
Autoencoder-based Deep Metric Learning for Network
Intrusion Detection

Giuseppina Andresinia,∗, Annalisa Appicea,b, Donato Malerbaa,b

aDepartment of Informatics, Università degli Studi di Bari Aldo Moro, via Orabona, 4 -
70125 Bari - Italy

bConsorzio Interuniversitario Nazionale per l’Informatica - CINI, Italy

Abstract

1 Nowadays intrusion detection systems are a mandatory weapon in the war

against the ever-increasing amount of network cyber attacks. In this study we

illustrate a new intrusion detection method that analyses the flow-based char-

acteristics of the network traffic data. It learns an intrusion detection model

by leveraging a deep metric learning methodology that originally combines au-

toencoders and Triplet networks. In the training stage, two separate autoen-

coders are trained on historical normal network flows and attacks, respectively.

Then a Triplet network is trained to learn the embedding of the feature vector

representation of network flows. This embedding moves each flow close to its

reconstruction, restored with the autoencoder associated with the same class

as the flow, and away from its reconstruction, restored with the autoencoder

of the opposite class. The predictive stage assigns each new flow to the class

associated with the autoencoder that restores the closest reconstruction of the

flow in the embedding space. In this way, the predictive stage takes advantage

of the embedding learned in the training stage, achieving a good prediction per-

?Fully documented templates are available in the elsarticle package on CTAN.
∗Corresponding author (Tel: +39 (0)805443262 Fax: +39(0)805443269)
Email addresses: giuseppina.andresini@uniba.it (Giuseppina Andresini),

annalisa.appice@uniba.it (Annalisa Appice), donato.malerba@uniba.it (Donato Malerba)
1This version of the contribution has been accepted for publication, after peer review but is

not the Version of Record and does not reflect post-acceptance improvements, or any correc-
tions. The Version of Record is available online at: https://doi.org/10.1016/j.ins.2021.05.016.
Accepted Version is subject to the publisher’s Accepted Manuscript terms of use
https://www.elsevier.com/about/policies-and-standards/copyright

Preprint submitted to Information Sciences-ELsevier.Original DOI: https://doi.org/10.1016/j.ins.2021.05.016.

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle

formance in the detection of new signs of malicious activities in the network

traffic. In fact, the proposed methodology leads to better predictive accuracy

when compared to competitive intrusion detection architectures on benchmark

datasets.

Keywords: Network Intrusion Detection, Deep metric learning, Triplet

network, Autoencoder

1. Introduction

Metric learning (ML) is a machine learning paradigm based on distance

metrics. It aims to measure the similarity between samples by reducing the

distance between similar samples and increasing the distance between dissimilar

samples [38]. In recent years, the success of deep learning (DL) has led to the5

introduction of deep metric learning (DML), that combines deep learning and

metric learning [50].

To improve the performance, traditional ML approaches need to learn a lin-

ear mapping to project samples into a non-linear feature space that often is not

directly within the classification structure. On other hand, DL techniques are10

able to process nonlinear, raw data to extract a useful representation of data

directly in the classification structure [38]. Therefore, DML approaches allow

us to deal with the non-linearity problem by taking advantage of the struc-

ture of DL networks, thereby addressing one of the major problems affecting

conventional ML algorithms [38].15

In particular, DML approaches improve the performance of traditional ML

approaches by taking advantage of the structure of DL networks to process

nonlinear, raw data and extract a useful representation of data directly in the

classification structure [38]. However, while DL performance declines signifi-

cantly in the case of learning from imbalanced data [37], DML approaches can20

be well-suited to deal with the class imbalance condition [23]. The common

mechanism of deep-based metric learning algorithms is to train a deep network

to produce an embedding of the input vector, so that a loss function related to

2

sample distance can be minimised.

Up to now DML approaches have been mainly investigated in computer25

vision to address problems of face verification and face identification [38].

In these problems DML techniques are used to perform an end-to-end deep

learning process that compares two images on an embedding feature space.

Specifically, DML approaches learn hierarchical non-linear transformations, to

map data samples into a new feature space that is more suitable for comparing30

or matching operations. This is done by exploiting deep neural network archi-

tectures that minimise a loss function related to a sample distance and unify

feature learning and metric learning into a joint learning framework [50].

There are several state-of-the-art deep networks

(e.g. Siamese network and Triplet network) that are being used for DML[32,35

67, 31]. [32, 67, 31].

As pointed out in [38], the performance of these DML networks basically

depends on a metric loss function (e.g. contrastive loss, triplet loss) and a

sampling strategy. These are considered as a whole with all of the components

of the network. In fact, the way in which samples are presented to the network40

and the relationship between them are both related to the metric loss function.

In this paper, we take the study of DML outside computer vision by focusing

on the task of network intrusion detection. This is a crucial cyber-security

problem, where deep learning is recognised as a relevant approach to learn signs

of malicious activity [13], also under drifting conditions (e.g. new variants of45

seen attacks) [20].

Although network traffic produces large amounts of data to fuel deep learn-

ing, one issue to address is the imbalanced condition of network data—network

intrusions and malicious behaviour commonly represent a very small subset of

all the network traffic [47]. [43]. A few recent studies have explored approaches50

to re-sample training data [34, 47] [83, 43] and make deep learning robust to in-

trusion imbalance. Both down-sampling and over-sampling techniques are often

used in combination with deep neural networks to deal with the imbalance data

in various domains (e.g. in medical domains [84, 35]). However, an inevitable

3

consequence of down-sampling is the loss of information, while generating arti-55

ficial samples may cause overfitting, noise or class overlap.

In particular, In this study, we investigate DML as a means to deal with the

phenomenon of intrusion class imbalance thanks to performing deep learning

DL in new feature spaces that maximize distances between opposite samples

(i.e. between samples belonging to the normal class and the attack class, re-60

spectively), independently of the amount of data in each class.

We note that in DML a new feature space representation is learned, while

the number of training samples is unchanged. Therefore, DML approaches As

DML approaches learn new feature space representations without changing the

number of training samples, they allow us to learn a classifier which is robust to65

imbalance without suffering from the traditional issues of re-sampling (loss of in-

formation, overfitting or noise). In particular, we propose a novel methodology,

named RENOIR (autoencodeR-based neural nEtwork for INtrusiOn DetectIon

Systems with tRiplet loss function), that defines an innovative Triplet network

approach for network intrusion detection. It processes the flow-based charac-70

teristics of the network traffic data to detect signs of malicious activities.

The Triplet network [32], together with the Siamese network [14], is one of

the most popular DML techniques. However, several recent studies have proved

that Triplet networks are, in general, more effective than Siamese networks

[22, 16] [22, 63, 16], due to their simultaneous learning of similar and dissimilar75

relationships. Specifically, a Triplet network uses triplets of samples (instead of

pairs, as in Siamese networks). Every triplet is commonly composed of a train-

ing sample selected as an anchor, a training sample labelled in the same class

as the anchor, as well as a training sample labelled in the opposite class. The

Triplet network takes triplets as input and learns an embedding space, where dis-80

tances between samples labelled with opposite classes are greater than distances

between samples labelled with the same class. Although Triplet networks are

emerging as a relevant approach in DML, existing approaches based on Triplet

networks commonly suffer from poor convergence. The convergence problem is

mainly caused by a random selection of samples for the triplet construction in85

4

the training set [78]. In fact, the traditional Triplet network implementations

randomly select a single training sample labelled in the same class as the anchor

and a single training sample labelled in the opposite class.

The main innovation of this study is the introduction of a new triplet con-

struction strategy based on autoencoders, to handle the problem of triplet con-90

vergence and make effective the use of Triplet networks for network intrusion

detection. This strategy learns two independent autoencoders on normal flows

and attacks, separately. It uses these autoencoders, instead of traditional sam-

pling, to derive both the positive and negative information for the triplet con-

struction. In particular, every triplet is constructed considering the positive95

and negative pseudo-samples that are the unique reconstructions of the consid-

ered anchor, restored through the two autoencoders. So, these autoencoder-

originated pseudo-samples replace the real training samples that the traditional

Triplet networks would randomly select from the normal part and the attack

part of the training set.100

We point out that our methodology renounces any random choice during the

triplet construction. In addition, autoencoders capture class-specific informa-

tion, to facilitate the disentanglement among the classes. In principle, the au-

toencoder trained on the normal samples can contribute to recovering denoised

normal samples, but it should see attacks as anomalies, and so reconstruct them105

badly. Vice-versa, the autoencoder trained on the attacks should denoise the

attacks, seeing the normal flows as anomalies and reconstructing them badly.

Basing the triplet construction, and consequently the triplet-learned embedding,

on the pseudo-samples reconstructed through these two autoencoders allows us

to exploit possible patterns existing among the normal and attack classes, given110

the class of the anchor sample of the triplet.

A further advantage of our proposal is that we also leverage the data com-

pression ability of autoencoder models to speed up the classification of any

new query sample. Traditional Triplet network approaches predict the class

of a query sample by performing a time-consuming k-nearest neighbour (kNN)115

search within the triplet embedding of the training set [36, 78]. However, our ap-

5

proach Our methodology assigns a query sample to the class of the autoencoder

that yields the nearest-neighbour pseudo-sample of the query sample under the

umbrella of the triplet-learned embedding. Therefore,

thanks to the consideration of autoencoder models instead of training data,120

our prediction strategy can actually reduce the effort spent with a traditional

kNN search, by exploring the distance between a query sample and its two

autoencoder-restored pseudo-samples only.

In short, the main contributions of this work are reported in the following.

• We define an innovative DML methodology for network intrusion detec-125

tion problems, which couples autoencoders to Triplet networks, in order

to address the problem of convergence during triplet learning. The au-

toencoder information contributes to the construction of an embedding

space that potentially moves each flow close to its reconstruction, restored

through the autoencoder associated with the same class, and away from its130

reconstruction, restored with the autoencoder of the opposite class. This

fuels a mechanism to achieve better performance in separating classes, as

proved in the experimental study.

• We formulate a novel, efficient strategy for predicting the class of any new

network flow by taking advantage of the autoencoders learned from the135

two classes within the embedding learned on the triplet-space.

• We perform an extensive evaluation of the effectiveness of the presented

methodology, by investigating the viability of the proposed learning com-

ponents in the imbalance scenario, as well as the ability of our method-

ology to increase both accuracy and efficiency, compared to competitive,140

state-of-the-art approaches (comprising DML-based) taken from the re-

cent literature on network intrusion detection.

• Although the main focus of this study is on binary classification (regard-

less of the attack type), we present a preliminary investigation of the

potential of the binary methodology in multi-class classification. To this145

6

aim, we perform an experiment, where we resort to a combination strategy

(e.g. one-versus-all or one-versus-one) [49] to frame the proposed binary

methodology in the multi-class scenario. This allows us to perform the

task of attack type classification, in addition to attack detection.

This paper is organised as follows. The related works are presented in Section150

2. The formulated machine learning methodology is described in Section 3,

while the implementation details are reported in Section 4. The findings in the

evaluation of the proposed binary strategy are discussed in Section 5, while the

preliminary results achieved in the multi-class scenario are reported in Section

6. Finally, Section 7 refocuses on the purpose of the research, draws conclusions155

and proposes future developments.

2. Related works

Recent trends in cybersecurity research have shown machine learning and, in

particular, DL to be an extremely relevant approach in network intrusion detec-

tion. In this paper we revamp an intrusion detection pipeline that is based on a160

DML architecture, therefore, we mainly focus the literature overview on recent

studies applying DL (see Section 2.1) and DML (see Section 2.2), to discrimi-

nate intrusions from normal network traffic. In addition, as DML approaches

are well-suited to deal with the class imbalance condition [23], we briefly revise

the main approaches investigated in the recent literature to handle imbalanced165

data when training network intrusion detection patterns (see Section 2.3).

2.1. Deep learning (DL)

Deep learning DL is predominant in the recent literature on network intru-

sion detection. In particular, several recent studies [73, 30, 76] [56, 76, 13, 2, 29]

have definitely assessed that DL techniques can achieve an important gain in170

accuracy compared to conventional machine learning techniques.

This is thanks to the capability of deep neural networks (DNNs) to deal with

the high-dimensionality and non-linearity of a large volume of data to produce

high-level data feature representations.

7

In recent years, many Many DNNs have been investigated regarding the175

problem of network intrusion detection. [6, 30, 7, 40, 21, 79, 80, 19].

