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Abstract
The rapid growth in interest in Artificial Intelligence (AI) has been a significant driver of 
research and business activities in recent years. This raises new critical issues, particularly 
concerning interaction with AI systems. This article first presents a survey that identifies 
the primary issues addressed in Human-Centered AI (HCAI), focusing on the interaction 
with AI systems. The survey outcomes permit to clarify disciplines, concepts, and terms 
around HCAI, solutions to design and evaluate HCAI systems, and the emerging chal-
lenges; these are all discussed with the aim of supporting researchers in identifying more 
pertinent approaches to create HCAI systems. Another main finding emerging from the 
survey is the need to create Symbiotic AI (SAI) systems. Definitions of both HCAI systems 
and SAI systems are provided. To illustrate and frame SAI more clearly, we focus on medi-
cal applications, discussing two case studies of SAI systems. 

Keywords  Human-centered design · Human-AI collaboration · Human-AI Symbiosis · 
Survey.

1 � Introduction and background

The rapid growth of Artificial Intelligence (AI) has significantly driven research and busi-
ness activities in recent years. AI applications range from creative fields, like image gen-
eration [109], to critical areas, like medical decision support systems [24, 31]. This interest 
in AI technologies is exacerbating some latent concerns, of which the interaction with AI 
systems is one of the most critical. Indeed, while AI models promise impressive perfor-
mance, their potential is often constrained by how users interact with AI. For example, in 
the field of medicine, an AI-based diagnosis system is typically able to determine whether 
a patient has a tumor based on an MRI scan. However, while these AI-based systems are 
highly precise, they often remain confined to research settings because, in a real-world 
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context, a doctor does not want to and cannot rely on a black-box system that, for instance, 
does not provide insights into why an MRI led the AI to recognize a tumor.

In response to these challenges, a new field of study has emerged in recent years at the 
intersection of Human-Computer Interaction (HCI) and AI, namely Human-Centered AI 
(HCAI): it proposes a new perspective on the interaction with AI, aiming at augmenting 
rather than replacing humans and their expertise [121]. HCAI envisions AI systems that 
are ethically aligned, reflecting human intelligence, and are designed considering human 
factors [143]. HCAI also promotes the design of AI systems that are reliable, safe, and 
trustworthy, addressing some of the latent concerns [122]. Recent research in HCAI sug-
gests the need for a truly human-centered process in designing AI systems [47]. In fact, 
studies have shown how there is no real “one size fits all” approach when designing AI sys-
tems, as different user goals bring the need for a different level of automation and control 
in a system [47].

While HCAI aims to perfect the interaction with AI systems, it brings problems pecu-
liar to newly emerging disciplines. One example concerns the need for a comprehensive 
approach to develop systems that considers interaction design methods and the integration 
of AI models that support such interaction. This is because, during user requirements anal-
ysis, the need to design a user interface that exposes functions that cannot be implemented 
might emerge; for example, users might require a certain type of explanation that cannot be 
implemented due to the use of a black-box model [66]. Another problem relates to the need 
for different scientific communities to collaborate. Multidisciplinary HCAI design teams 
should include experts in HCI, AI, software engineering, ethics, and experts in the specific 
application domain (e.g., medicine, automotive). This multidisciplinary nature exacerbates 
the terminology inconsistencies (e.g., synonyms used to refer to the same concept, same 
words used to refer to different concepts) and the lack of awareness of existing solutions 
in related disciplines, since the different research communities have not yet found a com-
mon ground (e.g., an HCI expert knows how to design a user interface, but probably might 
not know in detail the AI models needed). Such issues are not novel: this is a rather well-
known problem in HCI (multidisciplinary itself) and, in general, in every multidisciplinary 
field. However, the collaboration with experts from other disciplines could mitigate the 
need, of a specific expert, for multidisciplinary knowledge. Still, it becomes essential to 
share a common vocabulary and be aware of the advantages and benefits of existing solu-
tions in related disciplines.

Survey studies are instrumental to shed light on critical emerging issues of new research 
fields (see, e.g [20, 66]). With a similar goal, this article first reports a survey of the scien-
tific literature on HCAI. The following 4 Research Questions drove this survey: (1) What 
disciplines are involved in HCAI? (2) What are the concepts underlying HCAI and the ter-
minology inconsistencies among them? (3) What are the solutions available in the related 
disciplines that might support the creation of HCAI systems? (4) What are the emerging 
challenges? The process of surveying the state of the art started from a seed of 7 articles 
reporting definitions of HCAI [20, 64, 117, 121, 122, 124, 143].

Based on this deep survey of the literature, one of the contributions of this article is 
that it clarifies the disciplines, concepts, and terms around HCAI, solutions to design and 
evaluate HCAI systems, as well as the emerging challenges. For each definition of HCAI 
provided in the 7 articles of the initial seed, we identified the main concepts on which it is 
based. These concepts were then extended by searching for articles that discuss them. This 
process led to the identification of 7 scientific disciplines that revolve around HCAI, 15 
fundamental concepts, 25 solutions for designing HCAI systems, 23 solutions for evaluat-
ing HCAI systems, and 11 challenges.
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Another valuable contribution provided by this article, which results from the lessons 
learned from the survey, is the need for Symbiotic AI systems as a specialization of HCAI 
systems. Symbiotic AI extends the old and well-known concept of Man-Computer Sym-
biosis [90] and requires a continuing and deeper integration between humans and AI, i.e., a 
symbiosis of human intelligence and artificial intelligence, where both humans and AI aug-
ment each other’s capabilities thanks to a collaboration that balances each other’s strengths 
and weaknesses [17]. In other words, Symbiotic AI leads to the creation of AI systems 
functioning as cognitive orthotic systems that collaborate with humans rather than cogni-
tive prostheses that replace human abilities [64]. SAI systems are of particular interest in 
medicine since, as reported in [17, 31] physicians do not want AI systems that replace doc-
tors but tools that collaborate well with doctors. To illustrate and frame symbiotic AI more 
clearly, two case studies on medical applications are also presented.

The article is, therefore, structured as follows. Sections  2, 3, 4 and 4.1.1 discuss the 
findings related to the above 4 Research Questions, respectively. Section  5 clarifies the 
meaning of Symbiotic AI, while Sect. 6 discusses its practical implications by analyzing 
two case studies on medical applications. Finally, Sect. 7 concludes the article.

2 �  Disciplines involved in HCAI

Before analyzing basic concepts and terms used in the HCAI and illustrating what solu-
tions exist for creating HCAI-based systems, it is crucial to understand what disciplines 
are converging in this new research area. This section discusses the findings related to 
Research Question 1. Besides the two pillars of HCI and AI, other disciplines converge 
into HCAI. Table 1 summarizes these disciplines, their key contributions to HCAI, and the 
main interrelationships among them. It should be noted that in this manuscript we refer to 
“disciplines” even when referring to subfields. This because all fields and subfields are rel-
evant enough to HCAI that it is not useful to classify them differently.

The beating heart of HCAI is undoubtedly Human-Computer Interaction (HCI). It 
concerns the design, implementation, and evaluation of interactive computing systems for 
human use and the study of major phenomena surrounding them [70]. Leveraging guide-
lines and knowledge from social sciences (including psychology and cognitive science), 
HCI aims to improve the quality of the dialog between users and computers by developing 
and evaluating usable software, i.e., software that can be used efficiently, efficaciously, and 
satisfactorily by well-specified groups of users in specified contexts [74]. In HCAI, the 
methodologies proposed in HCI aim to ensure that AI systems are user-friendly, accessible, 
and tailored to the human context of use. Furthermore, HCI approaches help create AI sys-
tems aligned with human values and needs, allowing the creation of systems that augment 
and complement human capabilities rather than replace them.

The other pillar of HCAI is Artificial Intelligence (AI). In this survey, AI broadly 
refers to all systems with some form of “intelligence”, regardless of their implementation 
[116]. AI focuses on creating systems that perform tasks that usually require human intel-
ligence traits, such as perception, reasoning, learning, and decision-making. In the context 
of HCAI, AI provides the technical foundation of systems and ways to build intelligent 
machines and evaluate their performance for the tasks at hand.

