
ArguLens: Anatomy of Community Opinions On Usability
Issues Using Argumentation Models

Wenting Wang
McGill University
Montréal, Canada

wenting.wang@mail.mcgill.ca

Deeksha Arya
McGill University
Montréal, Canada

deeksha.arya@mail.mcgill.ca

Nicole Novielli
University of Bari

Bari, Italy
nicole.novielli@uniba.it

Jinghui Cheng
Polytechnique Montréal

Montréal, Canada
jinghui.cheng@polymtl.ca

Jin L.C. Guo
McGill University
Montréal, Canada
jguo@cs.mcgill.ca

Issue #224: Proper tabs for open files
Ground

Warrant
Tab management is an unconscious and
uninhibiting part of my development.

Issue tracking
system users Su

pp
or

t
Ag

ai
ns

t

Tabs are the default way to work even in
Visual Studio, to not mention other text
editors such as sublime.

Claim
I vote for adding tabs.

Issue Discussion Thread

Ground
Warrant I just quickly looked at a file, it would

open a new tab, and within minutes my
tab bar was full of useless tabs.

Claim
That’s a bad idea.

One of the defining features of VS Code for me was an
absence of tabs. I didn't even realize that they were missing!

ArguLens

Figure 1. ArgueLens analyzes lengthy discussions about usability on issue tracking systems for open source projects, anatomizing them into argumen-
tative components (claim, ground, and warrant) and standpoints (support or against). Such a conceptual framework and the underlying argument
extraction technique enable tools for supporting open source community members to understand and consolidate diverse opinions on usability issues.

ABSTRACT
In open-source software (OSS), the design of usability is often
influenced by the discussions among community members on
platforms such as issue tracking systems (ITSs). However,
digesting the rich information embedded in issue discussions
can be a major challenge due to the vast number and diver-
sity of the comments. We propose and evaluate ArguLens, a
conceptual framework and automated technique leveraging
an argumentation model to support effective understanding
and consolidation of community opinions in ITSs. Through
content analysis, we anatomized highly discussed usability
issues from a large, active OSS project, into their argumenta-
tion components and standpoints. We then experimented with
supervised machine learning techniques for automated argu-
ment extraction. Finally, through a study with experienced
ITS users, we show that the information provided by Argu-
Lens supported the digestion of usability-related opinions and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376218

facilitated the review of lengthy issues. ArguLens provides the
direction of designing valuable tools for high-level reasoning
and effective discussion about usability.

Author Keywords
Open source software; usability; online communities; issue
discussion analysis; argumentation analysis.

CCS Concepts
•Software and its engineering ! Software usability;
•Human-centered computing ! Open source software;
Computer supported cooperative work;

INTRODUCTION
Usability is a well-known, yet important concept that focuses
on creating a system that is easy, efficient, error-preventing,
and pleasant to be used [44]. In community-driven software
development environments, such as that of the modern Open
Source Software (OSS) applications, usability considerations
are usually determined by the collective concerns of the com-
munity itself [3], which, in turn, comprises a heterogeneous
group of participants [18].

In the recent years, OSS applications vastly broadened their
scope, going beyond the tools for “technology adventurers”
while embracing a wide range of applications for diverse tasks

ar
X

iv
:2

00
1.

06
06

7v
1

 [c
s.H

C
]

16
 Ja

n
20

20

CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
http://dx.doi.org/10.1145/3313831.3376218

and user groups. OSS development has since evolved beyond
the “scratch-your-own-itch” model, to focus on thethesatis-
faction and involvement of end users [58]. Collection of the
community feedback in OSS development is largely done by
leveraging modern software engineering tools such as Issue
tracking systems (ITSs). ITSs allow OSS community members
to create, discuss about, and manage the status of various sys-
tem and project-related tasks, enhancements, problems, and
questions, including those related to usability [64]. Previous
research demonstrated how the discussions on ITSs provide
rich information to diverse community participants [4]. Par-
ticularly, usability issues are important venues to capture and
record discussions about user experiences, opinions, desires,
and justifications [17]. However, because of the sheer amount
of comments posted daily to ITSs, as well as the varied per-
spectives of different community members, contributors of
OSS application projects face a major challenge in digesting
the rich information embedded in ITSs in order to determine
the actual user needs and consolidate the diverse feedback [10].

In this paper, we directly target this challenge through Argu-
Lens (see Figure 1), a conceptual framework and machine
learning-based technique leveraging an argumentation model
to extract structured information from complex usability dis-
cussions. We formulate our research questions as follows:

RQ1: How do the open source software communities argue
about usability issues in issue tracking systems?
RQ2: How effective are machine learning models in extracting
arguments and their structure in usability issue discussions?
RQ3: To what extent can argumentation-enhanced representa-
tions of usability issue discussions support practitioners in un-
derstanding and consolidating community opinions and needs?

To answer our research questions and construct ArguLens, we
first conducted a content analysis on arguments in usability
issue discussion threads of the Visual Studio Code GitHub
project1, using an adapted version of the Toulmin’s argumen-
tation model [59]. Then we experimented with multiple super-
vised classifiers using different feature sets to extract argumen-
tative information from the discussions. Finally, we performed
a user study with participants who have experiences in using
issue tracking systems to understand their perception of the
argumentation-annotated usability issue discussion threads.

Our work produced the following outcomes and contributions.
First, our content analysis of usability issue discussions re-
sulted in an annotated corpus containing 5123 quotes (i.e. sen-
tences or self-contained phrases) that serves as the foundation
for ArguLens. Results indicated that contents in usability dis-
cussions broaden beyond the original post topic. In addition,
we found that highly-disagreed arguments usually reside in the
middle of the issue thread and thus can be easily overlooked.
Second, we demonstrate that we can train supervised clas-
sifiers for automated argument identification, thus enabling
argumentation-enhanced issue representation in ArguLens.
Specifically, we observed that both Linear Support Vector Ma-
chine (SVM) and Naive Bayes classifiers provided satisfactory
results using textual features based on term frequency-inverse

1https://github.com/microsoft/vscode

document frequency (TF-IDF). Finally, our user study pro-
vided evidence that practitioners preferred representations of
issue discussions supported by ArguLens. Removing non-
argumentative contents, separating arguments by their topics,
and providing information about argument components were
appreciated by the participants when they focused on under-
standing the community’s opinions in issue discussions. Our
results also called for the needs of designing visual and inter-
active representations of the argument anatomy supported by
ArguLens. In sum, ArguLens provides the direction of design-
ing valuable tools and techniques for reasoning and discussing
usability issues in a community-driven environment.

BACKGROUND AND RELATED WORK
Our work is situated in the literature on (1) usability of open
source projects, (2) argumentation theory and their applica-
tions to usability, and (3) automated argument mining.

Open Source Usability
Due to the distinctive characteristics of OSS projects, address-
ing their usability is particularly challenging. The usability
of OSS applications is known to be negatively affected by
factors such as developers’ scarce awareness of users’ needs,
insufficient expertise, and an excessive emphasis on features
and complexity rather than ease-of-use in OSS projects [42].
Along with the recent development of software engineering
techniques and tools, as well as the increased awareness of
usability in the software industry, OSS usability had become a
growing research direction carrying important practical impli-
cations. The Issue Tracking Systems (ITS) represent a common
and fundamental tool for gathering the community members’
needs and feedback about usability-related issues, as identified
in several empirical studies about OSS usability practices [6,
43, 33]. The OSS community members (including users, de-
velopers, and other stakeholders) use ITSs to collaboratively
raise, discuss, negotiate, and address usability-related topics.

Although ITSs are useful in providing a common platform to
engage the community, they suffer from several limitations
when used for discussing usability issues in practice. For
example, there is currently limited theoretical and practical
support in classifying usability defects and handling the multi-
faceted usability discussions [60, 64]. Current tools also do not
accommodate the different communication styles adopted in
diverse OSS communities [17]. Moreover, community mem-
bers engaged in ITS usability discussions usually experience
an information overload, which hinders their effective partic-
ipation and contribution [10]. Because of these limitations,
getting involved in OSS usability discussions is still a daunt-
ing affair, deterring OSS developers as well as other crucial
stakeholders such as end users and user experience experts [7,
48, 34]. In this paper, we tackle this challenging problem of
supporting OSS usability through the creation and evaluation
of ArguLens to support OSS stakeholders in understanding
and consolidating the diverse community opinions.