In particular, several studies have investigated the use of Convolutional

Neural Networks (CNNs) [30, 46, 40, 40], Long Short-Term Memory Networks

(LSTMs) [21], Recurrent Neural Networks (RNNs) [21] and Generative Adver-

sarial Networks (GAN) [60, 80, 79, 80, 19] for intrusion detection problems.180

Moreover, various recent studies have explored the use of deep autoencoder ar-

chitectures both for anomaly detection [56, 65, 6] and feature extraction [39, 4] in

network flow data. The authors of [81] experiment a stacked sparse autoencoder

to extract relevant features that are taken as input from XGBoost. In particu-

lar, In a recent study [7], autoencoders are trained autoencoders are trained in185

[7] to build a multi-channel representation of network flows. This representation

is used to train a multi-channel CNN for separating normal network flows from

attacks. In [5], the authors extend the multi-channel CNN introduced in [7]

with a mechanism to re-assign class labels of training normal samples that are

close to the boundary with the opposite class, in order to deal with the class190

imbalance condition of network intrusions.

2.2. Deep metric learning (DML)

A few recent studies have started to investigate DML approaches in cyberse-

curity. Both Siamese networks [14] and Triplet networks [32] are the two main

types of DNNs investigated in DML.195

Both architectures are popular DL techniques that have had great success

in many computer vision tasks [27, 54, 61, 41].

Siamese networks [67] learn a contrastive loss to quantify similarity between

sample pairs. Although they are mainly investigated in computer vision [61, 41],

speech recognition [26] and natural language processing [68], [77, 68], Recent200

studies have started exploring them in network intrusion detection [10, 11, 36,

55]. Specifically, Siamese networks are studied in [10, 11] to handle the class

imbalance condition in network intrusion detection systems. Both studies solve

a multi-class classification problem by coupling the attack classification to the

8

intrusion detection.205

In [10], the authors prove that a Siamese network is able to classify rare

attack class samples well, by taking advantage of both a down-sampling strategy

in the training stage and a distance-based approach in the predictive stage.

In particular, a A Siamese network is trained on the pairs of similar samples

(belonging to the same class) and the pairs of dissimilar samples (belonging to210

opposite classes), respectively. Sample pairs are constructed from a subset of

training samples comprising 50 samples for each distinct class (Normal, DoS,

Probe, R2L and U2R). To predict the class of a testing sample, a distance score

is computed for each class. This score is based on the distances of the test

sample from ten training samples sampled for the study class. The class with215

the best score is finally predicted.

In [11], the imbalanced condition is dealt with by opting for an ensemble,

without resorting to any data-level balancing techniques. The authors prove

that an ensemble of binary classification methods, which comprises a Siamese

network, a DNN and an XGBoost binary classifier, can be used to gain accu-220

racy in separating normal samples from intrusions. Network flows detected as

intrusions by the ensemble are subsequently classified in different attack classes

(DoS, Probe, R2L and U2R), using a multi-class XGBoost classifier.

In [36], a Siamese network is trained to find an embedding function that pro-

duces a feature representation of the data which minimises the distance between225

samples. The decision engine of this solution integrates a kNN classifier to yield

final predictions. The proposed pipeline is tested to classify each network flow

as normal or malicious (regardless of the attack type).

Finally, a Siamese convolutional network is also investigated in [55] for the

dimensionality reduction in the binary classification of the network traffic. The230

proposed approach integrates both a fuzzy allocation scheme to transform raw

data into fuzzy values and a modality transformation technique to convert the

fuzzy memberships into a 2D image. In addition, it trains both a Siamese

convolutional network to reduce the input data dimensionality to a 1D feature

space and various machine learning models for the binary classification on the235

9

resulting 1D space.

The proposed approach is four-stepped: (i) a fuzzy allocation scheme trans-

forms raw data into fuzzy values; (ii) a modality transformation technique con-

verts the fuzzy memberships into a 2D image; (iii) a Siamese convolutional net-

work is trained to reduce the input data dimensionality to a 1D feature space;240

(iv) various machine learning models are trained to implement the binary clas-

sification task on the resulting 1D space.

Triplet networks [32] use triplets of samples (instead of pairs as in Siamese

networks) to learn an embedding space, where distances between samples la-

belled with opposite classes are greater than distances between samples labelled245

with the same class. Several recent studies have proved that Triplet networks

are, in general, more effective than Siamese networks [22, 16], due to their si-

multaneous learning of similar and dissimilar relations.

Triplet networks were first introduced for face recognition tasks [61]. In this

seminal study on Triplet networks [61], the authors introduce the concept of a250

triplet loss function as a metric that, derived from nearest-neighbour classifica-

tion, [75], allows us to project face imagery data onto a compact Euclidean space,

where distances correspond to a measure of face similarity. Similarly to Siamese

networks, Triplet networks are mainly used in computer vision [61, 67, 31]. How-

ever, a few studies investigate the making of this DML model in cybersecurity255

[9, 85]. [9, 85, 87, 44] For example, in [9], an adaptive Triplet loss is proposed

to compare normal and attack workloads in web intrusion detection systems.

In [85], a Triplet network is designed to improve the detection of anomalous

in-vehicle CAN bus messages—a standardised serial communication protocol

widely used in automobile internal control systems. According to the triplet260

theory, each triplet associates an annotated CAN bus message selected as an

anchor, with both a positive message and a negative message. The triplet loss is

trained to close the distance between the anchor and the positive message and

extend the distance between the anchor and the negative message. Finally, it is

used to rank the bus CAN messages and find abnormal messages according to265

this ranking.

10

Besides the specific attention paid to cybersecurity, the majority of the cur-

rent research in Triplet networks focuses mainly on the definition of robust

triplet loss functions [31, 66, 74]. [31, 33, 17, 18, 74]. In particular, the com-

parative study in [31] proves the superiority of the soft-margin loss compared270

with several competitors. This motivates our decision to consider this loss in

the methodology proposed in this paper. Further studies investigate strategies

to address the convergence problem. For example, the authors of [64] propose

a moderate positive mining approach, to dynamically select the positive pairs

of samples, by minimising the intra-class variance. The authors of [66] describe275

a multi-class N-pair loss that replaces the traditional analysis conducted on a

single negative sample per triplet with a joint comparison with several nega-

tive samples. Finally, the authors of [78] reduce the bias in the triplet random

selection by continuously adapting the selection of triplets to the distribution

shift.280

2.3. Dealing with imbalanced data

Finally, recent studies of network intrusion detection have investigated var-

ious approaches (comprising DML-based) to handle the problem of data im-

balance also in combination with the task of attack classification. As already

discussed above, DML-based techniques are described in [10, 11], in order to285

deal with the class imbalance condition in the attack classification problem.

A different approach is investigated in [47], where the class imbalance prob-

lem is handled by reworking the near-neighbour subset of an imbalanced set of

training network flows. The near-neighbour set collects the highly similar sam-

ples that augment the difficulty for the classier to learn the differences between290

the classes. To overcome this issue, the k-means algorithm is used to reduce

the majority samples in the near-neighbour set, while the minority samples are

augmented to create a new training set. A deep neural network is finally trained

on the new training set, to separate normal samples from attacks and recognise

the attack category.295

In [51] the authors take advantage of the auto-learning ability of a reinforcement-

11

learning loop to adapt the well-known data augmentation technique SMOTE,

in order to remodel the sample behaviours for better performance. The idea of

using data augmentation is explored also outside intrusion detection [69]. In [15]

the authors investigate how to use adversarial reinforcement learning to address300

the training bias associated with an unbalanced network intrusion detection

dataset, by outperforming the performance of traditional data augmentation

(e.g. SMOTE, ADASYN) techniques.

In [48] the authors define a conditional variational autoencoder architecture

that integrates the intrusion labels inside the decoder layers. They test the305

proposed architecture to perform multi-class classification of intrusion data.

Finally, the authors of [34] tackle the class imbalance problem by introducing

an imbalanced data filter and convolutional layers to the typical GAN, thus

generating new representative samples for the minority classes (rare attacks).

3. Methodology310

In this Section we describe a DML -based network intrusion detection method-

ology, named RENOIR, that achieves an innovative combination of autoencoders

and Triplet networks. The aim is to learn robust intrusion detection models to

detect new signs of malicious activity in network traffic. Since the focus of this

study is on a binary classification task, all the attack classes are assigned to the315

same label regardless of the attack type. In addition, RENOIR is formulated

to process the flow-based characteristics of the network traffic, which aggregate

the information on all the packets in the network traffic. Our decision to focus

on the flow-level data is supported by the considerations reported in [71], which

highlight that the flow characteristics are more stable than the byte or packet-320

based characteristics. In fact, it is more practical to process flow characteristics

to track long-term changes in network behaviour. Examples of flow character-

istics handled by RENOIR are those commonly available with the majority of

network devices, e.g. the duration of a flow, the protocol type and the total

number of forwarding and backwarding packets transmitted between two hosts.325

12

Normal sample set

Autoencoder
trained on

attack samples

Autoencoder
trained on normal

samples

Attack sample set

Training set

Autoencoder
training

Training set reconstruction though
the autoencoder trained on the

normal samples

Training set reconstruction though
the autoencoder trained on the

attack samples

+

Triplet of a normal
sample

Triplet of
an attack sample

ANCHOR

POSITIVE

Anchor
 embedding

TRIPLET
LOSS

Autoencoder
training

Triplet-based
representation of the

Training set FC
FC

FC Embedding

Triplet network

FC
FC

FC

Shared Weights

Embedding
Positive

 embedding

Embedding

FC
FC

FC

Shared Weights

NEGATIVE

Negative
 embedding

(4)

(1
)

(1)

(2)

(3)

(5)

(6)

Figure 1: The RENOIR training stage. (1) The input training set X is partitioned into the
normal sample set Xn and the attack sample set Xa. (2) The normal autoencoder gn · fn is
trained on Xn, while (3) the attack autoencoder ga · fa is trained on Xa. (4) Both gn · fn
and ga · fa are used to restore each training sample x ∈ X (5) and construct the triplets
(x,x⊕,x), so that x⊕ is the reconstruction of x restored through the autoencoder in the
same class as x, while x	 is the reconstruction of x restored through the autoencoder in the
opposite class of x. (6) These triplets are processed as the input of a Triplet network to learn
an embedding of the training set.

The DML methodology fulfilled by RENOIR consists of both a training stage

(Figure 1) and a predictive stage (Figure 2). In the training stage, RENOIR anal-

yses a vector-type representation of characteristics of historical single flows to

train two class-specific autoencoders. These autoencoders are separately learned

on normal and attack flows, respectively. They are injected into a Triplet net-330

work, in order to build robust triplets and learn a new embedding input space

that separates normal flows better from attacks. In the testing stage, RENOIR

uses the trained autoencoders to efficiently predict the class of a new network

flow under the umbrella of the embedding learned. The detailed description

of the training and predictive stage are reported in Sections 3.1 and 3.2, re-335

spectively. The adopted notation is introduced in Table 1. We point out that

RENOIR, thanks to the formulation of an appropriate DML strategy based on

Triplet networks, defines a network intrusion detection system that is able to

take advantage of the knowledge enclosed in both the similarity relationships

13

Autoencoder
trained on normal

samples

Sample reconstruction
though the autoencoder

trained on the attack
samples

Sample reconstruction
though the autoencoder

trained on the normal
samples

NEGATIVE

ANCHOR

Autoencoder
trained on attack

samples

if

FC
FC

FC

Shared Weights

Embedding

then Attack
else Normal

POSITIVE

FC
FC

FC

Shared Weights

Embedding

FC
FC

FC Embedding

Query
sample

Triplet Network

Prediction based on distances computed
between the embedding representations

Positive sample

 embedding

Anchor sample

embedding

Negative sample

 embedding

Figure 2: The RENOIR predictive stage. A query sample x is reconstructed through the
autoencoders gn · fn and ga · fa, respectively (left). The distances are computed between x
and gn(fn(x)), as well as between x and ga(fa(x)) in the embedding learned through the
Triplet network. These distances are processed to predict the class of x.