A discipline related to AI that is fundamental to HCAI is Machine Learning (ML). 
It involves the development of algorithms that enable computers to learn from data and 
make predictions or decisions based on it [116]. Most recent AI models are based on neural 
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networks, which are a specific type of ML models that have proven to be very versatile and 
powerful and are the main players in deep learning, a subset of ML focusing on complex 
neural networks. Differently from ML, AI also includes expert rule-based systems, first-
order logic systems, symbolic reasoning systems, etc. In a nutshell, AI is the overarching 
concept of machines being able to perform tasks in a way that we consider “intelligent”. 
ML is a subset of AI that involves learning from data and improving over time without 
being explicitly programmed for specific tasks.

EXplainable Artificial Intelligence (XAI) has risen very quickly in recent years. It has 
often become an integral part of HCAI studies [20]. XAI focuses on creating AI (or ML) 
models whose decision processes are interpretable and understandable by humans [66]. 
Therefore, XAI aims to provide transparency in AI decision-making processes, to allow 
users to comprehend how and why decisions are made. In HCAI, XAI is crucial as it aids 
in building trust and confidence in AI systems and ensures that users can understand, ver-
ify, and challenge AI outcomes. Furthermore, XAI can help in guaranteeing accountability 
in case of incidents.

While HCI is concerned with the interaction with user interfaces and AI is concerned 
with creating models that impart intelligence to the application, the creation of systems 
that can be used outside of experimental settings falls into the area of Software Engineer-
ing (SE). In the context of HCAI, SE enables the creation of quality systems, ensuring that 
AI systems are designed, developed, and maintained efficiently and effectively [14]. SE 
practices are also crucial for integrating AI systems into larger software systems, ensur-
ing reliability, scalability, and maintainability while guaranteeing human-centered design 
principles.

Table 1   Disciplines converging in HCAI, their key contributions, and the main interrelationships among 
them

Discipline Key contributions to 
HCAI

Interrelationships

Human-Computer 
Interaction (HCI)

To take care of the 
human-centered aspects, 
addressing usability and 
user experience

HCI principles and design methodologies inform the 
design and evaluation of the interfaces of HCAI 
systems

Artificial Intelligence 
(AI)

To provide computational 
models and algorithms

AI solutions are influenced by Ethics and HCI princi-
ples

Machine Learning 
(ML)

To develop adaptive 
models that improve 
with data

ML models are the core of AI systems

Explainable AI (XAI) To provide transparency 
in AI decision-making 
processes

HCI principles influence XAI to improve trust and 
confidence in AI systems

Software Engineering 
(SE)

To develop and maintain 
HCAI systems

SE provides quality properties and methodologies for 
integrating AI in broader software systems, ensuring 
scalability and reliability

End-User Develop-
ment (EUD)

To empower users to cus-
tomize HCAI systems

EUD provides some indications to democratize AI, 
making it more accessible and adaptable by lay users.

Ethics To guide development 
ensuring fairness, trans-
parency, and account-
ability

Ethics provides principles for AI design that prevent 
biases and discrimination
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A subfield of HCI that overlaps with SE is End-User Development (EUD). It aims 
to empower users to modify, or even to create, software artifacts without requiring deep 
(if any) programming knowledge [91]. In the context of HCAI, EUD involves designing 
systems that allow users to customize and extend AI functionalities to meet their needs. 
This approach enables the democratization of AI technology, making it more accessible 
and adaptable by a broader range of users, including lay users [46]. Furthermore, EUD 
proves helpful when dealing with situational exceptions or errors, allowing for reconfigur-
ing existing systems to better fit users’ needs [118]. The goals of EUD are to enable HCAI 
systems to be: (i) created from scratch by the same end-users who could use AI to satisfy 
their needs, (ii) adapted to fulfill the users’ goals better, or (iii) corrected in case of errors 
or exceptions, either instantaneously or by changing the AI behavior. Research on the first 
two goals of EUD for HCAI is still in its early stages [46], even though interactive machine 
learning aims at allowing domain experts to change the dataset to train AI interactively [2, 
51]. Regarding the third goal, intervention user interfaces empower users with mechanisms 
to deal with situational exceptions or AI reconfiguration [118]. An example of an interven-
tion user interface for AI is discussed in Sect. 7.1.

While the former disciplines involved in HCAI are concerned with technical and tech-
nological aspects, Ethics is a pure humanistic discipline that strongly intervenes in HCAI. 
Ethics is generally concerned with the study of morality, i.e., the principles of “right” and 
“wrong” behavior [13]. In the context of HCAI, ethics proves helpful in guiding the devel-
opment and deployment of AI systems that are fair, transparent, accountable, and respect-
ful of human rights [20]. Thus, the ethical considerations that characterize HCAI literature 
help prevent bias, discrimination, and other negative impacts on individual users and soci-
ety. The discussion of ethical AI (or machine ethics) mainly focuses on three principles: 
fairness, transparency, and accountability of AI systems. Fairness is defined as the lack of 
any prejudice or favoritism towards an individual or a group based on intrinsic or acquired 
properties in the context of the decision-making process [96]. In other words, fairness is 
the lack of bias and discrimination [96]. Transparency is a complex concept that, accord-
ing to [97], can be given two different meanings: the ability of the algorithm to (i) explain 
itself and its inner workings or (ii) make itself seamless and make objective outcomes of 
the users more apparent. Transparency is, therefore, a requirement of accountability, which 
is related to responsibility. Accountability refers to the role that should be considered 
“responsible” for the AI system’s behavior [97]. Accountability is an important principle, 
especially in unexpected or harmful behaviors. The discussion on machine ethics in the 
context of HCAI underlines the importance of human inclusion. Including humans in the 
loop of AI system design may, in fact, mitigate some of the ethical issues discussed in the 
previous paragraphs [20].

3 � HCAI concepts and possible inconsistencies

Due to its intrinsic multidisciplinary nature and the great interest in this novel discipline, 
HCAI still lacks a commonly accepted definition. Two main trends have emerged in the 
scientific literature on AI and on HCI. The AI community primarily indicates as “human-
centered” those AI systems that adopt a formal description of the final users in their deci-
sion-making process [15, 147]. On the other side, HCI identifies as “human-centered” 
those systems that are designed and evaluated by involving users in the iterative process 
defined by ISO 9241 − 210 [75]. More specifically, the HCI community identifies HCAI 
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systems as AI-based systems that are useful and usable for their users [143] while being 
reliable, safe, and trustworthy [122]. In HCI, the overall process to create systems requires 
accurate user research to deeply analyze real users and to specify their requirements and 
context of use, using the collected information to define design solutions and to evaluate 
them. Often, real users are also directly involved in design and evaluation. Therefore, lev-
eraging the formal description of users employed by the AI community and the perspective 
of HCI, we define HCAI systems as follows.

Definition 1. Human-Centered AI Systems

Human-Centered AI systems are AI systems that are designed, developed, and evaluated by involving 
users in the process, with the goal of increasing performances and satisfaction of humans in specified 
tasks. HCAI systems aim to be useful and usable for specified users, who might be described through a 
formal model, to reach their specified goals in their context of use, while being reliable, safe to use, and 
trustworthy.

Different basic concepts characterize HCAI. In some cases, the same terms identifying 
certain concepts are used by different disciplines with varying meanings; in other cases, 
different terms refer to the same concept. These terminological inconsistencies are typical 
in multidisciplinary and new fields such as HCAI. In this section, referring to Research 
Question 2, we present and analyze our survey findings about fundamental concepts that 
revolve around HCAI, identifying possible synonyms and homonyms.

3.1 � Interpretability vs. Explainability vs. Transparency

The terms “interpretability” and “explainability” are frequently used interchangeably. 
However, although similar, slight differences can be recognized between the two terms. In 
the context of AI, explainability is the property of an AI model that allows for generating 
human-understandable explanations that provide insights into the model’s decision-making 
process [1, 39, 98]. Interpretability is the ability of a system’s decisions to be interpreted 
[66]. Thus, interpretability inherits its meaning from logic, where an interpretation is an 
assignment of meaning to the symbols of a formal language [71]. Another meaning of 
interpretability is the clarity of the model’s inner workings and mechanisms [111]. There-
fore, one can conclude that, in AI, a model is interpretable if its decision-making process 
is transparent and understandable by humans [39]. Although this definition implies that a 
system is interpretable only if its decision-making process is comprehensible without the 
need for explicit explanations, most of the literature uses interpretability as a generaliza-
tion of explainability [65, 118]. As previously stated, transparency is instead a complex 
concept that can be given two different meanings: the ability of the algorithm to (i) explain 
itself and its inner workings or (ii) make itself seamless and make objective outcomes of 
the users more apparent [97]. Therefore, explainability is related to transparency through 
its first meaning, while interpretability is related to its second meaning.

