ∈ Fp, such that k labels each basis, j the elements within each basis, and |�〉 the elements of the
canonical basis. Together with the standard basis, the bases form a set of p + 1 MUBs. We can also represent
this in matrix form, with B1 = I, B2 = Fd, and

Bi+2 = Di
dFd, (A.3)

6
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for i = 1, . . . , d-1, where Fd is the (d × d) Fourier matrix with elements

fjk =
1√
d

exp(2πi(j − 1)(k − 1)/d), (A.4)

and Dd a diagonal matrix. For d = 5, 7, the complete sets are generated using

D5 = diag(1,ω5,ω4
5,ω4

5,ω5) (A.5)

and
D7 = diag(1,ω7,ω4

7 ,ω2
7,ω2

7,ω4
7,ω7). (A.6)

For d = pn, the operators Xk1 Z�1 ⊗ · · · ⊗ Xkn Z�n , where kj, �j ∈ Fp, each acting on the Hilbert space
C

p ⊗ · · · ⊗ C
p, generate the complete set. Partitioning the operators into commuting classes and finding

their common eigenvectors yield the d + 1 bases. If p is odd, the basis elements can be written in the
succinct form

|jk〉 =
1√
d

∑
�∈Fd

ω
tr(k�2+j�)
p |�〉 , (A.7)

where Fd is the Galois field, and the trace of α ∈ Fd is defined as tr(α) = α+ αp + · · ·+ αpn−1
. Hence, the

bases Bk, k ∈ Fd, together with the standard basis, form the complete set. If p is even, i.e. d = 2n, the
construction is based on Galois rings [9], with basis elements given by

|jk〉 =
1√
2n

∑
�∈Tn

itr((k+2j)�) |�〉 , (A.8)

where k and j are elements of the Teichmüller set Tn. In this case, the trace map tr : GR(4, n) → Z/4Z is
defined as tr(x) =

∑n−1
t=0σ

t(x) where σ is the automorphism σ(k + 2j) = k2 + 2j2.

Appendix B. Unextendible MUBs

Here, we provide the explicit forms of the unextendible MUBs discussed in the paper. In dimension d = 4,
the three-parameter family of mutually unbiased triples {I, F(x), H(y, z)} [29], is given by the
one-parameter Fourier family

F(x) =
1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 ieix −ieix

1 −1 −ieix ieix

⎞
⎟⎟⎠ ,

and the two-parameter family of Hadamard matrices

H(y, z) =
1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1

−eiy eiy eiz −eiz

eiy −eiy eiz −eiz

⎞
⎟⎟⎠ ,

with x, y, x ∈ [0,π]. These triples are unextendible unless x = y = z = π/2, where they coincide with the
Heisenberg–Weyl case.

The only unextendible pair in d = 6 is given by {I, S6}, where S6 is the Tao matrix [47]:

S6 =
1√
6

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 ω3 ω3 ω2

3 ω2
3

1 ω3 1 ω2
3 ω2

3 ω3

1 ω3 ω2
3 1 ω3 ω2

3

1 ω2
3 ω2

3 ω3 1 ω3

1 ω2
3 ω3 ω2

3 ω3 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B.1)
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The set {I, F7, A7} found in [34] for d = 7, is an unextendible triple of MUBs, with F7 the Fourier
matrix and setting α = (

√
−7 − 3)/4,

A7 =
1√
7

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α α α 1 α 1 1
1 α α α 1 α 1
1 1 α α α 1 α

α 1 1 α α α 1
1 α 1 1 α α α

α 1 α 1 1 α α

α α 1 α 1 1 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.2)
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