Table 1: Notation

Symbol Description

X training data matrix X ⊂ RD

Xn subset of samples in X whose label is normal
Xa subset of samples in X whose label is attack
x triplet anchor sample with x ∈ X
x⊕ triplet positive counterpart of x
x	 triplet negative counterpart of x
gn · fn normal autoencoder trained on Xn

ga · fa attack autoencoder trained on Xa

gn(fn(x)) reconstruction of x through gn · fn
ga(fa(x)) reconstruction of x through ga · fa
φ : RD 7→ Rd embedding space learned through a Triplet network

between network flows, belonging to the same class, and the dissimilarity rela-340

tionships between network flows, belonging to the opposite class. In fact, by

accounting for these relationships, it learns a new embedding representation of

the input flow-based characteristics, which can improve its ability to separate

the attacks from the normal traffic.

14

3.1. Training stage345

The training stage of RENOIR is described in Algorithm 1. During this stage

the characteristics of historical network flows are analysed, in order to learn an

embedding feature space to separate normal network flows better from attacks.

In particular, the training stage of RENOIR consists of three phases:

1. We learn two independent autoencoders to derive a new representation of350

the training set, which is able to discriminate between normal samples

and attack samples.

2. We use both autoencoders to construct the two unique positive and nega-

tive counterparts of each anchor sample and use them to build the triplet

representation of the training samples.355

3. We take advantage of the triplets built in the previous phase to train a

Triplet network for the classification task.

3.1.1. Autoencoder training

Let us consider D = {(xi, yi)}Ni=1 as a set of N training samples, where

each xi ∈ RD is a row vector corresponding to an input network flow defined360

over D features, and yi is the corresponding binary label denoting a normal

or an attack sample. Furthermore, let X = [x1, . . . ,xN]> ∈ RN×D denote

the data matrix of N D-dimensional random variables x ∈ RD, so that Xn =

X|yi=normal, resp. Xa = X|yi=attack, represent the subset of samples in X,

whose label is normal, resp. attack. We process Xn and Xa separately to365

learn two independent autoencoders, denoted as normal autoencoder gn ·fn and

attack autoencoder ga · fa, respectively. We use both autoencoders to construct

the two triplet counterparts of each anchor. In accordance with the theory

on autoencoders described in [1] , each autoencoder can be viewed as being

composed of two functions: an encoder f—mapping the input vector x to a370

hidden representation h via a deterministic mapping h = f(x), parameterized

by θf—and a decoder g—mapping back the resulting hidden representation

h to a reconstructed vector in the input space x̂ = g(h), parameterized by

15

Algorithm 1: Training stage

input : D : set of training samples {(xi, yi)}Ni=1 with
yi ∈ {attack, normal} so that X denotes the data matrix of N
D-dimensional random variables x ∈ RD, Xn = X|yi=normal
and Xa = X|yi=attack

output: (gn · fn, ga · fa, φ) : the learned intrusion detection model

1 begin
/* Autoencoder training */

2 gn · fn ← trainAutoencoder(Xn)
3 ga · fa ← trainAutoencoder(Xa)

/* Compute reconstructed vectors using the autoencoders gn · fn and gn · fn and
use them to create triplets */

4 T← ∅
5 foreach (x, y) ∈ D do
6 if y = normal then
7 x⊕ ← gn(fn(x))
8 x	 ← ga(fa(x))

9 else
10 x⊕ ← ga(fa(x))
11 x	 ← gn(fn(x))

/* Triplet construction */

12 t = [x,x⊕,x]
13 T← T ∪ {t}

/* Triplet network training */

14 φ← trainTripletNetwork(T)
15 return gn · fn, ga · fa, φ

θg. Since the activation produced by the top layer in the decoder network

corresponds to a reconstructed vector in the same input space, we maintain375

that this vector can be considered as a new learned feature vector to represent

network flows. Specifically, each autoencoder is employed to build a new feature

vector x̂ = g(f(x)) ∈ RD that is a reconstruction from a sample x through the

autoencoder.

In principle, the normal autoencoder gn · fn should aid in recovering a de-380

noised representation of X, which highlights attacks as anomalies. Based upon

this consideration, normal flows can be considered as positive samples, while

attacks can be seen as negative samples from gn · fn. Vice-versa, the attack

16

autoencoder ga · fa aids in recovering a denoised representation of X, which

highlights normal flows as anomalies. Therefore, ga · fa can see normal flows as385

negative samples and attacks as positive samples from its point of view.

This conjecture inspires our idea of using the representations of X recon-

structed through both gn · fn and ga · fa to derive the unique positive and

negative component of each triplet.

3.1.2. Triplet construction390

According to the theory reported in [32, 61], each triplet (x,x⊕,x) com-

prises: (1) x—a training sample selected from X as the triplet anchor, (2) x⊕—a

positive counterpart of x and (3) x	—a negative counterpart of x. The tradi-

tional implementation of Triplet networks suffers from the convergence problem

since it selects x⊕ and x	 as two “random” samples of X, so that x⊕ is labelled395

in the same class as the anchor and x	 is labelled in the opposite class to the

anchor. In the second phase of the proposed methodology, we avoid the con-

vergence problem of random sampling by taking advantage of the autoencoder

representations of the anchors, restored through gn · fn and ga · fa, respectively.

Specifically, x⊕ and x	 are built as the unique reconstructions of the anchor400

x, restored through the autoencoder trained on samples labelled in the same

class as x, and the autoencoder trained on samples labelled in the opposite class

to x, respectively. For example, let us consider a training sample x assigned to

the label y = normal as the anchor. We build x⊕ = gn(fn(x)) as the positive

triplet counterpart of x, and x	 = ga(fa(x)) as the negative triplet counterpart405

of x, respectively. Vice-versa, let us consider a training sample x assigned to

the label y = attack as the anchor. We build x⊕ = ga(fa(x)) as the positive

triplet counterpart of x, and x	 = gn(fn(x)) as the negative triplet counterpart

of x, respectively.

3.1.3. Triplet Network training410

Finally, by leveraging the collection of sample triplets constructed from

X, we train a Triplet network that embeds every triplet component into a d-

17

dimensional Euclidean space φ : RD 7→ Rd learned to better quantify the sim-

ilarity between sample components within each triplet. This Triplet network

processes x, x⊕ and x	 across three base feed-forward networks with shared

parameters. The network learns the embedding φ : RD 7→ Rd by optimising

a triplet loss function. This loss function minimises the distance between the

embedding vectors of both the anchor x and its positive triplet counterpart x⊕,

while it maximises the distance between the anchor x and its negative triplet

counterpart x	. We compute the soft-margin triplet loss proposed in [31] and

formulated as follows:

Lsoft =
∑
x∈X

ln(1 + exp(‖φ(x)− φ(x⊕)‖2 − ‖φ(x)− φ(x)‖2)), (1)

where ‖a−b‖ denotes the Euclidean distance2 computed between vectors a and

b. We note that the adopted soft-margin triplet loss differs from the traditional

triplet loss function introduced in [61], as it is independent of any extra param-

eter (while the traditional loss metric depends on the margin α that needs to

be carefully selected). The experiments illustrated in Section 5.3.4 investigate415

the effectiveness of the soft-margin triplet loss in the proposed methodology.

3.2. Predictive stage

The predictive stage of RENOIR is described in Algorithm 2. Let us con-

sider a query sample x ∈ RD. First the sample reconstructions gn(fn(x)) and

ga(fa(x)) are restored through both the normal autoencoder gn · fn and the420

attack autoencoder ga(fa(x)), respectively. Then the Euclidean distance is

computed to compare x to both gn(fn(x)) and ga(fa(x)), respectively. The

Euclidean distance is computed within the embedding space φ, so that:

dφn(x) = ‖φ(x)− φ(fn(gn(x)))‖2, (2)

dφa(x) = ‖φ(x)− φ(fa(ga(x)))‖2. (3)

2In principle, any distance function can be computed.

18

Algorithm 2: Predictive stage

input : (1) a new network flow (query sample) x ∈ RD
(2) the intrusion detection model composed of the
autoencoders gn · fn and ga · fa, as well as the embedding φ

output: the predicted class ŷ

1 begin
2 dφn = EuclideanDistance(φ(x), φ(gn(fn(x))

3 dφa = EuclideanDistance(φ(x), φ(ga(fa(x))

4 if dφa <d
φ
n then

5 ŷ ← attack
6 else
7 ŷ ← normal

8 return ŷ

Finally, if dφa(x) < dφn(x), then x is classified as an attack. Otherwise x is

classified as a normal network flow.425

4. Implementation details

RENOIR has been implemented in Python 2.7. The source code is available

online.3 The deep neural network architectures are developed in Keras 2.34 –

a high-level neural network API with TensorFlow5 as the back-end. The pre-

processing step includes the operation to scale the input numeric features, using430

the Min-Max scale (as implemented in the Scikit-learn 0.22.2 library6). This

operation is performed to process features with values in comparable ranges.

In addition, for datasets containing categorical attributes the pre-processing

includes the implementation of the one-hot-encoder mapping – a transformation

commonly used in the intrusion detection literature [46, 40] – to transform input435

categorical features into numerical features.

For each dataset we conduct an automatic hyper-parameter optimization,

3https://github.com/gsndr/RENOIR
4https://keras.io/
5https://www.tensorflow.org/
6https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html

19

https://github.com/gsndr/RENOIR
https://keras.io/
https://www.tensorflow.org/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

Table 2: Hyper-parameter search space for both the autoencoders and the Triplet network.

autoencoders Triplet network

batch size {25, 26, 27, 28, 29 } {25,26, 27, 28, 29 }
learning rate [0.0001, 0.01] [0.0001, 0.01]
dropout [0,1] [0,1]
#neurons for hidden layer - {27, 28, 29 }

using the tree-structured Parzen estimator algorithm, as implemented in the

Hyperopt library. [12]. This hyper-parameter optimization is performed by

using 20% of the entire training as a validation set, according to the Pareto440

Principle [52]. In particular, we randomly select the validation set with the

stratified sampling procedure [58]. So, in RENOIR, we automatically choose the

configuration of the parameters, which achieves the best validation loss. The

values of the hyper-parameters, automatically explored with the tree-structured

Parzen estimator, are reported in Table 2.445

Each autoencoder architecture comprises 3 fully-connected (FC) layers of

32× 16× 32 neurons and one dropout layer, in order to prevent the overfitting

phenomenon. The mean squared error (mse) is used as the loss function. The

classical rectified linear unit (ReLu) [25] is selected as the activation function

for each hidden layer, while for the last layer the Linear activation function is450

used.

The Triplet network is implemented with three base feed-forward networks

with shared weights. Each base network is a deep neural network with three in-

termediate layers (with the number of neurons chosen with the hyper-parameter

optimization), an embedding layer with 512 neurons [24] [57, 24] and two dropout455

layers. The soft-margin triplet loss as described in Equation 1 is used as the loss

function. The (ReLu) function is selected as the activation function for each

hidden layer, while for the embedding layer the Sigmoid activation function [28]

is used. The Sigmoid activation function is commonly used for the embedding

layer [53] instead of a Linear, in order to guarantee that each dimension will be460

between 0 and 1. This architecture assigns samples to normal or attack classes

by returning the Euclidean distance returned by the embedding layers. The

20

Dense-ReLu

Dropout

Dense-ReLu

Dropout

Dense-ReLu

Embedding-Sigmoid

Dense-ReLu

Dropout

Dense-ReLu

Dropout

Dense-ReLu

Embedding-Sigmoid

Dense-ReLu

Dropout

Dense-ReLu

Dropout

Dense-ReLu

Embedding-Sigmoid

Euclidean Distance

AttackNormal

Euclidean Distance

positive negativeanchor

WW

Figure 3: The Triplet network of RENOIR. The architecture comprises three base feed-forward
networks with shared weights (W).

details of the configuration of this architecture are reported in Figure 3.

5. Empirical evaluation

For the empirical evaluation, we consider three benchmark datasets (see465

Section 5.1) to evaluate the effectiveness of the network intrusion detection

methodology implemented by RENOIR. Each dataset includes both a labelled

training set – processed to learn the network intrusion detection model – and

a testing set – considered to evaluate the network intrusion detection ability of

the trained model. In particular, the performance of RENOIR is measured in470

terms of accuracy and efficiency (see Section 5.2).

21

Table 3: Dataset description. For each dataset we collect: the number of attributes, the total
number of network flow samples collected in the dataset, the number of normal network flows
(and their percentage of the total size), as well as the number of attacking flows (and their
percentage of the total size).