In the context of XAI, explainability is usually subdivided into ante-hoc and post-hoc 
[111]. Post-hoc explainability uses methods that, given the model itself and its output, 
provide insight into how the model arrived at its output [111]. There are several meth-
ods for post-hoc explainability [66], and some of the most adopted are SHAP [92], LIME 
[112], Grad-CAM [119]. On the contrary, ante-hoc explainability, also known as “intrinsic 
explainability” requires a “white-box” model that is explainable by default without need-
ing external methods [111]. Therefore, as defined before, one can conclude that ante-hoc 
explainability is synonymous with interpretability.
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In the context of HCAI, sometimes, post-hoc explainability is frowned upon, since it has 
been argued that one cannot be sure that the explanation provided by a post-hoc model is 
faithful to the actual decision-making process employed by the AI model [115]. However, 
recent research has shown that some end-users may not require full explainability [31], 
suggesting that AI’s explanations should be designed through user studies and by factoring 
in the level of risk that AI decisions pose to its end-users [47].

3.2 � Automation vs. Autonomy

Although strongly related, automation and autonomy are slightly different concepts. In 
HCAI, automation refers to employing technology to perform tasks without human inter-
vention (if not for dealing with errors or misbehaviors) [131]. Automation does not neces-
sarily require AI, but simple algorithms or rules may suffice to automate more straightfor-
ward tasks [131]. As per its definition, automation reduces the amount of required human 
interaction: depending on the “level of automation” (usually measured on a 10-point scale), 
the human may have complete control or may not have any way to intervene in the system 
decisions [105]. Examples of automated systems are manufacturing robots. However, due 
to the limited possibility of intervention, automated systems are frowned upon in higher-
risk and safety-critical scenarios.

Autonomy goes slightly beyond the typical concept of automation. Autonomous sys-
tems are not only capable of performing tasks without the need for human intervention, but 
they also can adapt to new scenarios [138]. For this reason, autonomous systems usually 
require some AI model to power their decisions. A critical aspect of an autonomous sys-
tem to adapt to new scenarios is the ability to continuously learn through interaction with 
humans: this instantiates a symbiotic relationship between the human (who benefits from 
the automation of the task) and the system (which benefits from the continuous stream of 
new data) [64]. Examples of autonomous systems are autonomous vehicles and personal 
assistants.

3.3 � Trust vs. Trustworthiness

In general, an AI system can be considered trustworthy if it is deemed worthy of being 
trusted by its end-users based on specific verifiable requirements [80]. However, trust is 
an abstract concept that makes defining it highly complex. Recent research suggests that 
providing context-dependent definitions of trust benefits one’s understanding of the con-
cept [7]. A first definition expresses trust as the willingness of a party (the trustor) to be 
vulnerable to the actions of another party based on the expectation that the other (the trus-
tee) will perform a particular action important to the trustor, irrespective of the ability to 
monitor or control that other party [94]. Therefore, this definition sees trust as a property 
of the dialog between two agents, the AI and the user. Other definitions see trust as the 
attitude that an agent will help achieve an individual’s goals in a situation characterized 
by uncertainty and vulnerability [86] or as the belief on whether the application could fulfil 
a task as expected (the trustworthiness of mobile applications relates to their dependabil-
ity, security, and usability) [144]. Thus, trust is also subordinate to the users’ goals and 
safety, underlining the relevance of a human-centered approach to designing AI systems to 
meet users’ goals and expectations. Regarding trustworthiness, it is an interesting metric 
for the HCAI system, which is on par with the usability of the classical system. However, 
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most of the literature adopts custom-made questionnaires to evaluate users’ trust, as well 
as qualitative methods [7], suggesting the need for more research on objectively evaluat-
ing trust. Examples of adopted questionnaires are the “Trust in Automated System Test 
(TOAST)” [141], the “Multidimensional Measure of Trust” [133], and the “Trust in Auto-
mation (TiA)” questionnaire [77].

3.4 � Usability vs. User eXperience (UX)

Usability and User eXperience (UX) are among the main concerns of HCI. The HCI com-
munity has been discussing the usability of interactive systems since the 1980s. More 
recently, HCI has become increasingly concerned with UX [114]. It is now acknowledged 
that designing for experience includes but it is much more than designing for efficiency 
and other traditional attributes of usability. While efficiency is focused on attributes such 
as fast, easy, functional, and error-free, UX involves feelings and thus focuses on beauti-
ful (harmonious, clear), emotional (affectionate, lovable), stimulating (intellectual, motiva-
tional), and on tactile (smooth, soft), acoustic (rhythmic, melodious) in case of multimodal 
interfaces [69].

Usability is defined in the ISO standard 9241 as the extent to which a system, product, 
or service can be used by specified users to achieve specified goals with effectiveness, effi-
ciency, and satisfaction in a specified context of use [74]. The same ISO standard defines 
UX as the whole set of a person’s perceptions and responses resulting from the use and/or 
anticipated use of a product, system, or service [74]. Therefore, UX is a slightly broader 
concept: a good level of usability is required to avoid hampering UX, but UX also includes 
hedonistic aspects not involved in usability quality [69].

Current approaches for designing AI systems are mainly data-based, rather than user-
based. AI models serve a single purpose (classification, prediction, or generation once pro-
vided with a specified input) that highly depends on data and on the designer’s decisions. 
However, recent research shows that the end-users, their goals, and context of use highly 
impact how AI should be designed, influencing the overall UX [47]. Thus, an AI system 
capable of evoking a good UX requires a purely human-centered approach to its design 
[143].

3.5 � Human‑in‑the‑Loop (HITL) vs. Human‑on‑the‑Loop (HOTL)

A cornerstone of HCAI is the inclusion of humans (the users) in the design of AI systems. 
However, user involvement is crucial not only in the initial stages of the life of an AI sys-
tem but also throughout its use. More precisely, two types of user involvement are consid-
ered, depending on the role that humans have: human-in-the-loop (HITL) and human-on-
the-loop (HOTL) [54, 142].

A HITL approach involves users in the decision-making process during the system 
usage [142]. The AI system is not created as an “oracle” that processes users’ inputs to 
provide an outcome. The interaction is thus bi-directional: users actively contribute to AI 
decisions by providing expertise and experience; the system employs its inner AI algorithm 
to support users.

On the contrary, a HOTL approach does not involve end-users in decision-making. Still, 
it involves users in detecting and fixing errors or misbehaviors of the system [54]. HOTL 
is beneficial when high levels of automation or autonomy are possible, but risks may arise 
in the case of wrong decisions. Thus, the capability to let users intervene (for example, 
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through intervention user interfaces [118]) proves extremely useful in dealing with excep-
tions or errors. Although systems created through an HOTL approach are not entirely sym-
biotic in their relationship with humans, they are still human-centered if they are designed 
according to HCD. They should not be discarded in favor of HITL systems: recent studies 
show that different approaches may be beneficial to reach different goals, thus leaving the 
final choice to the end-users for which the system is being designed [47].

The two approaches imply the design of different interaction mechanisms and different 
implementations of AI models. For example, the interaction with HITL systems should 
be designed to encourage users to provide continuous input to the AI system. At the same 
time, the AI model should be able to learn from these inputs and improve its performance 
over time. Of course, final decisions should never be completely delegated to the AI. On 
the contrary, the design of interactions with HOTL systems should prioritize autonomous 
behavior of the AI models but must include interaction mechanisms that allow users to 
act as supervisors, monitoring and intervening when necessary to either stop or control 
the behavior of the AI model. It should be noted that the two approaches are not mutually 
exclusive, and users may sometimes benefit from choosing between the two approaches, 
thus fostering a symbiotic human-AI relationship [31].

3.6 � Fairness vs. Bias

One of the cornerstones of HCAI is fairness. In a survey on bias and fairness [96], fair-
ness is defined as the lack of bias and discrimination. Different biases can affect the mod-
el’s inner decision-making process when dealing with AI systems, hampering fairness. AI 
bias can be classified into three groups, depending on where it has the most effect: data 
to algorithm, algorithm to user, and user to data [96]. Bias from data to algorithm only 
derives from the dataset itself. Examples of such bias are measurement bias (which arises 
from how a particular feature is measured), sampling bias (which arises from how data 
is sampled, especially in underrepresented classes), and representation bias (which arises 
from how a feature is represented). Bias from algorithm to user, instead, derives from the 
algorithm itself. Examples of such bias are algorithmic bias (which arises from the algo-
rithm itself and its parameters, for example, due to limitations in the functions used) and 
presentation bias (which arises from how a particular outcome is presented). Finally, bias 
from user to data derives from how end-users behave, affecting how new data points are 
generated before being used to improve an existing AI model. Examples of such biases are 
historical bias (which arises from socio-technical issues that seep into how users behave) 
and population bias (due to differences in the population for which the AI was designed 
and the actual end-user population).