Argumentation Theory and Its Application to Usability
The study of argumentation has a long history due to the preva-
lent importance of persuasive speaking [32]. Many researchers
studied the structure of arguments, thus producing rhetoric and

argumentation theory [59, 26]. Others applied these models to
assist tasks in areas such as knowledge representation, legal
reasoning, and negotiation [5, 12, 13, 21, 40].

Macewan et al’s defined the term “argumentation” to empha-
size its progressive property: “argumentation is the process of
proving or disproving a proposition. Its purpose is to induce
a new belief, to establish truth or combat error in the mind
of another” [39]. We adopt this definition of argumentation
and additionally use the term argument to refer to a concrete
instance (e.g. a paragraph or a series of persuasive statements
on a certain topic) produced via argumentation.

Collectively, researchers have proposed many argumentation
models for different purposes [11]. In order to understand how
each argument towards usability unfolds in issue discussions,
we adopt one of the most influential models, i.e., Toulmin’s
model of argumentation. Toulmin describes arguments using
the metaphor of an organism, suggesting that an argument
should have both a gross, “anatomical” structure and a finer,
“physiological” one [59]. To study the pattern of arguments,
he identified six fundamental argumentative components:

Claim: Conclusions or viewpoints one tries to convince
others to agree with.

Ground: Facts used to play as a foundation for the claim.
Warrant: General or hypothetical statements, acting as

bridges between data and claim.
Qualifier: Indicating the strength granted by the warrant to

support its claim.
Rebuttal: Conditions in which the warrant is not applica-

ble. As a result of a rebuttal, the consequential
conclusion can be overturned.

Backing: Demonstrating the validity of warrant.

Toulmin further incorporated their inter-relationships to form
the layout of arguments, as shown in Figure 2.

Researchers have adopted Toulmin’s argumentation theory for
usability evaluations. For example, Nogaard et al. proposed
that usability feedback can be viewed as an argument for a
series of usability problems [45]. By applying concepts from
Toulmin’s model and Aristotle’s modes of persuasion, they
provided guidelines about how to create persuasive usability
feedbacks. Usability problems and solutions are also typically
consolidated with a group of stakeholders involved in the de-
sign process [38]. A study with ten novice usability evaluators
illustrated that their ability to defend their arguments during
negotiation impacts feature/fix prioritization, which may fur-
ther affect the design decisions [38]. Therefore, it is important

Ground
“Steve has extensive

experience in user
interaction design”

Claim
“We should hire

Steve”

Rebuttal
“Steve has a bad

personality and cannot
work with others”

Warrant
“Improved user interaction

design generally
increases revenue”

Backing
“A recent business

analysis”

Qualifier
“Presumably”

So,
Since

On account of

Unless

Figure 2. Relationship among the six components of the Toulmin’s model
of argumentation [59] with examples.

to analyze argumentation in usability-related discussions. Our
study contributes to this body of literature by adopting and
adjusting Toulmin’s model of argumentation to examine argu-
ments contained in OSS usability issue discussion threads.

Argument Mining
Argument mining is the task of identifying argumentative con-
tents and components in natural language texts [52]. Detecting
argument components can help the readers consolidate ideas
and support the argumentation authors to create a persuasive
reasoning [45]. Arguments are extensively studied in for-
mal written communications, such as legal documents and
scientific publications [41, 24, 55, 56]. Sentences in these
documents are usually well-structured, which can facilitate
the task of argument extraction. Comparing to formal sources,
arguments taking place on online platforms are often less
structured, vague, implicit, or simply poorly worded [14]. Sev-
eral recent studies have focused on addressing these significant
challenges in user-generated online texts. For example, Abbott
et al. identified that contextual and dialogic features help in
recognizing disagreement in informal political arguments [1].
Florou et al. experimented using verbal tense and mood as fea-
tures for the task of argument extraction of Web contents [25].
Some researchers also worked on argument extraction from
news, blogs and social media [30, 52].

Recently, Habernal et al. adapted Toulmin’s argumentation
model to Web discourse. Using an annotated dataset of
340 documents, they investigated the suitability of machine
learning in automated identification of argument components.
Their findings suggested that argumentation mining in user-
generated Web discourse is a challenging but feasible task [31].
In this paper, we investigate the effectiveness of supervised
machine learning techniques to detect arguments, along with
argumentative components, in usability issue discussions.

ARGUMENTATION ANALYSIS
To build the foundation for ArguLens and answer RQ1 (How
do the OSS communities argue about usability?), we con-
ducted a content analysis based on an argumentation model.

Methods
We carried out three main steps for argumentation analysis:
(1) selecting OSS projects and issues, (2) adapting Toulmin’s
argumentation model, and (3) conducting the content analysis.

Project and Issue Selection
We focused our study on analyzing issue thread discussions
for the Visual Studio Code2 project (VS Code), a source-code
editor supported by Microsoft, published under the permis-
sive MIT license. The reasons we selected this project are as
follows. First, the application has a sophisticated graphical
user interface which allows our study to focus on usability for
end users. Second, the project is under active development
and involves a large, heterogeneous community. Since the
creation of the repository, an average of 353 issues are cre-
ated each week. There are 906 recognized contributors, who
made wide-ranging contributions including developing fea-
tures, discussing issues, fixing bugs, conducting code reviews,

2https://github.com/microsoft/vscode

and updating project documentation and websites. Lastly, the
authors of this study are all experienced using this applica-
tion. This ensures us to conduct a comprehensive and accurate
analysis of the issue discussions in the project.

The issue selection was conducted in July 2018. Using GitHub
REST API [29], we first ordered the closed issue threads by
the number of comments. We then examined the title and
the issue description for usability-relevance until five issues
were selected. We only included closed issues in the analysis
because they allow us to understand the complete flow of
discussion until the issue is resolved. Table 1 summarizes
information about each issue we gathered.

IssueID Issue Title # of Comments
224 Proper tabs for open files 411
396 Add support for opening multiple project

folders in same window
380

4865 Enhanced Scrollbar (add minimap) 105
9388 Provide a setting so that only double click

opens a file in the editor or expands a
folder

87

14909 Support a grid layout for editors 191
Table 1. Information about issues in our corpus.

Argumentation Model Adaption
In this study, we lay emphasis on examining the internal struc-
ture (i.e. anatomy) of usability-related arguments. While we
acknowledge that some recent studies on argument mining
(e.g. [22, 56]) apply a simple claim-premise model, we de-
cided to adopt a full model of argumentation (particularly
Toulmin’s model [59], described in related work). Our choice
is grounded on our extensive experience working with OSS
projects. Indeed, we believe that it is crucial for OSS con-
tributors to identify (1) facts about the system (which can be
captured by "ground" in the Toulmin model), and (2) gen-
eral opinions about why a fact is relevant (corresponding to
"warrant"). While simply distinguishing between ‘claim’ and
‘premise’ may result in a better accuracy in automated classifi-
cation, we believe that such distinction is of limited usefulness
in supporting the practical needs of OSS contributors that aim
at understanding and prioritizing usability issues.

Toulmin’s model focuses on documents containing well-
formed explicit arguments. To adapt it to the informal ar-
guments made in usability issue discussions, we started by
directly using Toulmin’s model to code two issues. Based on
our observations, we made the following adjustments to better
reflect the characteristics of ITS discussions.

First, in our initial analysis, we found that the boundary of
Warrant and Backing is extremely difficult to draw in issue
discussions. To avoid ambiguity, we merged those two com-
ponents and annotated any statements acting as the bridge
between user requests and concrete facts with Warrant. Sec-
ond, to adapt to the short, informal style of arguments in issue
discussions, we removed Rebuttal as an argument component
and instead identified the standpoints of any comment in the
discussion as Support or Against with respect to the original
claim. Finally, similar to Habernal et al. [31], we excluded
Qualifier because of its low representation in our issue discus-
sion data. These changes resulted in the Components coding
schema used in the content analysis (see Figure 3).

Le
ve

l 1
 C

od
in

g

Non-argumentative

Argumentative

Le
ve

l 2
 C

od
in

g

Dimension: Components

Dimension: Standpoints

Claim
Warrant

Ground

Support Against

Figure 3. Summary of the two levels of codes (including those in the two
dimensions in the Level 2 coding) used in the content analysis process.