Dataset

KDDCUP99 AAGM17 CICIDS17

Attributes

Total 42 80 79
Binary 6 3 18
Categorical 3 - -
Numerical 32 76 60
Class 1 1 1

Training set
Total 494021 100000 100000
Normal flows 97278 (19.7%) 80000 (80%) 80000 (80%)
Attacking flows 396743 (80.3%) 20000 (20%) 20000 (20%)

Testing set
Total 311029 100000 900000
Normal flows 60593 (19.5%) 80000 (80%) 720000 (80%)
Attacking flows 250436 (80.5%) 20000 (20%) 180000 (20%)

5.1. Dataset description and experimental methodology

We consider three benchmark intrusion detection datasets, that is, KDD-

CUP99,7, AAGM178 and CICIDS179.

KDDCUP99 was introduced in the KDD Tools Competition in 1999. The475

dataset comprises four categories of attacks: Denial of Service Attack (DoS),

User to Root Attack (U2R), Remote to Local Attack (R2L) and Probing Attack.

The dataset contains network flows simulated in a military network environment

and recorded as vectors of 42 flow-level characteristics. The original dataset

comprises a training set of 4.898.431 samples and a testing set of 311.027 sam-480

ples. To keep the cost of the learning stage under control, the original dataset

comprises a reduced training set, denoted as 10%KDDCUP99Train, that con-

tains 10% of the training data taken from the original dataset. In addition,

the entire dataset is imbalanced in both the training and testing set, where the

percentage of attacks is higher than that of normal flows (80.3% vs 19.7% in the485

training set and 80.5% vs 19.5% in the testing set). In this study we consider

7http://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html
8https://www.unb.ca/cic/datasets/android-adware.html
9https://www.unb.ca/cic/datasets/ids-2017.html

22

http://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html
https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/ids-2017.html

10%KDDCUP99Train for the learning stage, while we use the entire testing

set, denoted as KDDCUP99Test, for the evaluation stage.10 This experimental

scenario, with both 10%KDDCUP99Train and KDDCUP99Test, is commonly

used for the evaluation of network intrusion detection systems also in recent490

studies (e.g. [73, 59]).

AAGM was collected by the Canadian Institute for Cybersecurity in 2017.

This dataset contains the network traffic captured from Android applications–

–both malware and benign –obtained by installing Android apps on real smart-

phones in a semi-automated manner [42]. After running the apps on the real495

Android smartphones (NEXUS 5), the generated traffic was captured and trans-

formed into samples labelled in two classes (attack and normal) using CI-

CFlowMeter. Every network flow sample is spanned over 80 attributes. Specif-

ically, attacking samples represent the malicious traffic generated by some pop-

ular adware families (Airpush, Dowgin, Kemoge, Mobidash and Shuanet) and500

malware families (AVpass, FakeAV, FakeFlash/FakePlayer, GGtracker and Penetho).

In this study, we use the subset of the entire network traffic log that was ini-

tially constructed by [5]. Specifically, this subset comprises a training set with

100K samples and a testing set with 100k samples. Both training and testing

samples are randomly selected from the entire log using the stratified random505

sampling. This dataset is imbalanced in both the learning and the evaluation

stage. In fact, the number of normal network flows is significantly higher than

the number of attacks (80% vs 20%). This resembles the common set-up of an

anomaly detection learning task that often occurs in a network.

Finally, CICIDS2017 was collected by the Canadian Institute for Cyberse-510

curity in 2017. The original dataset is a 5-day log collected from Monday July

3, 2017 to Friday July 7, 2017 [62]. The first day (Monday) contains only be-

nign traffic, while the other days contain various types of attacks, in addition

to normal network flows. Every network flow sample is spanned over 79 at-

1010%KDDCUP99Train and KDDCUP99Test are populated with the data stored in kd-
dcup.data 10 percent.gz and corrected.gz at http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html

23

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

tributes. The dataset is commonly used in the evaluation of anomaly detection515

methodologies with the training performed on the first day [82, 8]. However,

a few recent studies consider these data also in the evaluation of classification

methodologies, as we do in this paper [46, 40, 59, 3]. In our experimental study,

we consider the training and testing sets of CICIDS2017, built according to the

strategy described by [46, 40]. The dataset comprises six attack families: Brute520

Force Attack, Heartbleed Attack, BotNet, DoS/DDoS Attack, Web Attack and

Infiltration Attack. Specifically, we build one training set with 100K samples,

and one testing set with 900K samples. Both training and testing samples are

randomly selected from the entire 5-day log using the stratified random sam-

pling procedure, in order to select 80% of normal flows and 20% of attacks, as525

in the original log.

A summary of the characteristics of the datasets described above is reported

in Table 3. We note that the traffic is imbalanced in all the datasets. In both

AAGM17 and CICIDS2017, the number of normal network flows is significantly

higher than the number of attacks. On the contrary, in KDDCUP99 the number530

of attacks is higher than the number of normal flows.

5.2. Evaluation metrics

The overall accuracy performance of the proposed methodology is measured

by analysing the F1-score of the intrusion detection models learned. This is

the harmonic mean of Precision and Recall, where Precision measures the ability535

of an intrusion detection system to identify only the attacks, while Recall can

be thought of as the system’s ability to find all the attacks. The higher the

F1-score, the better the balance between Precision and Recall achieved by the

algorithm. On the contrary, the F1-score is not so high when one measure is

improved at the expense of the other. In addition, we consider Accuracy (that540

is measured in the evaluation of various competitors). This is the ratio of flows

correctly labelled on all the flows tested. The mathematical formulation of these

accuracy metrics is reported in Table 4.

The efficiency performance is evaluated with the computation time spent

24

Table 4: Evaluation metrics: Accuracy, Precision, Recall and F1-score. These metrics are
computed by accounting for the number of true positive—TP (number of attacks correctly
detected), the number of true negative—TN (number of normal samples correctly detected),
the number of false positive—FP (number of normal samples incorrectly detected as attacks)
and the number of false negative—FN (number of normal samples incorrectly detected as
attacks).

Metric Mathematical formulation

Accuracy
TP + TN

TP + TN + FP + FN

Precision
TP

TP + FP

Recall
TP

TP + FN

F1-score 2 ·
Precision · Recall
Precision+ Recall

training the intrusion detection model and the average time spent processing545

every testing sample. They are collected on a Linux machine with an Intel(R)

Core(TM) i7-9700F CPU @ 3.00GHz and 32GB RAM. All the experiments have

been executed on a single GeForce RTX 2080. The training TIME is measured

in minutes, while the testing TIME is measured in milliseconds.

5.3. Results550

The performance of RENOIR is measured by reporting the distances between

the triplet components, the Accuracy and the F1-score of the intrusion detection

models, as well as the efficiency of both the training stage and the predictive

stage. For the hyper-parameter optimisation of RENOIR, a validation set is used

during the training of the model (20% of the entire training set is randomly555

selected for the validation with stratified sampling, as described in Section 4).

5.3.1. Embedding analysis

We start by investigating how the embedding learned during the training

stage of RENOIR can actually disclose knowledge that contributes to separating

attacking flows from normal ones. To this aim, we explore how the embedding560

space moves each sample closer to its positive reconstruction (recovered through

25

(a) Training (b) Training + φ (c) Testing (d) Testing + φ

Figure 4: Embedding analysis (KDDCUP99 dataset): Euclidean distances computed between:
(1) each sample and its positive triplet counterpart (d⊕ – left box) and (2) each sample and
its negative triplet counterpart (d	 – right box). The distances are computed both in the
original input feature space (dx⊕ and dx) and in the embedded feature space (dφ(x)⊕ and
dφ(x)), respectively. Figures 4a and 4b show the box plots of the distances of the training
samples, while Figures 4c and 4d show the box plots of the distances of the testing samples.

the autoencoder labelled with the same class as the anchor sample), while mov-

ing each sample away from its negative reconstruction (recovered through the

autoencoder labelled with the opposite class to the anchor sample). This is done

by augmenting the gap between opposite distances and consequently separating565

normal samples better from attacks.

Figures 4, 5 and 6 show the box plots of the Euclidean distances computed

as dx⊕ = ‖x − x⊕‖2 and dx	 = ‖x − x	‖2 by ignoring the embedding φ, as

well as the Euclidean distances computed as dφ(x)⊕ = ‖φ(x) − φ(x⊕)‖2 and

dφ(x)	 = ‖φx − φ(x)‖2 by considering φ. The plots are constructed in both570

the training set and the testing set of each dataset.

These plots show that distances between samples and their negative recon-

structions are greater than distances between samples and their positive recon-

structions, independently of the use of embedding. However, computing dis-

tances in the embedding space can actually increase the gap between opposite575

distances, by moving each sample closer to the autoencoder of its class and away

from the autoencoder of the opposite class. This behaviour, that was expected

in the training samples (as shown in Figures 4b, 5b and 6b), was also evident in

the testing samples (as shown in Figures 4d, 5d and 6d), although the testing

samples comprise network flows which were unseen at training time.580

26

(a) Training (b) Training+φ (c) Testing (d) Testing+φ

Figure 5: Embedding analysis (AAGM17 dataset): Euclidean distances computed between:
(1) each sample and its positive triplet counterpart (d⊕ – left box) and (2) each sample and
its negative triplet counterpart (d	 – right box). The distances are computed both in the
original input feature space (dx⊕ and dx) and in the embedded feature space (dφ(x)⊕ and
dφ(x)), respectively. Figures 5a and 5b show the box plots of the distances of the training
samples, while Figures 5c and 5d show the box plots of the distances of the testing samples.

(a) Training (b) Training + φ (c) Testing (d) Testing + φ

Figure 6: Embedding analysis (CICIDS17 dataset): Euclidean distances computed between:
(1) each sample and its positive triplet counterpart (d⊕ – left box) and (2) each sample and
its negative triplet counterpart (d	 – right box). The distances are computed both in the
original input feature space (dx⊕ and dx) and in the embedded feature space (dφ(x)⊕ and
dφ(x)), respectively. Figures 6a and 6b show the box plots of the distances of the training
samples, while Figures 6c and 6d show the box plots of the distances of the testing samples.

5.3.2. Ablation study

We proceed with the analysis by performing an ablation study. This study

aims at investigating:

• How the proposed methodology can leverage information synthesized through

autoencoders in the training stage, in order to learn an embedding that585

aids in separating normal network flows better from attacks, without suf-

fering from the convergence problem.

• How the proposed methodology can take advantage of coupling the em-

bedding to the autoencoders in the predictive stage, in order to replace

the kNN-based classification adopted in traditional DML classifiers (e.g.590

[36, 53, 86, 78]), [36, 53, 78]), by speeding up the analysis of each new

27

network flow and gaining accuracy in predicting the class of the flow.

To this aim, we consider four architecture configurations as baselines. These

are in turn defined by removing the autoencoder information or the embedding

from the training stage and/or the predictive stage of RENOIR. In particular,595

we consider the following baseline architectures:

• T+kNN—which gives away autoencoder information in both the training

and the predictive stage. In the training stage it learns the embedding by

training a traditional Triplet network on triplets populated with positive

and negative samples, that are randomly sampled in the training set. In600

the predictive stage, it follows the traditional implementation of DML

classifiers and assigns every new query sample to the class predicted by

performing the kNN algorithm on the embedding of the training set φ(X).

• A+A—which gives away the embedding. In the training stage it only

learns two autoencoders on the normal training samples and the training605

attack samples, separately. In the predictive stage it assigns every new

query sample to the class associated with the autoencoder that restores

the closest reconstruction of the sample.

• AT+kNN—which gives away autoencoder information in the predictive

stage. In the training stage it replays RENOIR. In the predictive stage it610

assigns every new query sample to the class predicted by performing the

kNN algorithm on the embedding of the training set φ(X).

• AT+AkNN— which considers autoencoder information and embedding,

but the autoencoders are coupled to kNN in the predictive stage. In the

training stage it replays RENOIR. In the predictive stage it assigns every615

new query sample to the class predicted by performing the kNN algorithm

on the training space φ(X) • φ(X⊕) • φ(X) constructed through the

concatenation operator.

Similarly to RENOIR, all the configurations that train a Triplet network

(T+kNN, AT+kNN and AT+AkNN) implement the soft-margin loss function.620

28

The predictive stage of the configurations that use the kNN algorithm (T+kNN,

AT+kNN, AT+AKNN) are run with k ranging between 1 and 30. As T+kNN

uses random sampling for the triplet construction, we repeat the training and

predictive stages of this configuration on five trials. In each dataset the best

trial of T+kNN (in terms of accuracy performance achieved on the testing set)625

is selected for the comparative analysis.