A truly HCAI system must present strategies to avoid or, at least, mitigate the different 
types of biases. Various strategies can be considered. For example, techniques for unbias-
ing data can be adopted [96]. Similarly, governance structures can be instated to ensure 
control over the fairness of the used dataset and the final AI decision-making process [123].

3.7 � Ethical AI vs. Responsible AI

When discussing HCAI, the AI system must follow norms and regulations. Such norms 
and regulations should not be intended as merely legal; it is also fundamental that AI sys-
tems adhere to moral guidelines and norms. Therefore, one may discuss “ethical AI” and 
“responsible AI”. Ethical AI is a term used to describe an AI system that follows moral 
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norms and principles [126]. Their primary aim is to avoid any harm to its users and society 
at large. On the other hand, responsible AI is a term used to describe designing, develop-
ing, and deploying AI in a way that considers the legal implications of the technology, 
ensuring its accountability [107].

In the context of HCAI, AI systems should be developed to guarantee adherence to 
moral guidelines and respect legal requirements [122]. Thus, a truly HCAI system is an 
example of ethical and responsible AI. To aid in creating an HCAI system, sets of AI-spe-
cific guidelines, which encompass ethical and legal requirements and governance structure 
to ensure adherence to such guidelines, will be useful [123]. The European AI Act is an 
example of such regulation that may guide the design and development of both Ethical and 
Responsible AI systems [49]. Sadly, although ethical and legal aspects of HCAI are often 
mentioned in the surveyed articles, they are still not discussed in detail.

4 � Solutions supporting the creation of HCAI systems

To successfully create HCAI systems, it is useful to have in-depth knowledge of the design 
and evaluation solutions that exist in the related disciplines and emerged in this survey. 
By design we refer to both design and development. An overview of such solutions is pro-
vided, so that experts can engage in a holistic approach to the creation of HCAI systems. 
Design is addressed in Sect. 4.1, while evaluation in Sect. 4.2.

4.1 �  Designing HCAI systems

Each discipline identified by the survey proposes solutions that can be useful in the design 
of HCAI systems, as reported in the following. Figure 1 summarizes the main solutions.

4.1.1 � HCI design solutions

HCAI emphasizes the idea of creating systems that are both performant from the techno-
logical point of view and valuable from the human values and user requirements perspec-
tive. Applying HCI principles and methods to the design process of HCAI systems provides 
a strong foundation for realizing this balance. This section explores a range of established 
HCI solutions for integrating user perspectives into the design of HCAI systems.

Human-Centered Design (HCD), originally called User-Centered Design (UCD) [114] 
is the general model adopted in HCI for the design of systems that satisfy users’ needs 
and expectations; it prescribes that users are involved from the very beginning of the plan-
ning stage, and identifying user requirements becomes a crucial phase [114]. Various 
design processes based on HCD are now available, like UCD Sprint [84]. HCD requires 
understanding who will use the system, where, how, and to do what. Then, the system 
is designed by iterating a design-evaluation cycle. Being the design based on empirical 
knowledge of user behavior, needs, and expectations, it is possible to avoid serious mis-
takes and to save re-implementation time to solve such mistakes. This model is reported in 
the standard ISO 9241 − 210 [75]. In HCAI, adopting HCD is a must when a direct inter-
action between users and system is expected (e.g., in consumer applications, educational 
software, or health-related support). UCD may be less important when users do not interact 
frequently with the system, or an AI system is developed to run independently without 
users’ frequent interference, such as backend AI.
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Several important design solutions that are based on HCD are available. One is Par-
ticipatory design (PD), a broader version of UCD, which difference is that users are not 
only involved in the design process as subjects of study but as participants in the design 
team, involved in making choices about the system being designed. This approach is useful 
when it comes to creating HCAI systems for specific subgroups of people, such as acces-
sible technologies and culturally suitable AI products. However, users’ intervention may 
be limited by the amount of time available in a project and the resources at a project’s dis-
posal and, hence, not very efficient for projects requiring quick turnaround time or projects 
whose user base is relatively more homogenized.

More specific HCD solutions can be also adopted to design HCAI systems. Value Sen-
sitive Design (VSD) is an approach that suggests design choices that reflect and consider 
ethical considerations and human values [57]. VSD recognizes that AI systems are not iso-
lated entities but operate in social, cultural, and moral environments. VSD aims to develop 
appropriate systems that meet privacy, equity, and transparency requirements. Even though 
VSD is valuable for handling ethical issues, it may not be as useful in cases when the AI 
system acts within tightly framed technical fields with relatively low ethical characteristics.

Activity-centered design (ACD) is a design process that starts with the users and the 
activity they carry out, with the idea of better designing a system that aligns with specific 
tasks [59]. This design approach is particularly adequate in professional and enterprise set-
tings where comprehensiveness of work accomplishment is critical. ACD is appropriate for 
creating HCAI systems for productivity improvement, including smart tools for engineers 
or business intelligence specialists. As ACD focuses on specific activities, creating systems 
that can fit the work schemes and enhance user productivity is possible. Nevertheless, ACD 
may not be practical for some other applications where user experience, in terms of their 
emotions, is more valuable than efficiency, for example, in entertainment or leisure-based 
AI systems.

Contextual Design (CD) is an approach that entails observational techniques to under-
stand the environmental and social aspects relevant to users’ behaviors in technology use 
[72]. CD is especially useful when designing HCAI systems either for particular contexts 
or that are employed in flexible contexts, such as emergency services. Applying CD may be 
impractical in situations where the context of use is either strictly defined or has a negligi-
ble impact on the system’s performance, such as in static or virtual settings.

Fig. 1   Overview of the design solutions proposed in the disciplines converging in HCAI
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A similar approach is represented by Scenario-Based Design (SBD), which includes the 
specification of interaction between the user and the system in the form of narrative scenar-
ios [21]. These scenarios, which can be based on finely developed user research contexts, 
illustrate to the designers how users will use the system in real life and how the system 
should respond to such usage. SBD is especially helpful in designing a strategy where the 
behavior of users may differ from one condition or task to the other. Considering differ-
ent scenarios in the design process might help designers identify potential challenges and 
opportunities, allowing for a more robust and flexible system design. However, SBD could 
be less effective in scenarios where user interactions are quite standardized and do not dif-
fer from user to user.

The HCD design model includes prototyping as a crucial phase to test different design 
ideas. However, the term rapid prototyping is also used to indicate the creation of sim-
ple and preliminary prototypes of user interfaces that can be iteratively evaluated in a 
few cycles [68]. Rapid prototyping is particularly useful while designing HCAI systems 
because it enables designers to model and experiment with a system before it is fully devel-
oped. It is especially beneficial for systems where the interface is experimental or the inter-
action is unclear, and users’ feedback is crucial.

As stated above, Participatory Design considers the participation of end-users in 
the design process. The rationale is that end-users are experts of the work domain so 
a system can be effective only if these experts are allowed to participate in its design, 
indicating their needs and expectations. End-users are increasingly willing to shape 
the software they use to tailor it to their own needs [10]. As said in Sect. 2, End-User 
Development (EUD) is a sub-field of HCI that promotes a more active involvement of 
end-users in the overall software design, use, and evolution processes; end-users thus 
become co-designers of their tools and products [5, 55], enabled to shape software arti-
facts at run time. One of the most influential frameworks for supporting EUD is Meta-
design [53]. It considers a two-phase design process: first, the meta-design phase con-
sists of designing software environments where different stakeholders (domain experts, 
end-users, etc.) can work and are also allowed to create various versions of the final 
system by tailoring it to their needs (design-phase). Thus, Meta-design promotes the 
design of open systems that various people, acting as end-user developers, can modify 
and evolve at use time. The advantages of EUD solutions for HCAI systems are already 
mentioned in Sect. 2.