Content Analysis
We performed the content analysis iteratively on two levels as
illustrated in Figure 3. Upon data collection, we split the com-
ments in each issue into individual sentences. In Level 1 cod-
ing, we coded each sentence as either argumentative, which
denotes that the sentence had a persuasive connotation, or non-
argumentative, which include all non-persuasive sentences. In
Level 2 coding, we identified the characteristics of all the ar-
gumentative sentences based on two independent dimensions:
(1) the argument components based on the modified Toulmin’s
model (i.e. Claim, Warrant, or Ground) and (2) the standpoint
of the author (i.e. Support or Against). During the coding
process, if one sentence contains multiple argumentation com-
ponents (e.g. claim + warrant), we manually split the sentence
into segments to assign each segment a single, unambiguous
code. We refer these sentences and self-contained segments as
quotes. Thus, all argumentative quotes were annotated using
exactly one code from each of the aforementioned dimensions.

Furthermore, because an extended issue discussion usually
contains multiple topics [4, 17], we allowed coding multiple
arguments in one issue thread to capture the diverse concerns
people raised. We define an argument as all the quotes that
discuss the same claim, which may agree or disagree with the
claim. A new argument can be brought up by making a claim
about a new topic. Then, all discussions around this new claim
are considered to be part of the new argument. We gave each
argument a distinctive ID based on the chronological order of
their first appearance in the issue discussion thread.

The first author conducted the initial coding for model refine-
ment, with the support of two other authors when ambiguities
or questions raised. Once the initial coding was finished,
three researchers conducted six two-hour-long meetings and
reviewed about 60% of the quotes, including the most rep-
resentative and questionable examples. The discussion was
iterative, through which the team reached an agreement on
all the discussed quotes and created a detailed codebook (see
https://github.com/HCDLab/ArguLens). The first author fi-
nally used the codebook to re-code the non-discussed quotes.

To further assess the quality of our coding schema, we eval-
uated inter-rater reliability on a random sample of 200 non-
discussed quotes. Four authors other than the first author each
independently labeled 50 quotes using the codebook. The
Coehn’s k [19] against the label provided by the first author is
0.85 for Level 1 coding, 0.79 for argumentation components,
and 0.80 for standpoints, indicating a “substantial” to “almost
perfect” agreement [61].

Results
The content analysis generated a total of 5123 quotes from
the five issue threads with a median of 621 quotes per issue

0

400

800

1200
claim
warrant
ground

support
against

0

400

800

224 # 396 # 4865 # 9388 # 14909

Non-argumentative Quotes

Argumentative Quotes

Figure 4. Distribution of quotes coded with each of the adapted codes.

(IQR = 1849�319.5). Figure 4 shows the number of quotes
annotated with each code for each issue.

Level 1 Coding
The first-level coding focused on identifying the argumentative
comments in the issue threads and included two codes:

Argumentative (3034 quotes): Argumentative comments are
made with the purpose of persuasion and fulfill a role of argu-
ment component (i.e., claim, ground, or warrant) in an issue
discussion. These comments are the focus of our study and
are further distinguished in Level 2 coding. As an example,
Ivalexa made the following comment in issue 9388 to request
implementing a desired behavior: “Is it possible to add feature
in order to force vscode to open file only by double clicking on
it, single click should only select a file in explorer?”

Non-argumentative (2089 quotes): This category includes any
comments that are not persuasive in nature. We identified 11
concrete sub-categories of non-argumentative quotes such as
questions (e.g., “Do you expect this behavior ... everywhere
else ... or you just want it for the explorer?”), workaround
suggestions (e.g., “when I tried that earlier today it opened
the file that received focus in the explorer tree immediately”),
progress inquiries (e.g., “Any news on this?”), expressions
of appreciation (e.g., “That’s music to my ears!!”), “+1” or

“-1” alone in a sentence, etc. Please refer to the codebook in
the auxiliary material for a complete list of non-argumentative
sub-categories with examples.

Level 2 Coding
In this level, each argumentative quote is examined along two
dimensions. The first dimension considers argument compo-
nents and contains the following three codes:

Component - Claim (675 quotes): These quotes represent spe-
cific requests from the issue discussion participant. In our
data about software usability in OSS, these quotes focused on
describing users’ expected behavior, proposing a new design,
giving design suggestions, and expressing opinion towards
a proposed design, etc. For example, in issue 4865, a par-
ticipant provided the following design suggestion: “I would
just like you to consider showing selections and search results
highlighted in the minimap as a feature.”

Component - Ground (541 quotes): These quotes illustrate
facts about the current system or about a competitor’ system
reported by the discussion participant. There are two observed
sub-themes under the Ground code: (1) Report on the behavior
of an existing system; for example: “ctrl+tab between working
files appears to work in most-recent order, as opposed to tabs

which usually operate in the order they appear or are arranged.
(I’ve seen some editors support both).” (2) Description on how
they usually interact with an existing system; for example:
“The first thing I ever do with VS Code is swap its close file
and close active editor keyboard shortcuts, so that ctrl+W
actually closes a file when I press it, rather than still leaving
it in working files and cluttering up ctrl+tab.”.

Component - Warrant (1818 quotes): This group of quotes
is focused on connecting a Claim and a Ground with justifi-
cations such as potential use cases if the feature were imple-
mented, the importance of following basic design principles,
and personal feelings from using the existing systems. Most
frequently, a Warrant manifests use cases to demonstrate how
the proposed changes (a Claim) would fix the users’ self-
reported problem (i.e., a Ground). For example, the following
comment from issue 396 includes a description of a potential
use case for the feature of “opening multiple project folders
in the same window”: “As a Go developer, I find this feature
extremely useful... I need to be able to quickly navigate to
[many third-party libraries and projects] and read that code.”

The second dimension of Level 2 coding models the standpoint
of the discussion participant and includes the following codes:

Standpoint - Support (2347 quotes): This code includes com-
ments showing agreement with the standpoint of the origi-
nal argument. For example, in issue 224 an OSS participant
supported adding proper tabs, commenting: “Regardless of
whether one can get by / used to ‘ctrl+tab’ as an alternative,
new VS code users will probably be put off by the lack of tabs.”

Standpoint - Against (687 quotes) This group of comments
shows disagreement with respect to a particular argument. For
example, opposing the argument given in the previous quote,
another participant commented: “I do not think tabs are a
good way to show the list of open files unless you manage
these things actively and close them.”

A Synthesized Example
The following segment of discussion from issue 224 illustrates
how our proposed framework can be applied in the context of
OSS usability issues. In this example, the assigned codes from
both the argument components and the standpoint dimensions
are shown in pairs in square brackets at the end of each quote.

TURKEYMAN: I really miss proper tabs for open files (like
VS proper), and the ability to rip a tab out into its own
window. [warrant, support]

NICTE: +1 [non-argumentative]. Tabs are the default way to
work even in Visual Studio, to not mention other text
editors such as sublime [ground, support].

NVIVO: I vote for adding tabs too. [claim, support]
RUSSBAZ: To be honest, one of the defining features of

VS Code for me was an absence of tabs. [warrant, against]
I didn’t even realise (at first) that they were missing!
[warrant, against] It was a very interesting point of view.
[warrant, against]

FELIXFBECKER: . . . Back when I used Atom, I hated it
that [warrant, against] every time I just quickly looked at a
file, it would open a new tab, and within minutes my tab
bar was full of useless tabs. [ground, against] . . .

Multiple Arguments
Extensive discussion of an issue can start from debating the
needs for a requested feature and develop into considering
design alternatives, more fine-grained design details, and opin-
ions towards competitors’ solutions. The following example
(issue 224) shows a case where an OSS participant explicitly
leads the discussion to the design of tabs after a long discus-
sion around the need for tabs: “It’s the top requested feature
with thousands of votes. ... This conversation is pointless and
needs to move on to “How exactly should tabs work?”

We identified a median of 24.0 (IQR = 49.0 � 15.5) argu-
ments per issue among the five issue discussion threads. The
median number of discussion quotes per argument is 5.0
(IQR = 11.5�2.0). Over all argumentative quotes in an issue
thread, the median percentage of quotes belonging to argu-
ments other than the original argument addressed in the issue
post is 54.5% (IQR = 62.1%�32.4%).

Discussion
The content analysis results unveil several key characteris-
tics of the arguments in usability issue discussions. First,
non-argumentative comments constitute a large portion of the
discussion. These comments usually include contents that are
less relevant to the community’s needs. Simply hiding them
could help developers retrieve useful information and, there-
fore, would be a big step forward towards addressing infor-
mation overload in a community-driven environment. Second,
warrant represents the majority component in the argumenta-
tive comments, followed by claim then ground. Furthermore,
warrants usually include speculated use cases and personal
opinions. These evidence echos with the previous observations
that OSS discussions about usability are usually influenced by
the personal opinions and experiences [6, 17]. Third, while all
the issues were initially created for requesting specific changes
in the existing interaction design, the discussion did not bound
to the topic of the original post. Conversely, their content
develops and broadens to include many related topics.