The performance of the compared configurations is measured in terms of

Accuracy, F1-score, TIME spent completing the training stage (Training TIME),

as well as TIME spent, on average, predicting the class of each testing sample

(Testing TIME). We point out that the intrusion detection system focuses mainly630

on the discovery of signs of malicious activity in the traffic, so the label “attack”

is handled as the positive class of the binary classification for the computation

of F1-score. In any case, for completeness, we also report the recall analysis for

both categories of the experiment Recall(Attack) and Recall(Normal).

The overall results, reported in Table 5, show that RENOIR is commonly635

more accurate than all its baselines. The only exception is observed with

AT+kNN on CICIDS17, where RENOIR is the runner-up in terms of Accuracy

and F1-score. In any case, the recall analysis on CICIDS17 reveals that RENOIR

is the best method in terms of intrusion detection ability, while it is the runner-

up in terms of normal flow detection ability. On the other hand, AT+kNN640

is the runner-up in terms of Accuracy and F1-score on both KDDCUP99 and

AAGM17. In general, RENOIR and AT+kNN achieve close accuracy perfor-

mances in all the datasets, although the predictive stage of AT+kNN is always

significantly slower than the predictive stage of RENOIR. This behaviour is not

surprising, since AT+kNN replays the training stage of RENOIR, while it uses645

the computation-demanding kNN algorithm in the predictive stage. Additional

general considerations concerning the recall analysis can be formulated. In fact,

we note that RENOIR is always the best method in terms of sample detection

ability in one class (the normal class in KDDCUP99 and AAGM17 and the

attack class in CICIDS17) and the runner-up in the sample detection ability in650

the opposite class.

29

In general, this analysis confirms the viability of our idea of injecting autoen-

coder information into both the training stage and the predictive stage of the

proposed DML methodology. Interestingly, basing predictions on autoencoders

always speeds up the prediction stage (i.e. the time that both RENOIR and A+A655

spend on average yielding a prediction is significantly less than the prediction

time spent by T+kNN, AT+kNN and AT+kNN), while performing autoencoder-

based classification in the embedding space allows RENOIR to achieve higher

accuracy levels.

Additional considerations concern the time spent completing the training660

stage. In fact, the highest performance that RENOIR achieves in the predictive

stage is at the cost of the highest complexity of the training stage. In particular,

coupling the computation of the autoencoder information to the training of

the Triplet network adds significant complexity to the training stage (i.e. the

time that RENOIR, AT+kNN and AT+AkNN spend on average completing the665

training stage is greater than the training time spent by both T+kNN and A+A).

Finally, we explore the sensitivity of the accuracy performance of RENOIR

and its baseline architectures by diminishing the amount of training samples

processed. To this aim, we consider four trials of AAGM17 with 100% (baseline),

75%, 50% and 25% training samples, respectively. The training samples are670

extracted from the original training set (AAGM17Train) in a stratified manner.

The F1-score of RENOIR, T+kNN, A+A, AT+kNN and AT+AkNN, collected by

diminishing the number of training samples and measured on the testing set

(AAGM17Test), is plotted in Figure 7. Diminishing the number of training

samples leads to a decrease in the F1-score of all the compared algorithms.675

However, RENOIR continues outperforming its baselines independently of the

training set size. In any case, we note that the difference between RENOIR and

AT+kNN becomes negligible when decreasing the amount of training samples.

We recall that RENOIR and AT+kNN perform the same training stage, but

produce a different predictive stage. Figure 8 compares the Testing TIME of680

both RENOIR and AT+kNN. The Testing TIME of RENOIR does not change

with the training set size, since RENOIR decides the class of a testing sample

30

Table 5: Ablation study: Overall Accuracy, F1-score, Recall(Attack), Recall(Normal) and TIME
measured on KDDCUP99Test, AAGM17Test and CICIDS2017Test for RENOIR, T+kNN,
A+A, AT+kNN and AT+AkNN. Training TIME is the time spent in minutes completing the
training stage. Testing TIME is the time spent, on average, in milliseconds computing the
prediction of each testing sample during the predictive stage. If kNN is used in the prediction
stage, bestK denotes the value of k which achieves the highest accuracy performance on the
testing set. The best results are in bold.

Dataset

Architecture

RENOIR T+kNN A+A AT+kNN AT+AkNN

KDDCUP99Test
Accuracy 93.50 82.85 91.41 93.25 89.86
F1-score 95.80 88.75 94.39 95.63 93.94
Recall(Attack) 92.05 85.49 89.68 91.77 97.54
Recall(Normal) 99.40 70.41 98.56 99.36 58.12
Training TIME 95.04 53.70 41.37 95.04 95.04
Testing TIME 0.013 17.49 0.002 3.99 8.00
bestK - 26 - 2 14

AAGM17Test
Accuracy 89.63 67.59 65.63 88.63 55.73
F1-score 71.90 31.76 47.56 68.82 23.29
Recall(Attack) 66.40 37.71 77.94 62.72 33.60
Recall(Normal) 95.43 75.05 66.55 95.11 61.26
Training TIME 28.57 22.48 6.20 28.57 28.57
Testing TIME 0.04 9.87 0.078 6.38 6.56
bestK - 2 - 6 2

CICIDS17Test
Accuracy 98.24 58.63 95.25 98.30 57.69
F1-score 95.70 27.33 88.43 95.78 27.52
Recall(Attack) 97.28 38.90 90.80 97.01 40.16
Recall(Normal) 98.48 63.56 96.36 98.61 62.08
Training TIME 26.74 21.60 5.09 26.74 26.74
Testing TIME 0.01 14.21 0.001 14.80 11.88
bestK - 2 - 1 2

based on the distance between the sample and its reconstructions, restored with

the autoencoders previously trained from the normal training samples and the

attack training samples, respectively. On the other hand, the Testing TIME of685

AT+kNN decreases as the training set size decreases, since AT+kNN decides

the class of a testing sample by performing a k-nearest neighbour search in

the training space. In any case, the predictive stage of RENOIR is still more

efficient than the predictive stage of AT+kNN even when decreasing the size of

the training set.690

5.3.3. Convergence discussion

After completing the ablation study, we explore in depth how the triplet

convergence problem can jeopardize the performance of a traditional Triplet

network. To this aim, we examine closely the performance of T+kNN, as this is

the baseline configuration (described in Section 5.3.2) that, following the tradi-695

31

100% 75% 50% 25%
Training set

10

20

30

40

50

60

70

F1
-s

co
re

RENOIR
T + kNN

A + A
AT + kNN

AT + AkNN

Figure 7: F1-score of RENOIR, T+kNN, A+A, AT+kNN and AT+AkNN on AAGM17Test by
varying the size of the training set.

100% 75% 50% 25%
Training set

0

1

2

3

4

5

6

Te
st

in
g

TI
M

E(
m

s)

RENOIR AT + kNN

Figure 8: Testing TIME spent, on average, in milliseconds computing the prediction of each
testing sample during the predictive stage of RENOIR and AT+kNN on AAGM17Test by
varying the size of the training set.

32

Table 6: Convergence problem analysis: accuracy of T+kNN on five trials of the training
stage.

Dataset bestK Accuracy F1-score Recall(Attack) Recall(Normal)

KDDCUP99Test

26 82.18 88.60 85.94 66.63
14 57.60 68.60 57.40 58.94
29 62.28 72.14 60.65 69.05
26 71.78 80.56 72.62 68.29
26 82.85 88.75 85.49 70.41

AAGMTest

2 64.85 28.53 35.08 72.29
2 64.54 28.55 35.44 71.81
2 61.91 27.13 35.46 68.53
2 58.65 24.89 34.26 64.75
2 67.59 31.76 37.71 75.05

CICIDS2017Test

2 58.35 26.26 37.08 63.67
2 58.40 25.75 36.07 63.98
2 58.39 26.11 36.75 63.79
2 58.11 24.89 34.69 63.97
2 58.63 27.33 38.90 63.56

tional Triplet network theory, uses the random sampling in the triplet construc-

tion. Table 6 reports the accuracy results collected with T+kNN by repeating

the training and predictive stages on five distinct trials for all the datasets.

Since the random sampling is used in the triplet construction, the Triplet loss

is learned with a triplet training set that potentially changes at each trial exe-700

cution. Changes in the triple training set may reasonably cause the variability

of the performance that we observe on the various trials. Based upon these

considerations, we draw the conclusion that the variability of the results of

T+kNN highlights the effect of the convergence problem, since the accuracy of

T+kNN actually depends on how training samples are randomly sampled for705

the triplet construction. This provides evidence of the weakness of basing the

triplet construction on traditional random sampling, while the ablation study

has empirically proved the viability of autoencoder information as an effective

means to handle this issue. In our proposal, once the normal and attack autoen-

coders of a specific training set are trained, they provide the information for the710

“unique” way to construct the triplets of the study training set. In fact, there is

one only reconstruction of the same anchor through each specific autoencoder.

This definitely avoids the convergence problem of the random sampling.

33

Table 7: Margin triplet loss and soft-margin triplet loss.

Triplet loss Mathematical formulation

Margin triplet loss [61]
∑
x∈X

max(‖φ(x)− φ(x
⊕

)‖2 − ‖φ(x)− φ(x
	

)‖2 + α, 0)

Soft-margin triplet loss [31]
∑
x∈X

ln(1 + exp(‖φ(x)− φ(x
⊕

)‖2 − ‖φ(x)− φ(x
	

)‖2))

5.3.4. Triplet loss analysis

We analyse the accuracy of the proposed methodology along the margin715

triplet loss adopted. To this aim, we compare the performance of the soft-

margin triplet loss, that we have selected for the implementation in RENOIR

(as described in Section 3.1) to the performance of the traditional margin triple

loss. The mathematical formulation of both loss functions is reported in Table

7. We point out that both loss functions combine distances computed between720

samples within triplets. However, the performance of the traditional margin

triple loss may depend on a user-defined margin threshold α. In this study the

two loss functions are computed with the positive and negative samples of a

triplet, built by resorting to autoencoders (as described in Section 3.1). The

experiments are performed by varying α of the margin triplet loss among 0.2,725

0.4, 0.5, 0.6, 0.8 and 1.

The F1-score, reported in Figure 9 for all the datasets, shows that the over-

all conclusions drawn by [31] are still valid even when the Triplet network im-

plementation is enhanced with autoencoders, as presented in this paper. In

particular, the accuracy of the traditional margin triplet loss may vary with α730

(by achieving the highest F1-score with α = 0.5 in KDDCUP99, α = 0.8 in

AAGM17 and α = 1 in CICIDS17). In any case, in all the datasets, computing

the soft-margin triplet loss in the training stage allows us to achieve the high-

est F1-score in the predictive stage, without requiring the set-up of any margin

parameter.735

5.3.5. Competitor analysis

Finally, we assess the significance and novelty of RENOIR with respect to

several competitors, selected from the recent state-of-the-art literature on net-

34

0.2 0.4 0.5 0.6 0.8 1 soft94.0
94.2
94.5
94.8
95.0
95.2
95.5
95.8
96.0

F1
-s

co
re

95.3 95.2
95.4 95.3 95.3 95.4

95.8

(a) KDDCUP99Test

0.2 0.4 0.5 0.6 0.8 1 soft62.0

64.0

66.0

68.0

70.0

72.0

74.0

65.3 65.6
64.8

65.4 65.9 65.7

71.9

(b) AAGM17Test

0.2 0.4 0.5 0.6 0.8 1 soft94.0
94.2
94.5
94.8
95.0
95.2
95.5
95.8
96.0

95.1

94.8
95.0 95.0

94.8

95.6 95.7

(c) CICIDS17Test

Figure 9: Margin triplet loss analysis: F1-score of Triplet networks trained with the traditional
margin triplet loss computed by varying the margin among 0.2, 0.4, 0.5, 0.6, 0.8 and 1, as
well as the soft-margin triplet loss.

work intrusion detection. In particular, we consider the following competitors

that perform binary intrusion detection (like RENOIR) and are based on various740

categories of deep learning architectures:

• Convolutional Neural Network-based competitors (CNN): CNN4 [30], Grey-

scaleCNN [46], [40] and RGBCNN [40];

• Long Short-Term Memory Neural Network-based competitor (LSTM): BLSTM

[21];745

• Recurrent Neural Network-based competitor (RNN): BRNN [21];

• Deep Neural Network-based competitors (DNN): DNN 4 Layers [73], DNN3

[72], DNN4 [30], DBN [45] , A+DBN [45], WnD [76] and MLP [76];

• GAN Network-based competitors (GAN): AnoGAN [60] [80], Efficient GAN

[79], ALAD [80] and MAD-GAN [19];750

• Autoencoder-based competitors: SAE [76], AIDA [6], MINDFUL [7] and

THEODORA [5].