All the above HCI design solutions suggest considering end-users in the system’s life-
cycle at different phases and with different levels of involvement. Thus, it is instrumental 
to apply HCI techniques that allow designers to gather data from the end-users correctly. 
In HCI, a valuable solution for gathering user requirements in the best way is Ethno-
graphic Research, which consists of a long-term observation of the users in their natural 
environments to understand their behaviors, needs, and challenges [29]. It also enables the 
researcher to understand the cultural, social and context in which the users will engage 
with the technology. When it comes to HCAI, ethnographic studies can be useful in design-
ing equipment for cultural or community usage by making the technology applicable to 
the culture of a particular community. It is especially helpful in designing a system for 
special or marginalized users as, in most cases, their experience cannot be identified by 
conventional user research methods. Truly ethnographic research is costly and may take a 
long time to complete, thus it is often replaced by faster ethnography-based techniques like 
shorter field observations and contextual interviews [106].
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4.1.2 � AI and ML design solutions

AI and ML algorithms are fundamental to designing HCAI systems. They provide a vast 
variety of approaches, which are beneficial to solving the different issues occurring during 
HCAI system development, each with its advantages and disadvantages.

Reinforcement learning is an area of ML that includes models such as Q-learning, deep 
Q-learning, deep Q-network, and policy gradient methods, which are used to help the AI 
agent choose the best action to engage with the environment [78, 89]. These models are 
especially useful in developing HCAI systems that necessitate flexibility in hardly predict-
able contexts. For instance, in self-driving cars, RL using deep Q-network or policy gradi-
ents can make decisions instantaneously in real-world complexities, including the ability 
to learn new tactics from its trial-and-error experiences. However, reinforcement learn-
ing models could be computationally heavy and might need a lot of training data, making 
their use sometimes impractical, especially when it is needed to quickly deploy or where 
resources that could be harnessed are limited. In addition, the exploration required by rein-
forcement learning models can lead to ethically questionable actions during the learning 
phase. This makes these models less adequate for applications where mistakes could result 
in harm, as in the case of medical applications. Therefore, reinforcement learning models 
are helpful when continuous adaptation and optimization are crucial, but they should be 
used cautiously in high-stakes or resource-constrained settings.

When creating HCAI systems across different domains or in cases with little labeled 
data, transfer learning techniques should be considered [132]. This class of solutions can 
be applied to architectures like convolutional neural networks (CNNs), long short-term 
memory (LSTM) networks, and transformer models such as BERT or GPT. For example, a 
CNN trained on a large image database may be used in a medical application by subsequent 
training with a small set of labeled images, which is likely to increase diagnosis accuracy. 
Likewise, large language models such as BERT trained on vast text collections can be fine-
tuned for more specific tasks such as sentiment analysis, or question answering in differ-
ent languages. A particular example of transfer learning follows the student-teacher model 
[137]. However, transfer learning is more effective when the source and target tasks are 
similar, as differences may lead to poor transfer of performance or learning or even intro-
duce potentially biased learning. In addition, the biases of these models may be inherited, 
which may raise ethical questions in such human-oriented fields. Transfer learning models 
are thus useful for broadening the domains to which an AI system can be transferred, if 
the results are generalizable. However, it needs to be done properly to avoid degrading the 
transferred model’s relevance and fairness.

Other approaches beneficial for HCAI systems where data privacy and security are criti-
cal (e.g., in healthcare or finance) come from the area of federated learning [148]. This can 
be exploited with classifiers such as neural networks (e.g., CNNs or LSTMs), gradient-
boosted trees, and support vector machines (SVMs), when they are trained across multiple 
devices or servers while keeping the data localized. For instance, using CNNs in a feder-
ated learning setup allows the development of a global model for medical image analy-
sis while ensuring that patient data never leaves the local device, thereby complying with 
privacy regulations. However, federated learning can introduce challenges related to com-
munication overhead, model synchronization, and data heterogeneity across devices, which 
can affect the overall performance and fairness of the system. Additionally, the decentral-
ized nature of federated learning might make it difficult to enforce uniform training stand-
ards, potentially leading to biased models if the data distributions are not representative. 
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Federated learning is most effective in scenarios where data privacy is essential, but it may 
not be ideal in cases where centralized models offer superior accuracy and consistency.

Other approaches to be considered when developing HCAI systems requiring AI deci-
sions to be secure (e.g., cyberspace, self-driving cars, or stock exchanges) come from the 
area of adversarial training [81]. These techniques are often applied together with deep 
neural networks, convolutional neural networks and recurrent neural networks to improve 
models’ robustness against adversarial perturbations. For instance, enhancing CNN with 
adversarial examples allows the network to deal with adversarial manipulations, making it 
more secure in image classification tasks. Nevertheless, adversarial training can be compu-
tationally heavy, and it often leads to a trade-off in the model performance and robustness 
when the adversarial instances employed for training are insufficient in capturing all the 
possible attacks. Besides, in situations where the adversarial attack is unlikely, the cost of 
the adversarial training could be higher than the advantages gained. Adversarial training 
is, therefore, effective for increasing the resilience of HCAI systems against adversarial 
threats. However, it should be performed when the adversarial risk in the given domain has 
been assessed.

HCAI systems may be designed for contexts with limited resources, such as smart-
phones, IoT devices, or edge computing nodes. AI model compression techniques (like 
pruning, quantization, and knowledge distillation) are used on models (including DNNs, 
CNNs, and transformer models) to make them smaller, thus requiring less computational 
power [26]. For instance, a DNN can be optimized by eliminating unnecessary links, 
which means cutting off unimportant connections. This can lead to a sharp decrease in 
the model size and, at the same time, an increase in productivity, though the performance 
will not be influenced dramatically. Equally, quantization can convert model weights 
from floating-point to lower precision to make the inference process lighter. Knowledge 
distillation is the process of letting a small model (the so-called student) learn from a 
great, complex model (the teacher), producing a compact model that does not lose much 
of the performance. However, these compression techniques sometimes cause a reduc-
tion in the accuracy of the model or the removal of some features, which can affect the 
system’s performance in handling difficult problems. In some cases, where computa-
tional resources are not a limiting factor and accuracy is crucial (e.g., in cloud machine 
learning services), the potential drawbacks of model compression might offset the advan-
tages. Thus, AI model compression is relevant for HCAI systems that need to be effi-
cient, but it should be considered more thoroughly for systems that may benefit from 
increased accuracy.

4.1.3 � XAI design solutions

For HCAI systems, explaining model decisions and interpreting AI models becomes cru-
cial to establishing trust, reducing unethical practices, and increasing the overall transpar-
ency of the AI systems. By understanding the strengths and weaknesses of XAI methods, 
designers and developers can select the most appropriate tools to enhance transparency and 
trust in AI systems, thereby creating more effective and ethically sound HCAI solutions.

HCAI systems are often based on “black box” models, such as deep neural networks, 
where understanding individual evaluation is critical to fostering user trust and fulfilling 
accountability. In this situation, model-agnostic explanations prove to be quite versatile to 
explain predictions made by different ML models, regardless of their application domain 
[66]. Examples of techniques that provide such explanations are LIME and SHAP. LIME 
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(Local Interpretable Model-Agnostic Explanations) offers interpretable approximations 
of the model [112], while SHAP (Shapley Additive Explanations) provides the feature 
importance, i.e., it provides explanations by analyzing the relevance of all features [92]. 
However, both LIME and SHAP can be quite costly depending on the amount of data, or 
the complexity of the model used. In addition, the approximations that LIME gives may 
sometimes be completely wrong, while both methods might not offer enough detail about 
specific and limited ways of model behavior.

Explanations can also be provided by implementing global surrogate models, which are 
models that estimate the original (black-box) model and hence provide a broad-spectrum 
view that can be easily understood [66]. This is especially useful in settings where vari-
ous stakeholders require an overall perspective of the decisions that are being made in the 
system, hence promoting accountability and compliance with set rules and regulations. The 
main problem is that global surrogate models are less accurate than the original model, 
which in turn can produce less accurate explanations of the AI system’s work in HCAI 
systems. Moreover, it may not adequately capture the essence of the decision or decision-
making process and may result in misinterpretations due to simplification involved in the 
mathematically structured models, particularly in a system that needs instance-by-instance 
routing.

HCAI systems could also be based on interpretable models. Thanks to their nature, 
interpretable models such as decision trees and rule-based models are easily understand-
able [22]. These models present decision macros that are quite rational, unambiguous and 
therefore easy for end-users to comprehend and act upon. This is especially desirable in 
areas such as medical triage or legal analysis, where the user has to understand how the AI 
decision was made. The main disadvantage of using such models is that they may be less 
suitable in cases where the relationship between the features or the interactions between 
them are highly nonlinear, so they may be outperformed by other methods, including deep 
learning techniques.