To better understand the characteristics of multiple arguments,
we analyzed the Against to Support ratio among all arguments
in the issue discussion threads to see how disagreed or contro-
versial they were. We found that although the arguments from
the original posts were the mostly-discussed in all five issues,
they are not necessarily a highly-disagreed issue (their aver-
age Against-Support ratio is 0.115, comparing to the overall
average of 0.325). We also observed that the highly-disagreed
arguments (i.e. Against-Support ratio closer to 1) usually re-
side in the middle of an issue thread, and are not necessarily
heavily-discussed. One potential explanation is that these ar-
guments may be hard to recognize in a lengthy thread. The
current issue discussion platforms only display an issue thread
in chronological order; this may cause the multiple requests
and their corresponding discussion in the middle of the discus-
sion threads to be easily overlooked.

MACHINE LEARNING-BASED ARGUMENT EXTRACTION
Annotated issue discussion threads for argumentation are es-
sential for building intelligent tools supporting high-level rea-
soning tasks for the issue reporter, triager, assignees, and

Argument Extraction

Data Pre-processing

Feature Extraction

ConversationalPOS n-gramPolitenessTF-IDF LIWC

Train Classifier

Classification

Legend

Processing modules with
hyperparameter tuning

Regular processing
modules

Figure 5. Major modules of the supervised argument extraction process.

various stakeholders, including argument navigation, retrieval
and trade-off analysis towards usability. However, manually
labeling the comments is time-consuming, especially when the
discussions become lengthy and the issue repository gets large.
In this section, we explore the potential of using automated
techniques in ArguLens to reduce the annotation effort and
address RQ2: How effective are machine learning models in
extracting arguments and their structure?

We used the 5123 quotes manually labeled in the previous
section as the gold standard. While it would be ideal to adopt
unsupervised methods to eliminate any manual effort on an-
notation, previous studies showed the limited performance
on text-based unsupervised methods (e.g. topic modeling
and clustering) and their sensitivity to parameter setting [2,
4, 16]. Therefore, we experimented with supervised learning
techniques to address the argument extraction task.

Methods
Similar to the two-level coding analysis, the complete ar-
gument extraction is comprised of two-layer classification
steps. Given one sentence from the issue discussion, the first
layer classifies the sentence into either Argumentative or Non-
argumentative. In the second layer, two separate classifiers
label each argumentative sentence with topics from both di-
mensions of argumentation components (Claim, Warrant or
Ground) and standpoint (Support or Against). The complete
process includes three main steps: data pre-processing, feature
extraction, and argument extraction (see Figure 5).

Data Pre-processing
We first cleaned up the dataset by removing the quotes that
contain only non-alphabet characters and replaced the special
contents with uniquely assigned tokens (see Table 2). We then
tokenized and lowercased each quote into individual words.
Additionally, when extracting TF-IDF features and POS tag
features (see the next section), we excluded punctuation marks
and common contractions, and performed lemmatization on
each word to obtain its dictionary form; for the other features,
such as Politeness, we skipped this step because the informa-
tion such as punctuation can be a strong indicator. We explain
all the features and how we obtained them in the next section.

Feature Extraction
We extracted two major types of features, i.e. Textual Features
and Conversational Features, to train our supervised classifiers.
Previous work on issue content analysis and argumentation
mining [4, 31] has demonstrated the effectiveness of using
those features on related tasks with similar datasets.

Special Token Content Replaced
CODE_BLOCK multi-line source code blocks
CODE_SEGMENT inline source code snippets
QUOTE quotations made in previous comments
URL reference links to external resources
SCREEN_NAME mentions to GitHub users
VERSION_NUM version numbers
PLUS_ONE token + followed by numbers (i.e. +1)
MINUS_ONE token - followed by numbers (i.e. -1)
ISSUE_REFERENCE token # followed by numbers (i.e. #224)

Table 2. Special tokens used during pre-precessing.

Textual Features are extracted from the textual content of
individual quotes. The fundamental assumption is that people
potentially describe the same type of content in the argument
using similar expressions, i.e., the words they use and the un-
derlying social and physiological meanings they convey [57].
The concrete textual features used in our method include:

1. Term Frequency-Inverse Document Frequency (TF-IDF): a
numerical measure that indicates how important a token is
to a document in a corpus [51]. Each word in corpus after
data pre-processing acts as one feature weighted using the
frequencies of words multiplied by their inverse document-
frequency. We added n-grams as additional features to
represent n token sequences.

2. Linguistic Inquiry and Word Count (LIWC): a series of
features obtained from LIWC, a text analysis program that
captures a wide range of linguistic and psychological charac-
teristics [46]. Previous studies have shown its effectiveness
in various text analysis tasks, including detecting emotions,
opinions, and bias on blogs and social media [57, 63].

3. Politeness: an overall measure ranging between 0 and 1
to reflect the key components of politeness theory, such as
indirection, deference, personalization, and modality [20].

4. Part-of-Speech n-gram (POS n-gram): a sequence of n POS
tags. POS tags indicate the part of speech, such as nouns,
verbs, adjectives, etc. POS n-grams capture the structure of
the sentence and therefore can potentially deduce subjective
information comparing to simple text n-gram [8].

Conversational Features emphasize the characteristics of
each quote within the discourse. It has been applied to pro-
cessing software issues for issue thread summarization and
information type detection [49, 4]. Similar to Arya et. al. [4],
our conversational features include five groups: (1) Participant
features describe the role that the comment author plays in
the project (i.e. owner, collaborator, member, or other) and in
the current issue thread (i.e. issue author or not); (2) Length
features depict the absolute length of a quote and its relative
length with respect to other quotes in the issue comment and in
the thread; (3) Structural Features describe the location of the
quote in the whole discussion threads; (4) Temporal Features
describe the time when the comment is made in relation to
the immediately previous and next comment, as well as the
whole discussion thread; and (5) Code Feature indicates if the
current comment contains code snippets.

Argument Extraction
Using the features extracted from issue quotes as input, we
trained the machine learning classifiers for extracting argu-
ments and their anatomy in the discussion quotes. Our candi-

date classifiers are Support Vector Machine (SVM) and Naive
Bayes (NB) models. SVMs are well suited to deal with learn-
ing tasks where the number of features is large with respect
to the number of training instances [35, 37]. In particular, we
applied LinearSVM classifier with the class weight balancing
technique to automatically adjust weights based on the class
frequencies in the sample data. LinearSVM is computation-
ally much more efficient than SVMs with non-linear kernels
and yields state-of-the-art performance for high-dimensional
sparse datasets, a typical scenario in text classification tasks
like ours [36]. Performing a substantial feature selection would
avoid dealing with such high dimensional input spaces. How-
ever, in supervised learning for text classification tasks, very
few features are actually irrelevant, and feature selection often
may cause a significant loss of information [35]. Thus, we did
not perform any feature selection. We also considered Naive
Bayes model because it tends to achieve good performance
when the available training set is relatively small [37]. Specifi-
cally, we used the Complement Naive Bayes (CNB), which is
an adaption of the standard Multinominal Naive Bayes (MNB)
algorithm and is particularly suited for imbalanced data [50].

Experiment Design
We focused on three classification tasks: (Task 1) classifying
Argumentative vs. Non-argumentative quotes, (Task 2) clas-
sifying the Claim, Warrant, and Ground components of argu-
mentative quotes, and (Task 3) classifying Support vs. Against
standpoints of argumentative quotes. We experimented build-
ing classifiers considering two independent variables:

(1) The machine learning model to adopt with two levels:
LinearSVM and Complement NB.

(2) Feature set to use as input for the machine learning models
with six levels: TFIDF, LIWC, Politeness, POS n-gram,
Conversational features, and concatenating all five afore-
mentioned feature sets together.

The combination of the two independent variables resulted
in 12 configurations. To evaluate the performance of all con-
figurations, we adopted the standard nested stratified 5-fold
cross-validation [27], which contains two layers. The inner
layer is used to tune the hyperparameters for certain modules
in our techniques (modules that need hyperparameter tuning
are shown with a blue shade in Figure 5); e.g., for Linear SVM,
the tuned hyperparameter is the cost parameter C, which indi-
cates the penalty of misclassification on the training set. The
outer layer is then used to evaluate the performance of the
models on unseen data. The performance of the models is
evaluated using average Precision, Recall, and F1-Measure
from the outer layer; these metrics are commonly used to eval-
uate classification tasks [47]. For a certain class in question,
Precision measures how accurate the classifiers’ predictions
on the class are correct; Recall measures how effective the
classifier is in predicting the correct labels for all instances
from that class; F1-Score is the harmonic mean of the Preci-
sion and Recall. We used python and the Scikit Learn library
to implement the experiments and calculate all metrics.