The codes of AIDA [6],11 MINDFUL [7]12 and THEODORA13 are publicly

available to repeat the experiments reported in this study. The results of the

11https://github.com/gsndr/AIDA
12https://github.com/gsndr/MINDFUL
13https://github.com/gsndr/THEODORA

35

Table 8: Competitor analysis: Accuracy and F1-score measured on the testing sets of KDD-
CUP99, AAGM17 and CICIDS17. The results of competitors are collected from the reference
papers. The best results are in bold. “-” denotes that no value is reported in the reference
paper.

Dataset Category Description Accuracy F1-score

KDDCUP99

RENOIR Autoencoder+DML 93.50 95.80
MINDFUL [7] Autoencoder+CNN 92.49 95.13
CNN4 [30] CNN 92.47 -
DNN4Layers [73] DNN+Text-based encoding 93.00 95.50
DNN-3 [72] DNN 93.00 95.50
DNN4 [30] DNN 92.88 -
DBN [45] DNN 91.40 -
A+DBN [45] Autoencoder+DBN 92.10 -
BLSTM [21] LSTM - 93.27
BRNN [21] RNN - 91.82
THEODORA [5] Autoencoder+CNN 92.97 95.46
AIDA [6] Autoencoder+MLP 92.36 95.04
AnoGAN [60] [80] GAN - 88.65
Efficient GAN [79] GAN 93.72
ALAD [80] GAN - 95.01
MAD-GAN [19] GAN - 90.00

AAGM17

RENOIR Autoencoder+DML 89.63 71.90
MINDFUL [7] Autoencoder+CNN 86.15 51.62
THEODORA [5] Autoencoder+CNN 87.62 65.92
AIDA [6] Autoencoder+MLP 86.06 57.78

CICIDS17

RENOIR Autoencoder+DML 98.24 95.70
MINDFUL [7] Autoencoder+CNN 97.90 94.93
Grey-scaleCNN [46][40] CNN - 82.00
RGBCNN [40] CNN - 89.00
THEODORA [5] Autoencoder+CNN 98.03 95.25
AIDA [6] Autoencoder + MLP 94.50 85.80

remaining competitors are taken from the reference papers, as their code is755

not publicly available to repeat the experiments. However, the compared algo-

rithms, except for Grey-scaleCNN and RGBCNN, have been evaluated by their

authors on the same training and testing sets described in Section 5.1. This

makes this comparative study reliable. Additionally, we note that both Grey-

scaleCNN and RGBCNN were originally evaluated in [46, 40] by considering a760

training set and a testing set of CICIDS17, which are not publicly available. In

any case, the version of the dataset CICIDS17, that is described in Section 5.1

and that we use in this study, reproduces the training and testing ratios reported

in [46, 40]. Finally, similarly to [46, 40], we have also used the stratified sam-

pling strategy to select the samples of the original log that populate the training765

set and the testing set of CICIDS17. This allows us to reproduce experimental

conditions that are similar to (although not the same as) the conditions of the

evaluation described in [46, 40].

We point out that both GAN-based and autoencoder-based competitors are

the nearest related to RENOIR. The GAN-based competitors [60, 80, 79, 80, 19]770

deal with the class imbalance by mainly using generative adversarial learning for

36

anomaly detection (i.e. to detect the samples of the minority class as anoma-

lies). On the other hand, the autoencoder-based competitors take advantage

of autoencoder information. In particular, THEODORA [5] learns autoencoder

information through a multi-channel CNN and uses a label re-assignment mech-775

anism to deal with rare samples.

For all the methods in this comparative study we collect the Accuracy and

F1-score, as these metrics are commonly provided in the reference studies. The

results, reported in Table 8 for all the datasets, show that RENOIR outper-

forms all its competitors, including the GAN-based competitors (evaluated on780

KDDCUP99 in the reference studies) and THEODORA (evaluated in all the

datasets).

Finally, we complete this evaluation by comparing the performance of RENOIR

to the performance of Vec2im-SIAM [55] — a DML-based network intrusion

detection methodology that has been recently formulated for the binary clas-785

sification of network flows [55]. In [55] the authors evaluate the Accuracy of

Vec2im-SIAM using the dataset NSL-KDD.14 This dataset is introduced in [70]

as a revised version of KDDCUP99, that is obtained by removing the duplicate

samples from KDDCUP99. Although the code of Vec2im-SIAM is not publicly

available, we reproduce the same experimental settings described in [55], since790

it used KDDTrain+ 20Percent as the training set and KDDTest+ as the testing

set. Both datasets are publicly available. In particular, KDDTrain+ 20Percent

is a 20% subset of the NSL-KDD training set, which comprises 25192 network

flows (13449 normal flows and 11743 attacks). KDDTest+ comprises 22544

network flows (9711 normal flows and 12833 attacks). The Accuracy of both795

RENOIR and Vec2im-SIAM is plotted in Figure 10. We note that RENOIR

achieves competitive performance also in the DML literature by outperform-

ing Vec2im-SIAM. Additional results comparing the performance of RENOIR to

that of DML-based intrusion detection competitors are collected in the multi-

class scenario and discussed in Section 6.800

14https://www.unb.ca/cic/datasets/nsl.html

37

https://www.unb.ca/cic/datasets/nsl.html

Vec2im Siam RENOIR
Algorithm

86

86

86

87

87

87

Ac
cu

ra
cy

86.64

86.81

Figure 10: Accuracy of Vec2im-SIAM and RENOIR on KDDTest+. The Accuracy of Vec2im-
SIAM is collected from the reference paper [55].

Table 9: Number of samples per category in both KDDTrain+ and KDDTes+.

Dataset Total DoS Probe R2L U2R Normal

KDDTrain+ 125973 45927 11656 995 52 6734
(37%) (9.11%) (0.85%) (0.04%) (53%)

KDDTest+
22544 7458 2421 2754 200 9711

(33%) (11%) (12.1%) (0.9%) (43%)

6. Multi-class scenario extension

We analyse the effectiveness of the proposed methodology also in a multi-

class scenario of network intrusion detection. To this purpose, we re-consider

the dataset NSL-KDD, but in the multi-class version. The multi-class NSL-

KDD comprises normal flows and four categories of attack: Denial of Service805

Attack (DoS), User to Root Attack (U2R), Remote to Local Attack (R2L)

and Probing Attack. For this experiment we adopt the original data setting

described in [70], that includes KDDTrain+ as the training set (without down-

sampling) and KDDTest+ as the testing set. The number of samples collected

in both the training and testing sets for each category is reported in Table 9. We810

note that both U2R and R2L are rare attacks. We select this dataset as it has

been recently used in the evaluation of various multi-class intrusion detection

methods.

In order to use RENOIR in the multi-class scenario, we explore the perfor-

mance of four configurations formulated according to various multi-class com-815

38

bination strategies.

• OVA—We use the One-Versus-All (OVA) combination strategy [49]. Specif-

ically, we perform the binary training stage of RENOIR on five trials—one

trial for each category in the multi-class dataset. In each trial, the en-

tire training set is considered with the selected category as the positive820

class and the left-out categories assigned to the negative class. In this

way, RENOIR learns the embedding of each category (in addition to the

autoencoder for each category). The classification of a testing sample is

performed by computing the distance of the sample from the autoencoder

reconstruction in each category. Each distance is computed in the associ-825

ated embedding space. Finally, the category associated with the minimum

distance computed is predicted.

• OVO—We use the One-Versus-One (OVO) combination strategy [49]. In

particular, we perform the binary training stage of RENOIR on ten trials—

one trial for each pair of categories in the dataset. In each trial we consider830

a subset of the training set, comprising the samples labelled with the

two selected categories, and generate a binary classification model for the

selected categories. In the testing stage each binary classifier is used to

predict a category (by performing the predictive stage of RENOIR). Hence,

we assign a testing sample to the category with the majority counts.835

• B+OVO—We perform the intrusion detection and the attack classifica-

tion in two phases. In the first phase, we use the original formulation of

RENOIR to separate normal flows from attack flows. In the second phase,

we assign an attack category to the flows predicted as intrusions. The

attack classification is decided by using the combination of RENOIR mod-840

els generated to discriminate between each pair of attack categories and

combined through the OVO strategy.

• B+XGBoost—We use the binary classification of the original formulation

of RENOIR, in order to distinguish between normal flows and attack flows.

39

Finally, we use the multi-class XGBoost model, learned from the attack845

samples, to assign an attack category to the flows predicted as intrusions.

We note that the combination B+XGBoost reproduces the multi-class, DML-

based pipeline described in [11]. In particular, B+XGBoost differs from [11] as

it uses RENOIR instead of the ensemble of Siamese network, DNN and XGBoost

binary classifier, in order to separate the normal flows from the intrusions.850

For the comparative study, we consider the performance of several recent

competitors that handle the same multi-class problem addressed here, by inte-

grating various techniques to deal with rare attacks. In particular, we consider:

• DML multi-class competitors: SIAM-IDS[10][11] and I-SiamIDS [11].

• DL multi-class competitors with rare data augmentation: DSSTE+AlexNet[47],855

IGAN-IDS[34] and ID-CAVE[48].

• Deep Reinforcement Learning competitors: AESMOTE[51] and AE-RL[15].

Both the multi-class configurations of RENOIR (OVA, OVO, B+OVO and

B+XGBoost) and the multi-class competitors (SIAM-IDS, I-SiamIDS, DSSTE+AlexNet,

IGAN-IDS, ID-CAVE, AESMOTE and AE-RL) are run with the same publicly860

available training and testing sets. The performance of the competitors is col-

lected from the reference papers.

Figures 11a, 11b and 11c report the Precision (P), Recall (R) and F1-scores

(F1-score), respectively, of OVA, OVO, B+OVO and B+XGBoost. They are

computed per class (with each class versus the others). The top-ranked per-865

formance in terms of F1-score is obtained by the two-phase strategies (B+OVO

B+XGBoost), except for the class U2R, for which the best F1-Score is achieved

by OVO.

For the comparative analysis, we analyse the Macro-Average F1, Micro-

Average F1 and Weighted F1. The results of Macro-Average F1, Micro-Average870

F1 and Weighted F1 of both the multi-class configurations of RENOIR and its

competitors are reported in Table 10. All the competitors have been evaluated

40

OVA OVO B + OVO B + XGBoost
0

20

40

60

80

100 96
.5

96
.2

91
.8 96

.1

58
.9

86
.8

84
.5

76
.4

33
.3

98
.0

61
.2

95
.2

85
.0

50
.5

4.
6

62
.574

.4

67
.0 77

.8

77
.8

(a) P

OVA OVO B + OVO B + XGBoost
0

20

40

60

80

100

80
.5

82
.3

83
.0

82
.589

.1

55
.2

71
.5

85
.8

0.
9 7.

3

19
.3

48
.0

25
.5

71
.5

20
.0

7.
5

96
.0

97
.5

96
.3

96
.3

(b) R

OVA OVO B + OVO B + XGBoost
0

20

40

60

80

100

87
.8

88
.7

87
.2

88
.8

70
.9

67
.5 77

.4 80
.8

1.
7

13
.6

29
.4

63
.8

39
.2

59
.2

7.
4 13

.4

83
.8

79
.4 86

.1

86
.1

(c) F1-score

Figure 11: Multi-class NSL-KDD: Precision–P (Figure 11a), Recall–R (Figure 11b) and F1-
score (Figure 11c) measured on the testing set for each class by OVA, OVO, B+OVO and
B+XGBoost.

in the same experimental setting considered for running the multi-class con-

figurations of RENOIR. No values of the Macro-Average F1 are reported in the

reference papers for DSSTE+AlexNet, IGAN-IDS, AESMOTE and AE-RL. These875

aggregate metrics confirm that the best multi-class configuration of RENOIR is

B+XGBoost. In addition, we note that the DML-based algorithms—SIAM-IDS

and I-SiamIDS are the nearest-related competitors to RENOIR. Interestingly, all

the multi-class configurations of RENOIR outperform SIAM-IDS that, similarly

to our methodology, adopts a distance-based approach in the embedding space880

for the multi-class classification. On the other hand, only the configuration

41

B+XGBoost of RENOIR outperforms I-SiamIDS. This is an expected outcome,

as both algorithms use a DML methodology for the binary classification and

resort to a multi-class XGBoost-based re-classification of the attacks. So, this

experiment contributes to assess the effectiveness of our methodology in sepa-885

rating normal samples from attacks. In addition, it highlights that resorting to

XGBoost for the attack classification can achieve good performance. On the

other hand, B+XGBoost also outperforms the remaining competitors, that have

been defined in the recent literature to deal with the multi-class problem in

the imbalanced scenario of NSL-KDD. The only exception is IGAN-IDS, that890

uses a deep Generative Adversarial Network process to generate new samples

for the minority classes. Therefore, this improvement is achieved at the cost

of a complex process of augmentation of the training set. In any case, this

result suggests that new milestones may be reached in the future by injecting

Generative Adversarial Learning mechanisms into DML approaches to network895

intrusion detection.