Other HCAI systems could need to provide users with explanations about how slight 
input variations could affect results, and then users can make the right decision with rec-
ommendations from the AI system. In this case, AI solutions for counterfactual explana-
tions must be considered [87, 98]. These solutions are especially useful in analytical areas 
such as healthcare and prescription, where the users may wish to learn how to manipulate 
the system to their advantage. However, counterfactual explanations may not always be 
possible or efficient in advanced HCAI systems where the model is very complex and non-
linear. Thus, it is difficult to come up with valid counterfactual instances. Moreover, when 
users can or should not change the input data, such as in the diagnosis of diseases, the 
counterfactual explanation can be of little help.

The last type of explanation regards HCAI systems that work on vision or sequence 
data, such as MRI and NLP systems. In this case, saliency maps and attention mechanisms 
might be useful [119, 134]. These techniques emphasize certain aspects of the input for 
which the model comes to a conclusion, and the information can be easily described visu-
ally to the users. This is especially important to improve user confidence in the systems 
that have to work with information critical for making decisions, such as from medical 
images for disease diagnosis or legal documents for contract understanding. Nonetheless, 
the application of these approaches might be disappointing since they contribute to the 
generation of noise and, hence, hinder decision-making by complicating the process. Also, 
they are not as useful in natural language explication of tabular data, non-graphics HCAI 
systems, or other forms of explanation.
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4.1.4 � Software Engineering design solutions

Software Engineering offers principles, methods, and techniques useful in developing 
robust, scalable, and ethical HCAI systems.

Considering the need to include the users in the software development lifecycle to cre-
ate HCAI systems, agile methodologies can be considered to get the end-users’ feedback 
on the development process at all stages [146]. Agile methodologies are based on itera-
tive development, feedback, and cross-functional teams [37]. Its emphasis on changes to 
requirements and users’ needs is another advantage of Scrum and Kanban models, which 
allow the incorporation of Agile into HCAI systems [19]. This iterative process helps 
ensuring that the system is changing in accordance with actual practice and ethical ques-
tions, which is critical to keep the system loyal to people. Moreover, the essential feature 
of agile practices is flexibility, which allows for a quick reaction to new ethical standards 
or shifts in user demands to solve unanticipated issues quickly. However, there is a weak-
ness in Agile’s approach: it is based on iteration and unsuitable for long-term planning or 
stability. The continuous cycle of feedback and adjustments might blur the project’s goals. 
Besides, it should be noted that there might be an issue of lesser suitability of agile prac-
tices when imposed on organizations heavily bound by compliance standards and protocols 
since the Agile approach runs counter to the prescriptive approach typical of compliance-
intensive environments.

The development of the HCAI system could sometimes require continuous integration, 
continuous delivery, and automated testing. DevOps should be considered in this situa-
tion since it joins two aspects of a software engineering process, including software devel-
opment (Dev) and IT operation (Ops) [42]. DevOps, more precisely a specialization of 
DevOps for ML called MLOps [82], is useful for HCAI systems since this approach allows 
the release of updates as often as possible – given the constant shifts in users’ demands 
and ethical issues. With integration and testing procedures in place, a developer can guar-
antee that new code changes, for example, will not contain mistakes, or at least mistakes 
that are not ethical, to keep the system’s integrity. In addition, DevOps is about collab-
oration between developers and operators, which might ensure that all ethical issues are 
likely to be discussed and considered by the various stakeholders. The first challenge of 
DevOps, when applied in developing HCAI systems, is that there is always the risk of over-
doing automation. Although the system becomes automated, it also cuts the possibilities 
of human intervention in the process, which is highly important for determining whether 
all ethical aspects are covered. Further, since speed is one of the driving forces in DevOps, 
there might be a lack of reflection on the general ethical component of the system, not tak-
ing into consideration that IT solutions, being created for actualizing various objectives, 
also contain some ethical (sometimes even potential negative) features, if the number one 
priority of the work is technical results and delivery velocity.

4.1.5 � Ethics design solutions

Integrating ethical principles into HCAI systems is often required to ensure that the result-
ing systems align with societal values and expectations. In this direction, ethical frame-
works and guidelines are helpful to integrate ethical principles into HCAI systems; this 
means that, when developing any HCAI system, there are necessarily sound ethical foun-
dations in place. Following these guidelines means that many of the ethical issues can be 
flagged at an early stage in the design when it could be easier and cheaper to fix rather 
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than at a later stage of development. To ensure that HCAI systems are widely accepted, 
developers must follow existing ethical standards, therefore gaining the trust of users and 
other stakeholders. For example, in the case of HCAI systems for medical applications, 
this means that ethical rules can guide the process of diagnosing diseases and, at the same 
time, respect the privacy and/or the autonomy of both patients and physicians. One poten-
tial limitation is that while quite useful, ethical guidelines can sometimes be very broad 
and may not be easily translated into successful heuristics. Strict adherence to those prin-
ciples might hamper design or generate conflicts with other more technical specifications. 
However, ethical standards may not reflect cultural diversity or societal changes, leading to 
some dilemmas when applied globally.

Another important aspect for several HCAI systems regards fairness; specifically, HCAI 
systems must avoid the amplification of societal bias. In this context, fairness and bias mit-
igation techniques can enhance the reliability of AI systems by reducing the effects of bias, 
especially in fields with serious consequences, e.g., credit ratings or criminal charges [9, 
96, 97]. Through these strategies, the techniques of avoiding bias assist the system in mak-
ing a fair and just decision to serve the community to build public trust and avoid liabil-
ity. The decision fairness and bias mitigation techniques come with the problem that they 
can deprive of further optimization of other measures, for instance, accuracy. For example, 
techniques that balance the measures across various groups of individuals will decrease the 
general levels of prediction accuracy, which is deleterious in such areas as the diagnosis of 
diseases. Moreover, most methods aimed at reducing bias use a set of predefined criteria of 
fairness, which sometimes do not reflect the concept of fairness in practice. There is also an 
added capability to create new biases if the techniques are instituted inappropriately.

4.2 � Evaluating HCAI systems

System evaluation is a crucial activity in the software lifecycle since it permits to iden-
tify problems that may occur during the usage of the system. The survey indicated sev-
eral methods proposed by the different disciplines and adopted to evaluate HCAI systems 
(Fig. 2); they are discussed in this section.

4.2.1 � HCI evaluation solutions

HCI offers several methods to evaluate systems, focusing primarily on qualities that are of 
interest for the users, i.e., usability and UX. It would take too long to describe the differ-
ent methods. Moreover, various methods are slight variations of a more popular method. 

Fig. 2   Overview of the evaluation solutions proposed in the disciplines converging in HCAI
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Sometimes practitioners complain that evaluation is difficult to perform since it requires 
too many resources. Indeed, involving users in the evaluation may be difficult and costly. 
To overcome these drawbacks, HCI researchers have proposed methods that do not involve 
users and require much less resources, still being capable of providing valuable indica-
tions about system usability. Rogers et  al. cluster the evaluation methods in three main 
approaches: analytical evaluation (users are not involved), usability testing, and in-the-wild 
studies [114].

The analytical approach includes inspections and the application of formal models to 
predict users’ performance. Formal methods are not suitable for providing indications 
about UX thus they are not very used anymore. Inspections are typically conducted by usa-
bility experts who systematically inspect the interface for compliance with usability prin-
ciples, checklists, or standards. The main advantage is related to cost-saving: they ‘‘save” 
users and do not require special equipment or lab facilities [6]. In addition, experts can 
detect a wide range of problems of complex systems in a limited amount of time and the 
inspection can be performed at any stage of the system lifecycle. A common inspection 
method is heuristic evaluation [103]: experts inspect the system interface and evaluate it 
against a list of usability principles, i.e., the heuristics. It is most effective when imple-
mented before the advanced stages of systems development since it allows the designers to 
correct any usability issue before investing a lot of time and resources in conducting user 
testing. Heuristic evaluation may not effectively identify the problems of new interfaces, or 
any system based on a fairly new interaction modality that may defy conventional usability 
principles. Thus, in the context of HCAI systems, it is very important to refer to ad-hoc 
heuristics, as reported in other contexts [83, 99].