Results and Discussion
Figure 6 summarizes the average F1-scores of the 12 configu-
rations for the three classification tasks. Our results indicate

77.2% 67.8%
49.2%

64.3% 65.8% 71.4%76.2%
64.7%

37.2%

63.2% 59.8% 65.9%

0%
20%
40%
60%
80%

100%

TFIDF LIWC Politeness POS n-gram Conversational ALL

F1
-m

ea
su

re

Feature Set

Classifying Argumentative vs. Non-argumentative
Linear SVM Complement NB

61.9% 54.1%

28.6%
52.0%

31.0%

55.7%60.5%
50.3%

12.1%

48.2%
33.4%

53.6%

0%
20%
40%
60%
80%

100%

TFIDF LIWC Politeness POS n-gram Conversational ALL

F1
-m

ea
su

re

Feature Set

Classifying Claim, Warrant and Ground

61.4%
49.4% 47.8% 55.2% 50.8% 56.7%60.0% 51.5% 43.6% 52.0% 55.8% 47.6%

0%
20%
40%
60%
80%

100%

TFIDF LIWC Politeness POS n-gram Conversational ALL

F1
-m

ea
su

re

Feature Set

Classifying Support vs. Against

(a) Average F1 measures of each configuration for Task 1

77.2% 67.8%
49.2%

64.3% 65.8% 71.4%76.2%
64.7%

37.2%

63.2% 59.8% 65.9%

0%
20%
40%
60%
80%

100%

TFIDF LIWC Politeness POS n-gram Conversational ALL

F1
-m

ea
su

re

Feature Set

Classifying Argumentative vs. Non-argumentative
Linear SVM Complement NB

61.9% 54.1%

28.6%
52.0%

31.0%

55.7%60.5%
50.3%

12.1%

48.2%
33.4%

53.6%

0%
20%
40%
60%
80%

100%

TFIDF LIWC Politeness POS n-gram Conversational ALL

F1
-m

ea
su

re

Feature Set

Classifying Claim, Warrant and Ground

61.4%
49.4% 47.8% 55.2% 50.8% 56.7%60.0% 51.5% 43.6% 52.0% 55.8% 47.6%

0%
20%
40%
60%
80%

100%

TFIDF LIWC Politeness POS n-gram Conversational ALL

F1
-m

ea
su

re

Feature Set

Classifying Support vs. Against(b) Average F1 measures of each configuration for Task 2

77.2% 67.8%
49.2%

64.3% 65.8% 71.4%76.2%
64.7%

37.2%

63.2% 59.8% 65.9%

0%
20%
40%
60%
80%

100%

TFIDF LIWC Politeness POS n-gram Conversational ALL

F1
-m

ea
su

re

Feature Set

Classifying Argumentative vs. Non-argumentative
Linear SVM Complement NB

61.9% 54.1%

28.6%
52.0%

31.0%

55.7%60.5%
50.3%

12.1%

48.2%
33.4%

53.6%

0%
20%
40%
60%
80%

100%

TFIDF LIWC Politeness POS n-gram Conversational ALL

F1
-m

ea
su

re

Feature Set

Classifying Claim, Warrant and Ground

61.4%
49.4% 47.8% 55.2% 50.8% 56.7%60.0% 51.5% 43.6% 52.0% 55.8% 47.6%

0%
20%
40%
60%
80%

100%

TFIDF LIWC Politeness POS n-gram Conversational ALL

F1
-m

ea
su

re

Feature Set

Classifying Support vs. Against

(c) Average F1 measures of each configuration for Task 3
Figure 6. Model Performance for each classification task.

that using TF-IDF features yielded the highest F1-score. One
possible explanation is that our annotated corpus includes a
large portion of domain-specific words. TF-IDF features ex-
celled other feature sets at capturing domain knowledge from
the text, which might be strong indicators for their argumenta-
tion roles. This result also has positive practical implications
because TF-IDF features are relatively easy to obtain com-
pared to other feature sets. On the other hand, the selection
of different classifiers was not as critical as the feature sets
used. In fact, given the same set of features, we observed a
negligible difference in performance between Linear SVM
and Complement Naive Bayes classifiers.

The best configuration for all three classification tasks was
obtained using Linear SVM with TF-IDF features, achieving
an average F1-score of 77.22%, 61.92%, and 61.42% for the
three tasks respectively. We report the Precision, Recall and
F1-score for all three tasks in Table 3. As a baseline, we also
report the performance of a trivial classifier always predicting
the majority class (i.e., Argumentative, Warrant, and Support,
for the three tasks, respectively). This is a consolidated prac-
tice in machine learning for text categorization as the baseline
performance gives an indication of the inherent difficulty of
the classification task itself [54, 62].

For all tasks, we observed substantial improvements over the
baseline classifier. Specifically, the first level classification, i.e.
Argumentative versus Non-argumentative, achieved the best
result. Notably, the Precision and Recall for the Argumenta-
tive class are both more than 80%. Such strong performance
demonstrates the possibility of designing tools that leverage
supervised classification models to remove a large number of
irrelevant content for the issue readers. In terms of the argu-
ment components and standpoints, our classifiers performed

Label to Classify Precision Recall F1 Support
Argumentative 0.80 0.85 0.82 608
Non-argumentative 0.76 0.68 0.72 418
Task 1 Average/Total 0.78 0.77 0.77 1025
Baseline 0.29 0.50 0.37 1025
Claim 0.63 0.52 0.57 135
Warrant 0.74 0.83 0.78 394
Ground 0.56 0.46 0.50 109
Task 2 Average/Total 0.64 0.60 0.62 608
Baseline 0.21 0.33 0.25 608
Support 0.83 0.84 0.83 470
Against 0.41 0.40 0.40 138
Task 3 Average/Total 0.62 0.62 0.61 608
Baseline 0.39 0.50 0.44 608

Table 3. Detailed measurements for three classification tasks with con-
figuration of Linear SVM and TF-IDF features, as well as the baseline
(always predicting the majority class) performance. Support refers to
the number of instances in the testing set for that label.

better for classes that contain more data instances, i.e. Sup-
port, and Warrant. However, its lukewarm performance on
Against, Claim, and Ground suggests that the user might need
to accumulate more annotated training data to achieve a better
result. While not perfect, our techniques can be used in a semi-
automated way to suggest the underlying argument anatomy
in the issue discussion, or be plugged into tools for empirical
studies involving mining overall trends in ITSs.

As regard to the classification approach, we would like to
remind the reader that our goal in this work is not to advance
the latest NLP techniques for argument classification. Rather,
we aim at demonstrating the potential of anatomizing usability
issue discussions using an argumentation framework, thus
paving the road for renovating how people can collaboratively
address open source usability issues. We are aware of recent
advancements in NLP research leveraging word or sentence
embedding and neural architectures for text categorization.
However, the practical value of such approaches has been
questioned in many software engineering areas because of the
difficulty to acquire a large amount of training data and to
disambiguate domain-specific terms [23, 28]. Meanwhile, we
hope that our method can serve as a strong baseline to attract
more researchers to apply advanced argumentation-mining
techniques on this challenging and important problem.

PRACTITIONER EVALUATION
To better understand the ArguLens approach from the perspec-
tives of experienced OSS practitioners (RQ3), we performed a
within-subject user study with eight frequent users of GitHub
Issues. This study is approved by the Institutional Review
Boards of Polytechnique Montreal and McGill University.

Methods
We recruited eight participants (three females) from personal
contacts. All participants had experience with GitHub and its
Issues feature, having contributed to at least one project on the
platform. They all had used VSCode as a text or code editor;
some used it on a daily basis at the time of the study.