In general, this study provides initial evidence that the proposed methodol-

ogy, although originally formulated for a binary task, may also have potential

in the multi-class scenario. In any case, This conclusion paves the way for a

systematic investigation of the topic in the future, as additional work (that is900

out of the scope of this paper) is required to obtain a multi-class version with a

single training stage.

7. Conclusions

Although several effective deep learning methodologies have been recently

formulated in the network intrusion detection literature, they are commonly905

defined as neglectful of possible learning issues, due to the imbalance condition

of the network traffic data. As DML techniques are commonly good at dealing

with imbalanced data, we present a novel DML methodology, named RENOIR,

that defines an innovative Triplet network approach by leveraging autoencoder

information for effective network intrusion detection.910

42

Table 10: Results of the Macro-average F1, the Micro-Average (OA) and the weighted F1
obtained by our methodology compared with several competitors that perform multi-class
classification in NSL-KDD. The best results are in bold. The results of the competitors are
collected from the reference papers. “-” denotes that no value is reported in the reference
paper.

Algorithm Macro-Average F1 Micro-Average (OA) Weighted F1

OVA 58.40 77.80 73.33

OVO 61.68 76.69 72.99

B+OVO 57.50 79.13 77.89

B+XGBoost 66.58 83.91 83.05

SIAM-IDS[10][11] 56.14 76.96 75.28

I-SiamIDS[11] 66.54 79.90 78.49

DSSTE+AlexNet[47] - 82.84 81.66

IGAN-IDS[34] - 84.45 84.17

AESMOTE[51] - 82.09 82.43

AE-RL[15] - 80.16 79.40

ID-CAVE[48] 59.27 80.10 79.08

We evaluate the effectiveness of RENOIR using three benchmark datasets

that contain imbalanced network flows, collected in different years and scenarios.

The empirical validation proves that class-specific autoencoders disclose useful

patterns to separate samples belonging to opposite classes. In addition, autoen-

coders allow us to prevent the problem of triplet convergence that commonly915

occurs when the random sampling strategy is used for the triplet construction.

Furthermore, the empirical validation confirms that this predictive algorithm

efficiently yields accurate predictions, thus gaining accuracy compared to recent

state-of-the-art competitors (comprising DML-based methods).

One limitation of the proposed methodology is that it was originally formu-920

lated to address a binary classification problem to detect attacks in the network

traffic, regardless of the attack category. However information on the attack

type (e.g. Probe, DoS, R2L or U2R) may be also desired in a network intru-

sion detection system. In this study, we perform a preliminary investigation

of the potential of the proposed methodology in the attack classification. This925

43

investigation is conducted by using combination strategies (one-versus-all or

one-versus-one) to combine the binary models trained by RENOIR in the multi-

class scenario. Interestingly, we achieve encouraging results that are competitive

with those produced by recent, multi-class competitors (comprising multi-class

competitors formulated in DML). In any case, this solution requires a burden930

of computation, since multiple Triplet networks are learned simultaneously. As

future work, we plan to continue the investigation in this direction, by exploring

how the Triplet network strategy can be extended to account for the multi-class

profile of the data in a single training stage.

Another limitation of the proposed methodology is that it does not give de-935

tailed information on the structure and characteristics of the attacks. Therefore,

explainable artificial intelligence may be an additional research direction here.

We plan to explore how the information provided by the explanation may aid

in retrieving an explanation of the attack signature.

Finally, the described learning stage is performed in a batch manner, without940

integrating any concept drift detection mechanism to properly fit learning to an

evolving streaming environment.So, a further research direction is would be

to extend the methodology to adapt the network intrusion detection model

continuously when new data arrive.

Acknowledgments945

We acknowledge the support of the MIUR-Ministero dell’Istruzione dell’Università

e della Ricerca through the project “TALIsMan -Tecnologie di Assistenza per-

sonALizzata per il Miglioramento della quAlità della vitA” (Grant ID: ARS01 01116),

the PON RI 2014-2020 funding scheme, as well as the project “Modelli e tec-

niche di data science per la analisi di dati strutturati”, funded by the University950

of Bari “Aldo Moro”. The authors also wish to thank Lynn Rudd for her help

in reading the manuscript.

44

References

[1] Aggarwal, C. C. (2018). Neural Networks and Deep Learning - A Textbook .

[2] Ahmad, Z., Khan, A., Shiang, C., & Ahmad, F. (2020). Network intrusion955

detection system: A systematic study of machine learning and deep learning

approaches. Transactions on Emerging Telecommunications Technologies,

(pp. 1–29).

[3] Ahmim, A., Maglaras, L., Ferrag, M. A., Derdour, M., & Janicke, H. (2019).

A novel hierarchical intrusion detection system based on decision tree and960

rules-based models. In 2019 15th International Conference on Distributed

Computing in Sensor Systems (DCOSS) (pp. 228–233). IEEE.

[4] AL-Hawawreh, M., Moustafa, N., & Sitnikova, E. (2018). Identification of

malicious activities in industrial internet of things based on deep learning

models. Journal of Information Security and Applications, 41 , 1 – 11.965

[5] Andresini, G., Appice, A., Caforio, F., & Malerba, D. (2021). Improving

cyber-threat detection by moving the boundary around the normal sam-

ples. In Y. Maleh, Y. Baddi, M. Shojaafar, & M. Alaza (Eds.), Machine

Intelligence and Big Data Analytics For Cybersecurity Applications Studies

in Computational Intelligence (pp. 105–127).970

[6] Andresini, G., Appice, A., Di Mauro, N., Loglisci, C., & Malerba, D. (2019).

Exploiting the auto-encoder residual error for intrusion detection. In 2019

IEEE European Symposium on Security and Privacy Workshops (EuroS

PW) (pp. 281–290). IEEE.

[7] Andresini, G., Appice, A., Mauro, N. D., Loglisci, C., & Malerba, D. (2020).975

Multi-channel deep feature learning for intrusion detection. IEEE Access,

8 , 53346–53359.

[8] Angelo, P., & Costa Drummond, A. (2018). Adaptive anomaly-based in-

trusion detection system using genetic algorithm and profiling. Security

and Privacy , 1 , 1–13.980

45

[9] Araujo, F., Ayoade, G., Al-Naami, K., Gao, Y., Hamlen, K., & Khan, L.

(2019). Improving intrusion detectors by crook-sourcing. In Proceedings of

the 35th Annual Computer Security Applications Conference ACSAC ’19

(pp. 245–246).

[10] Bedi, P., Gupta, N., & Jindal, V. (2020). Siam-ids: Handling class imbal-985

ance problem in intrusion detection systems using siamese neural network.

Procedia Computer Science, 171 , 780 – 789. Third International Confer-

ence on Computing and Network Communications (CoCoNet’19).

[11] Bedi, P., Gupta, N., & Jindal, V. (2021). I-siamids: an improved siam-ids

for handling class imbalance in network-based intrusion detection systems.990

Applied Intelligence, 51 , 1133–1151.

[12] Bergstra, J., Yamins, D., & Cox, D. D. (2013). Making a science of model

search: Hyperparameter optimization in hundreds of dimensions for vision

architectures. In ICML (pp. 115–123).

[13] Berman, D. S., Buczak, A. L., Chavis, J. S., & Corbett, C. L. (2019). A995

survey of deep learning methods for cyber security. Information, 10 , 1–35.

[14] Bromley, J., Guyon, I., Lecun, Y., Säckinger, E., & Shah, R. (1993). Signa-

ture verification using a siamese time delay neural network. (pp. 737–744).

volume 7.

[15] Caminero, G., Lopez-Martin, M., & Carro, B. (2019). Adversarial environ-1000

ment reinforcement learning algorithm for intrusion detection. Computer

Networks, 159 , 96 – 109.

[16] Chechik, G., Sharma, V., Shalit, U., & Bengio, S. (2010). Large scale

online learning of image similarity through ranking. J. Mach. Learn. Res.,

11 , 1109–1135.1005

[17] Chen, W., Chen, X., Zhang, J., & Huang, K. (2017). Beyond triplet loss:

A deep quadruplet network for person re-identification. (pp. 1–10). volume

abs/1704.01719.

46

[18] Dai, C., Feng, J., & Zhou, R. (2020). Learning domain-specific features

from general features for person re-identification. IEEE Access, PP , 1–1.1010

[19] Dan, L., Dacheng, C., Baihong, J., Lei, S., Jonathan, G., & See-Kiong,

N. (2019). Mad-gan: Multivariate anomaly detection for time series data

with generative adversarial networks. In Artificial Neural Networks and

Machine Learning (pp. 703–716).

[20] Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme1015

using deep learning approach for internet of things. Future Generation

Computer Systems, 82 , 761 – 768.

[21] Elsherif, A. (2018). Automatic intrusion detection system using deep recur-

rent neural network paradigm. In J. Inf. Secur. Cybercrimes Res. (JISCR)

(pp. 28–41).1020

[22] Gao, Y., Li, Y.-F., Chandra, S., Khan, L., & Thuraisingham, B. (2019).

Towards self-adaptive metric learning on the fly. (pp. 503–513).

[23] Gautheron, L., Habrard, A., Morvant, E., & Sebban, M. (2020). Metric

learning from imbalanced data with generalization guarantees. Pattern

Recognition Letters, 133 , 298 – 304.1025

[24] Ge, W., Huang, W., Dong, D., & Scott, M. R. (2018). Deep metric learning

with hierarchical triplet loss. In V. Ferrari, M. Hebert, C. Sminchisescu,

& Y. Weiss (Eds.), Computer Vision – ECCV 2018 (pp. 272–288). Cham:

Springer International Publishing.

[25] Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural1030

networks. In AISTATS (pp. 315–323). JMLR.org.

[26] Gresse, A., Quillot, M., Dufour, R., Labatut, V., & Bonastre, J. (2019).

Similarity metric based on siamese neural networks for voice casting. In

ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP) (pp. 6585–6589).1035

47

[27] Guillaumin, M., Verbeek, J., & Schmid, C. (2009). Is that you? metric

learning approaches for face identification. In 2009 IEEE 12th International

Conference on Computer Vision (pp. 498–505).

[28] Han, J., & Moraga, C. (1995). The influence of the sigmoid function pa-

rameters on the speed of backpropagation learning. In J. Mira, & F. San-1040

doval (Eds.), From Natural to Artificial Neural Computation (pp. 195–201).

Berlin, Heidelberg: Springer Berlin Heidelberg.

[29] Hassan, M. M., Gumaei, A., Alsanad, A., Alrubaian, M., & Fortino, G.

(2020). A hybrid deep learning model for efficient intrusion detection in

big data environment. Information Sciences, 513 , 386 – 396.1045

[30] He, Y. (2019). Identification and processing of network abnormal events

based on network intrusion detection algorithm. I. J. Network Security ,

21 , 153–159.

[31] Hermans, A., Beyer, L., & Leibe, B. (2017). In Defense of the Triplet Loss

for Person Re-Identification. arXiv preprint arXiv:1703.07737 , (pp. 1–17).1050

[32] Hoffer, E., & Ailon, N. (2015). Deep metric learning using triplet network.

In A. Feragen, M. Pelillo, & M. Loog (Eds.), Similarity-Based Pattern

Recognition (pp. 84–92). Cham: Springer International Publishing.

[33] Hu, S., Feng, M., Nguyen, R. M. H., & Lee, G. H. (2018). Cvm-net: Cross-

view matching network for image-based ground-to-aerial geo-localization.1055

In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (pp. 7258–7267).