Usability testing and in-the-wild studies are empirical evaluation methods; they are 
the most reliable since by observing actual users interacting with a system, they can 
reveal how the system performs in practice, uncovering usability issues and user prefer-
ences that other methods might miss. Usability testing concerns the analysis of users’ 
performance and behavior on the tasks for which the system is designed [114]. Real 
users are asked to perform some tasks interacting with the system, to identify usability 
problems, gain user feedback, and evaluate the overall users’ satisfaction. This method 
is essential in the evaluation of HCAI systems, as it provides an important opportunity 
to gain first-hand information about the UX. It is well suited for the prototyping and 
final testing phases, especially for consumer applications where the consumer experi-
ence plays a direct and critical role in the success of the system. However, reproducing 
realistic situations of usage in a laboratory is difficult, e.g., selecting a representative 
sample of users and tasks, training users to master advanced features of the system in a 
limited time, or weighting the effect of important contextual factors on their performance 
[129]. The cost and time needed to set up usability testing may also be considerable. A 
frequently used technique is the user test with thinking aloud protocol, where the user is 
invited to express his/her perceptions, emotions and actions while using the prototypes or 
the final systems. Evaluators detect problems by observing the behavior of the users and 
listening to their thoughts, so that they can follow users’ reasoning and understand the 
difficulty they experience in the usage of the product, thus resulting more effective than a 
simple observation. For HCAI systems where users might be involved in decision-mak-
ing processes and directly interacting with the system, this protocol can be of great help 
in understanding how the user makes sense and responds to the new AI-generated out-
puts. This test is more informal, and the user sample is smaller, so it is easier and cheaper 
to perform, but it is still capable of providing valuable indications for improvements.
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In-the-wild studies differ from the other evaluation approaches because they are con-
ducted in natural settings, in which the system will be used, to gain better information 
about how the users will utilize the real environment. They are very useful for assessing 
HCAI systems employed in specific or dynamic environments, including newly developed 
mobile applications for usage in other environments aside from the comfort of our homes 
or AI tools in industrial settings. In contrast, field studies may be less necessary for sys-
tems that will be used in controlled or static environments where contextual variability is 
minimal.

Evaluation can also span over time, monitoring and assessing a system’s user experience 
to understand any changes in the user behavior/attitude and satisfaction levels. This is the 
case of longitudinal studies [85]. This method is useful, especially when evaluating HCAI 
systems projected to be a long-term service or a system, e.g., enterprise or healthcare-related 
systems. It is also useful in finding out the sustainability of user engagement, the evolution 
of user needs, and the long-term impact of the system on user performance. Nevertheless, 
this method may be less suitable for short-term applications or those that are targeted at 
interactively used software where top users’ engagement is only for a short period.

The development of the AI component of an HCAI system is very resource-demanding. 
Thus, it is useful to test and refine a prototype of the user interface before the AI compo-
nent is fully developed. The Wizard of Oz (WoZ) technique can be adopted in this case: a 
simulation of the final system is quickly built to be managed by the wizard (an evaluator), 
and end-users have the feeling they are interacting with the actual system [4]. WoZ enables 
designers to experiment with how the AI can be used, what the users expect, and how they 
respond to the system.

Data gathering techniques, such as interviews and questionnaires, can be also used to 
collect information from the users on system usability and UX. Questionnaires are more 
used since they permit to gather both quantitative and qualitative data. These instruments 
can try to measure, for example, satisfaction, ease of use perceived value, and emotions 
evoked by the system. An example of a questionnaire used to evaluate UX is AttrakDiff 
[69]. For HCAI systems, questionnaires can help to understand how the users perceive AI 
behavior, the system’s general utility, and vice versa. This method is particularly helpful 
for collecting data from a massive number of users or for understanding shifts in attitude 
during some time. However, questionnaire effectiveness depends on the design and the 
willingness of users to provide honest and thoughtful responses.

Evaluation methods can be conducted in person or remotely [33]. When it is conducted 
remotely, the evaluator can follow the study synchronously or asynchronously and is medi-
ated by ad-hoc tools [32, 43, 52, 102]. The remote usability testing is most relevant for 
HCAI systems designed for large-scale or cross-cultural use where users might be placed 
worldwide. Finally, it is worth mentioning that there are tools that partially automate usa-
bility testing [18, 47, 48, 102]. For example, Fabo and Durikovic present a tool to evalu-
ate usability using eye tracking data [50]. However, automated tools are not so reliable in 
evaluating qualitative characteristics, such as emotional responses or satisfaction, which 
typically require direct user feedback or other measurements.

4.2.2 � AI, ML and XAI evaluation solutions

An HCAI system must be evaluated aby considering also effectiveness, fairness, transpar-
ency, robustness, and compliance with ethics. The most common evaluation of AI models 
is based on assessing the performance of AI and ML models, which is typically carried 
out by computing and analyzing performance metrics. Among the most common, there are 
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accuracy, precision, recall, F1 score, and area under the receiver-operator curve (AUC); 
they provide a measure as to how well a model predicts or classifies data [116]. Espe-
cially in predictive applications, such as in health diagnosis or stock predicting, the accu-
racy measures are significant. However, such measures do not consider ethical factors and 
the corresponding issues of fairness, transparency, and stability intrinsic to HCAI systems. 
For example, a model with good accuracy may contain prejudice in the results regard-
ing demography. Thus, these metrics do not help assess HCAI systems regarding ethical 
implications.

Fairness and bias detection techniques must be considered to detect bias in AI and ML 
models. Solutions like disparate impact analysis, fairness constraints, and adversarial debi-
asing are applied to test how fair the predictions of a specific model are to members of the 
different demographic groups [149]. Such techniques are useful for HCAI systems where 
a concern of fairness and non-discrimination is important, e.g., in case of hiring algo-
rithms, loan approval systems, and even the criminal justice systems. While these metrics 
are essential, they often involve trade-offs with other performance metrics. Thus, it is sug-
gested that enforcing strict fairness constraints could potentially create a lower mean accu-
racy across targeting models. Also, the definitions of fairness may change with respect to 
a certain context, making it difficult to determine what is fair without considering various 
factors. Therefore, all these techniques must be applied with respect to the HCAI system’s 
ethical goals. Additional assistance to evaluate AI systems from a human-centered perspec-
tive is the adoption of human-centered guidelines. Examples of such guidelines are the 
ones presented by Amershi et al. [3] and by the Google PAIR team [63].

Another important aspect, already discussed in the design of AI and ML solutions, 
regards the ability of a model to perform across different scenarios (e.g., when the data 
are outside of the training distribution, or when adversarial data is used). Thus, robust-
ness and generalization tests must be performed [56]. Adversarial accuracy, perturbation 
resilience, and generalization error are used to measure the model’s robustness level. These 
tests are important in conditions where HCAI systems have to function under uncertainty, 
which is the case with self-driving vehicles or diagnostic equipment. Making systems resil-
ient is useful in discovering areas that, if exploited by malicious actors, lead to calamities 
or unethical circumstances in real-world environments. However, the effort and resources 
needed to conduct and improve robustness testing can be significant and therefore less 
practical for constraint projects in terms of budget or time. Therefore, robustness testing 
should be exercised in conjunction with one or the other evaluation techniques depending 
on the requirement of the specific HCAI application.

Regarding the interpretability of AI or ML models, transparency is one of the two main 
pillars of eXplainable AI (XAI). As stated in Sect. 4.1.3, this might be achieved by imple-
menting tools such as LIME or SHAP that provide details on how the decisions are being 
made by the AI models or by implementing models explainable by design, such as deci-
sion trees. Explainability is extremely helpful in HCAI systems as users have to rely on 
the AI’s judgments and comprehend them, for instance, in healthcare, the legal sphere, or 
customer support services. Transparent models allow for increased confidence of the users 
and for easier detection of any such bias or mistakes in judgment. Also, for XAI, metrics 
are essential to measure the quality of the model’s interpretability or explanation. A com-
prehensive list of metrics for interpretability in ML has been reported in [22], while solu-
tions for deep learning models have been reported in [25]. Examples of metrics for inter-
pretability are fidelity, which evaluates how well the explanation reflects the model’s actual 
behavior; sparsity, which measures the number of features used in an explanation; and con-
sistency, which assesses whether similar inputs yield similar explanations across different 
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instances or models. Metrics to quantify the degree of which AI model predictions can 
be easily explainable by its features has been recently reported in [100]. These metrics 
summarize different aspects of explainability into scalars, providing a more comprehen-
sive understanding of model predictions and facilitating communication between decision-
makers and stakeholders, thereby increasing the overall transparency and accountability 
of AI systems. However, although transparency is often a desirable property, there could 
be a trade-off between model complexity and model performance. Indeed, achieving high 
levels of transparency, for example by implementing decision trees, may reduce classifica-
tion performance. On the contrary, black-box models such as neural networks may be more 
accurate than highly interpretable models; moreover, over-simplification of complex black-
box models in a bid to increase their explainability may lead to a reduction of important 
information. Also, reaching interpretability may lead to neglecting other important evalua-
tion dimensions, such as robustness or fairness. Thus, depending on the needs of the HCAI 
system and user community, certain XAI techniques are more appropriate than others.