Each user study took about 1.5 hours to complete. During the
study, we first conducted a semi-structured interview with each
participant to collect demographic information. We then asked

(1) Raw Condition (2) Argumentative-Only Condition (3) Separated Arguments Condition (4) Decomposed Arguments Condition

Figure 7. Stimuli used in the user studies with OSS practitioners (using issue 4865 as an example).

participants to review four issue discussion threads that we an-
alyzed in the previous steps; to make the review a manageable
task within the context and the time frame of the user study,
we trimmed each issue discussion to only include the first 50
comments. We developed web-based stimuli (see Figure 7) to
represent the issues in four increasingly complex conditions.
Consistently with our intention of exploring practitioners’ per-
spectives about the argument anatomy itself, we focused on
presenting an interface with minimal interaction design. All
but the first condition leveraged the ArguLens technique and
all annotations about arguments, argumentation components,
and standpoints were based on the manual content analysis
results. The four conditions are:

1. Raw: Participants see the original discussion comments
with no processing.

2. Argument-Only: Participants see the discussion com-
ments with non-argumentative sentences greyed out or
put into collapsed sections (if the entire comment is non-
argumentative).

3. Separated Arguments: Participants see the argumentative
comments (same as Condition 2) and a list of radio buttons
as a sidebar indicating different arguments in the thread.
The participants can further navigate among the arguments
by clicking on the radio buttons, making all other arguments
greyed out or put into collapsed sections.

4. Decomposed Arguments: Participants see the same con-
tent and have the same argument filtering ability as Condi-
tion 3. However, all argumentative sentences they see are
color-coded and highlighted according to their argumenta-
tion components and standpoints.

We followed a within-subject experimental design; the order
of the conditions and the condition-issue assignments were
counterbalanced using Zeelenberg and Pecher’s approach [65].
At the beginning of each issue review, participants were pro-
vided with a one-page description about the concepts related
to the corresponding condition and could ask any clarification
questions. While reviewing each issue, the participants were
asked to (1) describe the main topics discussed, (2) identify
the potential positive and negative impacts on users when the
issue is fixed, and (3) decide whether the issue should be fixed.
We also encouraged the participants to think-aloud during
these tasks. At the end of each issue review, the participants
completed a System Usability Scale (SUS) questionnaire [15]
and a Subjective Mental Effort Question (SMEQ) [53]. The

SUS questionnaire is commonly used to quantify the perceived
usability of a system; higher SUS scores (ranging from 0 to
100) indicate better usability; a meta review of 2,324 studies
indicated a mean SUS score of 70 across various systems [9].
SMEQ includes one rating question (ranging from 0 to 150) for
perceived mental effort; lower scores indicate a lower mental
effort. Once all issues were reviewed, we asked the partici-
pants to select the most and the least useful representation and
to provide rationales for their choice.

Results and Discussion
All but one participant completed the four tasks; the remaining
participant (P2) did not evaluate the Separated Arguments
representation due to time constraints. The average SUS and
SMEQ scores are summarized in Table 4. Given the qualitative
nature of the study, in the rest of this section we focus on
reporting the themes emerged from participants’ feedback.

Raw Arg-only Sep. Args. Dec. Args.

SUS 78.21 84.38 87.86 71.88
SMEQ 24.50 18.13 17.86 34.25

Table 4. Average SUS and SMEQ scores for the four conditions.

Our results indicated that designing the representation of the
anatomy of arguments is an important topic. Among our
eight participants, seven appreciated having the possibility to
hide or gray out the non-argumentative comments for the pur-
pose of determining the community opinions when reviewing
the issues. For example, P6 mentioned: “It [hiding the non-
argumentative sentences] already helps a lot to quickly get the
idea about the issue and what people are thinking about it.”
P5 also mentioned that simply highlighting the argumentative
comments and sentences helped “differentiate things that you
want to put more emphasis on.”. Only one (P3) preferred the
Raw representation, because it presents an interface familiar
to the participant and includes all contextual information; P3
commented: “I don’t like having just the arguments. I would
like to read a little bit more about the background.”

Four participants considered the Separated Arguments repre-
sentation as the most useful. They thought that separating
arguments by their topics helped them to be more focused
when considering the diverse opinions. For example, P5 men-
tioned “I think that feature [being able to quickly switch among
the arguments] alone is really great. ... it’s really helpful to be

specific.” P1 also thought that having separated arguments is
“useful to summarize long issues and get main points quickly.”

Two participants found the Decomposed Arguments the most
useful. They both used the argument components and stand-
points extensively while reviewing the issues to determine the
main topics and the potential impacts to users. For example,
P8 said: “The first question [main topic of the issue] was prob-
ably the claim here ... the support and against could determine
the other two [positive and negative impacts]... and probably,
if I count how many support and against I have in the whole
issue, I can say that it’s a good idea to implement it or not.”

Although the Decomposed Arguments provides useful supports
for issue review, four participants disliked this representation
because of its conceptual and visual complexity. For example,
P3 explained: “I can say that having three colors in here and
underline and everything... like, it makes reading hard.” Par-
ticipants also indicated that understanding this representation
requires some learning. For example, P6 said: “The colors
are not very intuitive in a way, but it may be that I’m just not
used to it.” P2 also commented: “I think this would be very
powerful ... if someone has been using this for a longer time.”

GENERAL DISCUSSION
ArguLens has the potential to support a wide range of applica-
tions and at the same time has limitations that can be addressed
in the future. We discuss these topics here.

Potential Applications
ArgueLens can be directly used for tools that visualize the argu-
ment anatomy of community-generated usability discussions.
Our user study showed that such anatomy helps the partici-
pants focus on the most relevant information when review-
ing usability issues. Effective interaction and visual design
leveraging ArgueLens would then provide the much-needed
support for OSS stakeholders (e.g. developers, designers, and
end users) to better comprehend and consolidate community
opinions about the usability issues of the system.

Moreover, ArgueLens introduces an effective, yet straight-
forward framework of usability argumentation. Tools that
encourage or reinforce such framework can support OSS com-
munities to move towards a shared convention and a common
language of discussing usability-related topics, which in turn
supports community engagement in such challenging issues.

Leveraging ArguLens, new automated or semi-automated tech-
niques can also be developed to support analytic activities on
OSS usability issues at the project level. For example, discus-
sion summary and prioritization tools of usability issues can
be developed based on ArguLens. Such efforts would then
further bolster OSS developers’ empathy towards users, thus
encouraging them to better incorporate the end users’ voices.

Limitations and Future Work
Due to the effort required for the task of manual coding, we per-
formed an in-depth analysis on only five usability issues from
one OSS project. This might have introduced a threat to exter-
nal validity that we mitigated by focusing on the most heavily
discussed issues that involved diverse community members of

an active OSS project. In this way, we were able to address
the complex situations where support for understanding the
community opinions is most needed. Nevertheless, the Argu-
Lens framework and the performance of the machine learning
techniques can be affected by the unique characteristics of
the analyzed issues and the project. Future work extending
this analysis to other usability issues and projects would al-
low establishing its external validity. Additionally, our work
focused on the usability issues because of their increasing
importance in OSS applications and the overwhelming chal-
lenges involved to address them. Although we speculate that
ArguLens can be applicable to other types of OSS issues prone
to extended community discussions (e.g. privacy or security),
as well as other types of community-driven platforms, these
applications require future work.

Further, although our machine learning solutions performed
well in certain tasks (e.g. discriminating Argumentative and
Non-argumentative sentences), the performance was less desir-
able in others. Particularly, its performance is sensitive to the
amount of the training data, indicating that extended manual
labeling effort is still necessary to achieve its utility in practice.
Furthermore, given the current precision and recall achieved
by the argument extraction tasks, human-in-the-loop method
is necessary to support the ArguLens technique. Future work
might also explore combining supervised and unsupervised
approaches to further reduce the manual effort.

Finally, while our user study focused on a typical applica-
tion scenario of reviewing a usability issue to determine its
potential impact on the community, the study certainly does
not cover all the scenarios potentially supported by ArguLens.
Moreover, the stimuli used in our user study provided only a
basic presentation of the embedded information and did not
focus on offering a sophisticated visual and interaction design.
Thus, exploring an effective design of tools that leverage the
ArguLens techniques is an important future work.

CONCLUSION
We proposed and evaluated ArguLens, a conceptual framework
and machine learning-based technique that leverages an argu-
mentation model to support comprehension and consolidation
of OSS community’s opinions on usability issues. We created
a corpus of 5123 quotes, annotated with an argumentation
framework as the foundation for ArguLens. Leveraging super-
vised machine learning on this corpus, we evaluated various
argument extraction techniques; our best performing classifier
achieved satisfying results, paving the way to the implemen-
tation of semi-automated approaches and tools. Our study
with experienced ITS users revealed that ArguLens can help
practitioners get focused and retrieve the relevant information
when reviewing issue discussions. In sum, as an important step
forward, ArguLens can accelerate building effective methods
and tools that aim to improve OSS usability.