[34] Huang, S., & Lei, K. (2020). Igan-ids: An imbalanced generative adversarial

network towards intrusion detection system in ad-hoc networks. Ad Hoc

Networks, 105 , 1–11.1060

[35] Jia, W., Yang, M., & Wang, S. (2017). Three-category classification of

magnetic resonance hearing loss images based on deep autoencoder. Journal

of Medical Systems, 41 , 1–11.

48

[36] Jmila, H., Ibn Khedher, M., Blanc, G., & El Yacoubi, M. A. (2019).

Siamese network based feature learning for improved intrusion detection. In1065

T. Gedeon, K. W. Wong, & M. Lee (Eds.), Neural Information Processing

(pp. 377–389). Cham: Springer International Publishing.

[37] Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning

with class imbalance. Journal of Big Data, 6 , 1–54.

[38] Kaya, M., & Bilge, H. (2019). Deep metric learning: A survey. Symmetry ,1070

11 , 1–26.

[39] Kherlenchimeg Zolzaya, N. N. (2018). Network intrusion classifier using

autoencoder with recurrent neural network. In ICESS (pp. 94–100).

[40] Kim, T., Suh, S. C., Kim, H., Kim, J., & Kim, J. (2018). An encoding

technique for cnn-based network anomaly detection. In 2018 IEEE Inter-1075

national Conference on Big Data (Big Data) (pp. 2960–2965). IEEE.

[41] Kuai, Y., Wen, G., & Li, D. (2019). Masked and dynamic siamese network

for robust visual tracking. Information Sciences, 503 , 169 – 182.

[42] Lashkari, A. H., Kadir, A. F. A., Gonzalez, H., Mbah, K. F., & Ghorbani,

A. A. (2017). Towards a network-based framework for android malware1080

detection and characterization. In PST (pp. 233–234). IEEE Computer

Society.

[43] Lee, J., & Park, K. (2019). Gan-based imbalanced data intrusion detection

system. Personal and Ubiquitous Computing , (pp. 1–8).

[44] Li, P., Yi, J., Zhou, B., & Zhang, L. (2019). Improving the robustness of1085

deep neural networks via adversarial training with triplet loss. In S. Kraus

(Ed.), Proceedings of the Twenty-Eighth International Joint Conference on

Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019 (pp.

2909–2915). ijcai.org.

49

[45] Li, Y., Ma, R., & Jiao, R. (2015). A hybrid malicious code detection1090

method based on deep learning. In International journal of security and

its applications (pp. 205–216). volume 9.

[46] Li, Z., Qin, Z., Huang, K., Yang, X., & Ye, S. (2017). Intrusion detection

using convolutional neural networks for representation learning. In ICONIP

(pp. 858–866). Springer International Publishing.1095

[47] Liu, L., Wang, P., Lin, J., & Liu, L. (2021). Intrusion detection of imbal-

anced network traffic based on machine learning and deep learning. IEEE

Access, 9 , 7550–7563.

[48] Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2017).

Conditional variational autoencoder for prediction and feature recovery ap-1100

plied to intrusion detection in iot. Sensors, 17 , 1–17.

[49] Lorena, A. C., de Leon Ferreira de Carvalho, A. C. P., & Gama, J. (2008).

A review on the combination of binary classifiers in multiclass problems.

Artif. Intell. Rev., 30 , 19–37.

[50] Lu, J., Hu, J., & Zhou, J. (2017). Deep metric learning for visual under-1105

standing: An overview of recent advances. IEEE Signal Processing Maga-

zine, 34 , 76–84.

[51] Ma, X., & Shi, W. (2020). Aesmote: Adversarial reinforcement learning

with smote for anomaly detection. IEEE Transactions on Network Science

and Engineering , (pp. 1–1).1110

[52] Macek, K. (2008). Pareto principle in datamining: an above-average fencing

algorithm. In Acta polytechnica (pp. 55–59). volume 48(6).

[53] Medela, A., & Picón, A. (2019). Constellation loss: Improving the effi-

ciency of deep metric learning loss functions for optimal embedding. CoRR,

abs/1905.10675 .1115

50

[54] Mignon, A., & Jurie, F. (2012). Pcca: A new approach for distance learning

from sparse pairwise constraints. (pp. 2666–2672).

[55] Moustakidis, S. P., & Karlsson, P. (2020). A novel feature extraction

methodology using siamese convolutional neural networks for intrusion de-

tection. Cybersecurity , 3 , 1–13.1120

[56] Naseer, S., Saleem, Y., Khalid, S., Bashir, M. K., Han, J., Iqbal, M. M.,

& Han, K. (2018). Enhanced network anomaly detection based on deep

neural networks. IEEE Access, 6 , 48231–48246.

[57] Nawaz, S., Calefati, A., Ahmed, N., & Gallo, I. (2018). Hand written

characters recognition via deep metric learning. In 2018 13th IAPR Inter-1125

national Workshop on Document Analysis Systems (DAS) (pp. 417–422).

[58] Parsons, V. L. (2017). Stratified sampling. In Wiley StatsRef: Statistics

Reference Online (pp. 1–11). American Cancer Society.

[59] Qu, X., Yang, L., Guo, K., Ma, L., Feng, T., Ren, S., & Sun, M. (2019).

Statistics-enhanced direct batch growth self-organizing mapping for effi-1130

cient dos attack detection. IEEE Access, 7 , 78434–78441.

[60] Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., & Langs,

G. (2017). Unsupervised anomaly detection with generative adversarial

networks to guide marker discovery. In M. Niethammer, M. Styner, S. Ayl-

ward, H. Zhu, I. Oguz, P.-T. Yap, & D. Shen (Eds.), Information Processing1135

in Medical Imaging (pp. 146–157). Cham: Springer International Publish-

ing.

[61] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified

embedding for face recognition and clustering. In 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) (pp. 815–823).1140

[62] Sharafaldin, I., Habibi Lashkari, A., & Ghorbani, A. (2018). Toward gen-

erating a new intrusion detection dataset and intrusion traffic characteri-

zation. (pp. 108–116).

51

[63] Shaw, B., Huang, B., & Jebara, T. (2011). Learning a distance metric

from a network. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,1145

& K. Q. Weinberger (Eds.), Advances in Neural Information Processing

Systems 24 (pp. 1899–1907). Curran Associates, Inc.

[64] Shi, H., Yang, Y., Zhu, X., Liao, S., Lei, Z., Zheng, W., & Li, S. Z. (2016).

Embedding deep metric for person re-identification: A study against large

variations. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer1150

Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Nether-

lands, October 11-14, 2016, Proceedings, Part I (pp. 732–748). Springer

volume 9905 of Lecture Notes in Computer Science.

[65] Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q. (2018). A deep learning

approach to network intrusion detection. IEEE Transactions on Emerging1155

Topics in Computational Intelligence, 2 , 41–50.

[66] Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss

objective. In Proceedings of the 30th International Conference on Neural

Information Processing Systems NIPS’16 (p. 1857–1865). Red Hook, NY,

USA: Curran Associates Inc.1160

[67] Song, H. O., Xiang, Y., Jegelka, S., & Savarese, S. (2016). Deep metric

learning via lifted structured feature embedding. In Computer Vision and

Pattern Recognition (CVPR) (pp. 4004–4012).

[68] Souza, J., Oliveira, L., Gumiel, Y., Carvalho, D., & Moro, C. (2020). Ex-

ploiting siamese neural networks on short text similarity tasks for multiple1165

domains and languages. (pp. 357–367).

[69] Sun, J., Lang, J., Fujita, H., & Li, H. (2018). Imbalanced enterprise credit

evaluation with dte-sbd: Decision tree ensemble based on smote and bag-

ging with differentiated sampling rates. Information Sciences, 425 , 76–91.

[70] Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed1170

analysis of the KDD CUP 99 data set. In CISDA (pp. 1–6).

52

[71] Velan, P., Medková, J., Jirśık, T., & Čeleda, P. (2016). Network traffic char-

acterisation using flow-based statistics. In NOMS 2016 - 2016 IEEE/IFIP

Network Operations and Management Symposium (pp. 907–912).

[72] Vigneswaran, R. K., Vinayakumar, R., Soman, K. P., & Poornachandran,1175

P. (2018). Evaluating shallow and deep neural networks for network in-

trusion detection systems in cyber security. In 2018 9th International

Conference on Computing, Communication and Networking Technologies

(ICCCNT) (pp. 1–6).

[73] Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-1180

Nemrat, A., & Venkatraman, S. (2019). Deep learning approach for in-

telligent intrusion detection system. IEEE Access, 7 , 41525–41550.

[74] Wang, J., Zhou, F., Wen, S., Liu, X., & Lin, Y. (2017). Deep metric learning

with angular loss. In 2017 IEEE International Conference on Computer

Vision (ICCV) (pp. 2612–2620).1185

[75] Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large

margin nearest neighbor classification. J. Mach. Learn. Res., 10 , 207–244.

[76] Yan, J., Jin, D., Lee, C. W., & Liu, P. (2018). A comparative study of off-

line deep learning based network intrusion detection. In 10th International

Conference on Ubiquitous and Future Networks (pp. 299–304).1190

[77] Yin, W., Schütze, H., Xiang, B., & Zhou, B. (2015). Abcnn: Attention-

based convolutional neural network for modeling sentence pairs. Transac-

tions of the Association for Computational Linguistics, 4 , 259–272.

[78] Yu, B., Liu, T., Gong, M., Ding, C., & Tao, D. (2018). Correcting the triplet

selection bias for triplet loss. In V. Ferrari, M. Hebert, C. Sminchisescu,1195

& Y. Weiss (Eds.), Computer Vision – ECCV 2018 (pp. 71–86). Cham:

Springer International Publishing.

[79] Zenati, H., Foo, C. S., Lecouat, B., Manek, G., & Chandrasekhar, V. R.

(2018). Efficient gan-based anomaly detection. ArXiv , abs/1802.06222 .

53

[80] Zenati, H., Romain, M., Foo, C. S., Lecouat, B., & Chandrasekhar, V. R.1200

(2018). Adversarially learned anomaly detection. 2018 IEEE International

Conference on Data Mining (ICDM), (pp. 727–736).

[81] Zhang, B., Yu, Y., & Li, J. (2018). Network intrusion detection based

on stacked sparse autoencoder and binary tree ensemble method. In

2018 IEEE International Conference on Communications Workshops (ICC1205

Workshops) (pp. 1–6).

[82] Zhang, Y., Chen, X., Jin, L., Wang, X., & Guo, D. (2019). Network

intrusion detection: Based on deep hierarchical network and original flow

data. IEEE Access, 7 , 37004–37016.

[83] Zhang, Y., Zhang, H., Zhang, X., & Qi, D. (2018). Deep learning in-1210

trusion detection model based on optimized imbalanced network data. In

2018 IEEE 18th International Conference on Communication Technology

(ICCT) (pp. 1128–1132).

[84] ZhangYu-Dong, ZhangYin, HouXiao-Xia, Chenhong, & WangShui-Hua

(2018). Seven-layer deep neural network based on sparse autoencoder for1215

voxelwise detection of cerebral microbleed. Multimedia Tools and Applica-

tions, (p. 10521–10538).

[85] Zhou, Li, & Shen (2019). Anomaly detection of can bus messages using a

deep neural network for autonomous vehicles. Applied Sciences, 9 , 1–12.

[86] Zhou, M., Tanimura, Y., & Nakada, H. (2020). One-shot learning us-1220

ing triplet network with knn classifier. In Y. Ohsawa, K. Yada, T. Ito,

Y. Takama, E. Sato-Shimokawara, A. Abe, J. Mori, & N. Matsumura

(Eds.), Advances in Artificial Intelligence (pp. 227–235). Cham: Springer

International Publishing.

[87] Zhuang, B., Lin, G., Shen, C., & Reid, I. (2016). Fast training of triplet-1225

based deep binary embedding networks. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) (pp. 1–12).

54

	Introduction
	Related works
	Deep learning (DL)
	Deep metric learning (DML)
	Dealing with imbalanced data

	Methodology
	Training stage
	Autoencoder training
	Triplet construction
	Triplet Network training

	Predictive stage

	Implementation details
	Empirical evaluation
	Dataset description and experimental methodology
	Evaluation metrics
	Results
	Embedding analysis
	Ablation study
	Convergence discussion
	Triplet loss analysis
	Competitor analysis

	Multi-class scenario extension
	Conclusions