ACKNOWLEDGEMENT
We thank our participants in the user study for their thoughtful
efforts. This work was funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC) [RGPIN-
2018-04470, RGPIN-2019-05403].

REFERENCES
[1] Rob Abbott, Marilyn Walker, Pranav Anand, Jean E.

Fox Tree, Robeson Bowmani, and Joseph King. 2011.
How Can You Say Such Things?!?: Recognizing
Disagreement in Informal Political Argument. In
Proceedings of the Workshop on Languages in Social
Media (LSM ’11). Association for Computational
Linguistics, Stroudsburg, PA, USA, 2–11.
http://dl.acm.org/citation.cfm?id=2021109.2021111

[2] Amritanshu Agrawal, Wei Fu, and Tim Menzies. 2018.
What is wrong with topic modeling? And how to fix it
using search-based software engineering. Information
and Software Technology 98 (2018), 74–88.

[3] Morten Andreasen, Henrik Nielsen, Simon Schrøder,
and Jan Stage. 2006. Usability in open source software
development: opinions and practice. Information
technology and control 35, 3A (2006), 303–312. DOI:
http://dx.doi.org/10.5755/j01.itc.35.3.11776

[4] Deeksha Arya, Wenting Wang, Jin L. C. Guo, and
Jinghui Cheng. 2019. Analysis and Detection of
Information Types of Open Source Software Issue
Discussions. In Proceedings of the 41st International
Conference on Software Engineering (ICSE ’19). IEEE
Press, Piscataway, NJ, USA, 454–464. DOI:
http://dx.doi.org/10.1109/ICSE.2019.00058

[5] Katie Atkinson, Trevor Bench-Capon, and Peter
McBurney. 2006. Computational representation of
practical argument. Synthese 152, 2 (2006), 157–206.

[6] Paula M. Bach and John M. Carroll. 2009. FLOSS UX
Design: An Analysis of User Experience Design in
Firefox and OpenOffice.org. In Open Source
Ecosystems: Diverse Communities Interacting, Cornelia
Boldyreff, Kevin Crowston, Björn Lundell, and
Anthony I. Wasserman (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 237–250.

[7] Paula M Bach, Robert DeLine, and John M Carroll.
2009. Designers wanted: Participation and the User
Experience in Open Source Software Development. In
Proceedings of the 27th international conference on
Human factors in computing systems - CHI 09. ACM
Press, New York, New York, USA, 985. DOI:
http://dx.doi.org/10.1145/1518701.1518852

[8] Akshat Bakliwal, Piyush Arora, Ankit Patil, and
Vasudeva Varma. 2011. Towards Enhanced Opinion
Classification using NLP Techniques. In Proceedings of
the Workshop on Sentiment Analysis where AI meets
Psychology (SAAIP 2011). Asian Federation of Natural
Language Processing, Chiang Mai, Thailand, 101–107.

[9] Aaron Bangor, Philip T. Kortum, and James T. Miller.
2008. An Empirical Evaluation of the System Usability
Scale. International Journal of Human-Computer
Interaction 24, 6 (2008), 574–594. DOI:
http://dx.doi.org/10.1080/10447310802205776

[10] Olga Baysal, Reid Holmes, and Michael W. Godfrey.
2014. No Issue Left Behind: Reducing Information
Overload in Issue Tracking. In Proceedings of the 22Nd

ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 666–677. DOI:
http://dx.doi.org/10.1145/2635868.2635887

[11] Jamal Bentahar, Bernard Moulin, and Micheline
Bélanger. 2010. A taxonomy of argumentation models
used for knowledge representation. Artificial
Intelligence Review 33, 3 (2010), 211–259.

[12] Jamal Bentahar, Bernard Moulin, and Brahim
Chaib-draa. 2004. Commitment and Argument Network:
A New Formalism for Agent Communication. In
Advances in Agent Communication, Frank Dignum (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg,
146–165.

[13] Jamal Bentahar, Bernard Moulin, John-Jules Ch. Meyer,
and Brahim Chaib-draa. 2005. A Computational Model
for Conversation Policies for Agent Communication. In
Computational Logic in Multi-Agent Systems, João Leite
and Paolo Torroni (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 178–195.

[14] Filip Boltužić and Jan Šnajder. 2014. Back up your
stance: Recognizing arguments in online discussions. In
Proceedings of the First Workshop on Argumentation
Mining. Association for Computational Linguistics,
Baltimore, Maryland, 49–58.

[15] John Brooke and others. 1996. SUS-A quick and dirty
usability scale. Usability evaluation in industry 189, 194
(1996), 4–7.

[16] Tse-Hsun Chen, Stephen W Thomas, and Ahmed E
Hassan. 2016. A survey on the use of topic models when
mining software repositories. Empirical Software
Engineering 21, 5 (2016), 1843–1919.

[17] Jinghui Cheng and Jin L.C. Guo. 2018. How Do the
Open Source Communities Address Usability and UX
Issues?: An Exploratory Study. In Extended Abstracts of
the 2018 CHI Conference on Human Factors in
Computing Systems (CHI EA ’18). ACM, New York, NY,
USA, Article LBW523, 6 pages. DOI:
http://dx.doi.org/10.1145/3170427.3188467

[18] Jinghui Cheng and Jin L. C. Guo. 2019. Activity-based
Analysis of Open Source Software Contributors: Roles
and Dynamics. In Proceedings of the 12th International
Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE ’19). IEEE Press,
Piscataway, NJ, USA, 11–18. DOI:
http://dx.doi.org/10.1109/CHASE.2019.00011

[19] Jacob Cohen. 1960. A Coefficient of Agreement for
Nominal Scales. Educational and Psychological
Measurement 20, 1 (1960), 37–46. DOI:
http://dx.doi.org/10.1177/001316446002000104

[20] Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan
Jurafsky, Jure Leskovec, and Christopher Potts. 2013. A
computational approach to politeness with application to
social factors. In Proceedings of the 51st Annual

Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, Sofia, Bulgaria, 250–259.
https://www.aclweb.org/anthology/P13-1025

[21] Phan Minh Dung. 1995. On the acceptability of
arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games.
Artificial intelligence 77, 2 (1995), 321–357.

[22] Steffen Eger, Johannes Daxenberger, and Iryna
Gurevych. 2017. Neural End-to-End Learning for
Computational Argumentation Mining. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Vancouver,
Canada, 11–22. DOI:
http://dx.doi.org/10.18653/v1/P17-1002

[23] S. Fakhoury, V. Arnaoudova, C. Noiseux, F. Khomh,
and G. Antoniol. 2018. Keep it simple: Is deep learning
good for linguistic smell detection?. In 2018 IEEE 25th
International Conference on Software Analysis,
Evolution and Reengineering (SANER). 602–611. DOI:
http://dx.doi.org/10.1109/SANER.2018.8330265

[24] Vanessa Wei Feng and Graeme Hirst. 2011. Classifying
arguments by scheme. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies.
Association for Computational Linguistics, Portland,
Oregon, USA, 987–996.
https://www.aclweb.org/anthology/P11-1099

[25] Eirini Florou, Stasinos Konstantopoulos, Antonis
Koukourikos, and Pythagoras Karampiperis. 2013.
Argument extraction for supporting public policy
formulation. In Proceedings of the 7th Workshop on
Language Technology for Cultural Heritage, Social
Sciences, and Humanities. Association for
Computational Linguistics, Sofia, Bulgaria, 49–54.
https://www.aclweb.org/anthology/W13-2707

[26] Kathleen Freeman. 1993. Toward Formalizing
Dialectical Argumentation. Ph.D. Dissertation.
University of Oregon, Eugene, OR, USA. UMI Order
No. GAX94-05172.

[27] Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
2009. The elements of statistical learning (2nd ed.).
Springer series in statistics, New York, USA.

[28] Wei Fu and Tim Menzies. 2017. Easy over Hard: A
Case Study on Deep Learning. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2017). Association for
Computing Machinery, New York, NY, USA, 49âĂŞ60.
DOI:http://dx.doi.org/10.1145/3106237.3106256

[29] GitHub. 2018. GitHub REST API.
https://developer.github.com/v3/. (2018). Accessed:
February 2019.

[30] Theodosis Goudas, Christos Louizos, Georgios Petasis,
and Vangelis Karkaletsis. 2014. Argument Extraction

from News, Blogs, and Social Media. In Artificial
Intelligence: Methods and Applications, Aristidis Likas,
Konstantinos Blekas, and Dimitris Kalles (Eds.).
Springer International Publishing, Cham, 287–299.

[31] Ivan Habernal and Iryna Gurevych. 2017.
Argumentation mining in user-generated web discourse.
Computational Linguistics 43, 1 (2017), 125–179.

[32] James A Herrick. 2017. The history and theory of
rhetoric: An introduction. Routledge, New York.

[33] Netta Iivari. 2011. Participatory design in OSS
development: interpretive case studies in company and
community OSS development contexts. Behaviour &
Information Technology 30, 3 (may 2011), 309–323.
DOI:http://dx.doi.org/10.1080/0144929X.2010.503351

[34] Netta Iivari. 2013. ‘Configuring the User and the
Designer’ – A Critical Inquiry on Usability Work in the
Company Open Source Software Development Context.
In Nordic Contributions in IS Research, Margunn
Aanestad and Tone Bratteteig (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–17.

[35] Thorsten Joachims. 1998. Text Categorization with
Support Vector Machines: Learning with Many Relevant
Features. In Proceedings of the 10th European
Conference on Machine Learning (ECML’98).
Springer-Verlag, Berlin, Heidelberg, 137–142. DOI:
http://dx.doi.org/10.1007/BFb0026683

[36] Thorsten Joachims. 2006. Training Linear SVMs in
Linear Time. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD ’06). ACM, New York, NY, USA,
217–226. DOI:
http://dx.doi.org/10.1145/1150402.1150429

[37] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. 2007.
Supervised machine learning: A review of classification
techniques. Emerging artificial intelligence applications
in computer engineering 160 (2007), 3–24.

[38] Effie Lai-Chong Law and Ebba Thora Hvannberg. 2008.
Consolidating Usability Problems with Novice
Evaluators. In Proceedings of the 5th Nordic Conference
on Human-computer Interaction: Building Bridges
(NordiCHI ’08). ACM, New York, NY, USA, 495–498.
DOI:http://dx.doi.org/10.1145/1463160.1463228

[39] Elias J MacEwan. 1898. The essentials of argumentation.
DC Heath & Company, Boston, USA.

[40] Jim D Mackenzie. 1979. Question-begging in
non-cumulative systems. Journal of philosophical logic
8, 1 (1979), 117–133.

[41] Raquel Mochales and Marie-Francine Moens. 2011.
Argumentation mining. Artificial Intelligence and Law
19, 1 (2011), 1–22.

[42] David Nichols and Michael Twidale. 2003. The
Usability of Open Source Software. First Monday 8, 1
(2003). DOI:http://dx.doi.org/10.5210/fm.v8i1.1018

[43] David Nichols and Michael Twidale. 2006. Usability
processes in open source projects. Software Process:
Improvement and Practice 11, 2 (mar 2006), 149–162.
DOI:http://dx.doi.org/10.1002/spip.256

[44] Jakob Nielsen. 1993. Usability Engineering. Morgan
Kaufmann Publishers Inc, San Francisco, CA, USA.

[45] Mie Nørgaard and Rune T. Høegh. 2008. Evaluating
Usability: Using Models of Argumentation to Improve
Persuasiveness of Usability Feedback. In Proceedings of
the 7th ACM Conference on Designing Interactive
Systems (DIS ’08). ACM, New York, NY, USA,
212–221. DOI:
http://dx.doi.org/10.1145/1394445.1394468

[46] James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count: LIWC
2001. Mahway: Lawrence Erlbaum Associates 71, 2001
(2001), 2001.

[47] David Martin Powers. 2011. Evaluation: from precision,
recall and F-measure to ROC, informedness,
markedness and correlation. Journal of Machine
Learning Technologies 2, 1 (2011).

[48] Mikko Rajanen and Netta Iivari. 2015. Power,
Empowerment and Open Source Usability. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 3413–3422. DOI:
http://dx.doi.org/10.1145/2702123.2702441

[49] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray.
2010. Summarizing Software Artifacts: A Case Study of
Bug Reports. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering -
Volume 1 (ICSE ’10). ACM, New York, NY, USA,
505–514. DOI:
http://dx.doi.org/10.1145/1806799.1806872

[50] Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and
David R. Karger. 2003. Tackling the Poor Assumptions
of Naive Bayes Text Classifiers. In Proceedings of the
Twentieth International Conference on International
Conference on Machine Learning (ICML’03). AAAI
Press, Washington, DC, USA, 616–623.
http://dl.acm.org/citation.cfm?id=3041838.3041916

[51] Gerard Salton and Christopher Buckley. 1988.
Term-weighting approaches in automatic text retrieval.
Information processing & management 24, 5 (1988),
513–523.

[52] Christos Sardianos, Ioannis Manousos Katakis,
Georgios Petasis, and Vangelis Karkaletsis. 2015.
Argument Extraction from News. In Proceedings of the
2nd Workshop on Argumentation Mining. Association
for Computational Linguistics, Denver, CO, 56–66. DOI:
http://dx.doi.org/10.3115/v1/W15-0508

[53] Jeff Sauro and Joseph S. Dumas. 2009. Comparison of
Three One-question, Post-task Usability Questionnaires.
In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI ’09). ACM, New
York, NY, USA, 1599–1608. DOI:
http://dx.doi.org/10.1145/1518701.1518946

[54] Fabrizio Sebastiani. 2002. Machine Learning in
Automated Text Categorization. ACM Comput. Surv. 34,
1 (March 2002), 1–47. DOI:
http://dx.doi.org/10.1145/505282.505283

[55] Christian Stab and Iryna Gurevych. 2014. Annotating
Argument Components and Relations in Persuasive
Essays. In Proceedings of COLING 2014, the 25th
International Conference on Computational Linguistics:
Technical Papers. Dublin City University and
Association for Computational Linguistics, Dublin,
Ireland, 1501–1510.
https://www.aclweb.org/anthology/C14-1142

[56] Christian Stab and Iryna Gurevych. 2017. Parsing
Argumentation Structures in Persuasive Essays.
Computational Linguistics 43, 3 (Sept. 2017), 619–659.
DOI:http://dx.doi.org/10.1162/COLI_a_00295

[57] Yla R Tausczik and James W Pennebaker. 2010. The
psychological meaning of words: LIWC and
computerized text analysis methods. Journal of
language and social psychology 29, 1 (2010), 24–54.

[58] Michael Terry, Matthew Kay, and Ben Lafreniere. 2010.
Perceptions and practices of usability in the free/open
source software (FoSS) community. In Proceedings of
the 28th international conference on Human factors in
computing systems - CHI ’10. ACM Press, New York,
New York, USA, 999–1008. DOI:
http://dx.doi.org/10.1145/1753326.1753476

[59] Stephen E. Toulmin. 2003. The Uses of Argument (2 ed.).
Cambridge University Press, Cambridge, UK. DOI:
http://dx.doi.org/10.1017/CBO9780511840005

[60] M.B. Twidale and D.M. Nichols. 2005. Exploring
Usability Discussions in Open Source Development. In
Proceedings of the 38th Annual Hawaii International
Conference on System Sciences. IEEE, Big Island, HI,
USA, 198c–198c. DOI:
http://dx.doi.org/10.1109/HICSS.2005.266

[61] Anthony J. Viera and Joanne M. Garrett. 2005.
Understanding interobserver agreement: the kappa
statistic. Family Medicine 37.5 (2005), 360–363.

[62] Yiming Yang. 1999. An Evaluation of Statistical
Approaches to Text Categorization. Inf. Retr. 1, 1-2
(May 1999), 69–90. DOI:
http://dx.doi.org/10.1023/A:1009982220290

[63] Tae Yano, Philip Resnik, and Noah A. Smith. 2010.
Shedding (a Thousand Points of) Light on Biased
Language. In Proceedings of the NAACL HLT 2010
Workshop on Creating Speech and Language Data with
Amazon’s Mechanical Turk (CSLDAMT ’10).
Association for Computational Linguistics, Stroudsburg,
PA, USA, 152–158.
http://dl.acm.org/citation.cfm?id=1866696.1866719

[64] Nor Shahida Mohamad Yusop, John Grundy, and Rajesh
Vasa. 2017. Reporting Usability Defects: A Systematic
Literature Review. IEEE Transactions on Software
Engineering 43, 9 (sep 2017), 848–867. DOI:
http://dx.doi.org/10.1109/TSE.2016.2638427

[65] René Zeelenberg and Diane Pecher. 2015. A method for
simultaneously counterbalancing condition order and
assignment of stimulus materials to conditions. Behavior
Research Methods 47, 1 (01 Mar 2015), 127–133. DOI:
http://dx.doi.org/10.3758/s13428-014-0476-9