4.2.3 � Software engineering evaluation solutions

Software engineering offers different evaluation techniques for assessing HCAI systems, 
ranging from technical performance to ethical and user-centered attributes. This section 
presents the existing solutions in software engineering for evaluating HCAI systems, pro-
viding a guide on the pros and cons of these solutions.

Verification and Validation (V&V) are first-order processes in software engineering 
that aim at ascertaining whether a system being developed will indeed deliver the expected 
results [128]. Verification concerns itself with the accuracy of the implementation of the 
system (for instance, to ensure that the system has been developed correctly), while vali-
dation considers whether the developed system meets the intended usage (for instance, to 
ensure that the right system has been developed). V&V for HCAI can also incorporate the 
assessment of algorithms, inclusion of linkages, systems and conformity to user desires. 
It’s crucial to note that both V&V processes are critical assets of HCAI systems, especially 
in safety-critical domains such as healthcare, self-driving cars, and electronics’ finance. 
However, V&V is important to establish the technical rigor, it may not properly address the 
ethical issues such as fairness, transparency, or user’s self-determination. These processes 
are also CPU and time-consuming and depend on the professional level of the specialists 
who are to understand the software system and its environment. Thus, as the HCAI sys-
tems are complex, it is suggested to expand V&V by ethical assessments and user-centered 
evaluations.

Another evaluation technique is software testing, which involves the process of evalua-
tion of software based on a comparison of the actual result and expected result during the 
processes of the test [128]. Some of the common testing approaches embraced by organi-
zations include unit testing, integration testing, system testing, and acceptance testing. 
Various testing techniques are involved in testing HCAI, including system testing where 
AI models are run through different situations to test their reliability and scenario-based 
testing in which AI models are tested on sample scenarios. However, software testing 
should be used in conjunction with other forms of evaluations like ethical impact assess-
ments and user centered evaluations to gain a comprehensive understanding of the system’s 
performance.

Another automatic evaluation useful for evaluating HCAI systems is represented by 
model checking. It is a method of proving the correctness of finite-state systems concerning 
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certain specifications, which are normally expressed in temporal logic [79]. This checks 
whether the features in question are true for the system in all the transitions that can occur 
systematically go through all the possible states of the system. In the case of HCAI systems, 
model checking can be applied to ensure that the AI systems implement ethical standards, 
such as non-discriminate or non-user profiling. Model checking is especially beneficial in 
HCAI systems where it is important to validate that the system’s behavior is appropriate as 
per the prevailing or explicitly specified ethics and laws, including finance or legal systems. 
However, in the case of large or complex systems, such as deep learning models, the compu-
tational cost of model checking could be high and practically unmanageable. Further, model 
checking involves the definition of the property that one wants to verify, and this can be 
hard to do in complex ethical terms. Hence, using model checking is useful in figuring out 
specific behavioral patterns; however, this form of functional verification should be used in 
combination with other verification techniques for broader ethical issues.

The last type of evaluation is related to the DevOps practices mentioned in Sect. 4.1.5. 
In this context, continuous integration and continuous deployment (CI/CD) are the evalua-
tion techniques to be considered [38, 58]. They consist of the frequent integration of code 
changes, and this integration and deployment are automated, making sure that the software 
that is deployed all the time is ready to be deployed. In the case of HCAI systems, the CI/
CD pipeline may also have integrated self-testing as well as self-scanning tools to check 
whether the system is functioning, ethical and compliant with the set regulations at all times. 
CI/CD solutions are useful for HCAI systems, whereby the frequent rollout and updates act 
as a strength since such systems are usually in environments that demand constant tweaking 
and deployment of new services or applications. Even though CI/CD practices make the 
process of deploying the software more efficient and effective, the latter does not always 
address the ethical issues of HCAI systems. The emphasis on speed may cause such that 
not enough time is given to conduct ethical analysis and there is a possibility of deploying 
systems that have not been through ethical scrutiny. It is for this reason that CI/CD pipelines 
should be implemented with consideration of ethical evaluation steps to ensure that, while 
delivering high velocity, developers do not compromise on ethical standards.

4.2.4 � Ethics evaluation solutions

A solution to conduct ethical evaluation of HCAI systems is Ethical Impact Assessments 
(EIA), which is a framework to assess ethical implications of systems before, during, and 
after deployment [93]. EIAs mainly consist of a systematic examination of how an HCAI 
system might affect its stakeholders. Some aspects to be considered in this analysis are 
privacy, fairness, people’s self-determination, and prevention of the occurrence of harm. 
They are especially useful when the HCAI system that is being appraised has a far-reaching 
impact on society (e.g., health care and law enforcement). Through EIAs, the developers 
and stakeholders can review the ethical risks that are likely to occur and avoid or address 
them appropriately, hence making the system work ethically. Although EIAs are compre-
hensive, they can be labor and cost-intensive and depend on expertise in ethics, law, and 
technology. In addition, the results of EIA depend on the best ethical standards and values 
that the evaluators incorporate, and it should note that the acceptable ethical standards may 
vary. For this reason, EIA should be applied when there is a need to solve possible ethical 
issues, and results should be considered in the context of societal values.

Another approach is represented by algorithmic auditing, which entails the process by 
which an organization investigates all the algorithms used in an AI system for possible 



Multimedia Tools and Applications	

ethical issues, including bias, discrimination, and lack of transparency [108]. Part of this 
process entails comparing the inputs, decision mechanism and outputs of the system to cer-
tain ethical benchmarks. Algorithmic audits may be performed by a third party to make the 
findings more impartial, suggesting the need to set up governance structures [123]. Algo-
rithmic auditing is useful to HCAI systems, which necessitate the disclosure of the deci-
sion-making process and fairness, e.g., in credit scoring systems, job recruitment, or crimi-
nal courts. Algorithmic auditing can only be effective if detailed data is available and the 
underlying algorithms are well understood, highlighting the importance of transparency. 
On certain occasions, due to patents or the black-box nature of AI systems, the auditing 
might remain restricted to a certain level, limiting the ethical review. Furthermore, auditing 
does not provide recommendations on how to solve recognized issues.

5 � Emerging challenges in HCAI

HCAI seeks to develop AI systems designed, developed, and deployed by taking into 
account human needs, values, and contexts. While the promise of HCAI is significant, the 
discipline revolving around it faces several critical challenges, which span technical, ethi-
cal, social, and interdisciplinary domains. Thus, realizing HCAI systems becomes a com-
plex endeavor. Our survey identified 11 important challenges that might drive the research 
in HCAI in the next year; they are discussed in this section.

5.1 � Terminological inconsistencies

This survey has shown that many terminological inconsistencies pervade the development 
of HCAI. Considering the wide range of disciplines involved, each with its concepts and 
vocabulary that have already been established. For instance, the terms “explainable AI,” 
“interpretable AI,” and “transparent AI” are often employed as if they were perfect syno-
nyms when, in fact, they may represent some slight nuance of difference depending upon 
context or field of study.

Polysemous terms complicate interdisciplinary work in HCAI: a term like “model” can 
carry different meanings depending on the disciplinary perspective with which it is inter-
preted. In ML, a “model” refers to a learning algorithm, created to perform some tasks like 
classification or prediction [62]. In HCI, a “model” may also refer to a conceptual or theo-
retical framework that seeks to explain cognitive processes like perception, memory, or 
decision-making [130]. These different interpretations often need clarification in projects 
that require collaboration, as the same word may be used to mean different things by team 
members trained in different disciplines. This challenge can only be tackled by developing 
a shared vocabulary and a conceptual framework across these disciplines to ensure more 
effective communication and collaboration.

5.2 � Interdisciplinary integration

Another important aspect of this survey is the need for interdisciplinary integration for the 
success of HCAI because of the methodologies, epistemologies, and research priorities that 
characterize different disciplines. In practice, it is the exception that expertise in one of 
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these disciplines will be strongly informed by deep knowledge of the foundational theories 
and methods in other disciplines. A technically sophisticated model developed by an AI 
researcher may make powerful predictions yet remain without insights into human cogni-
tive limitations, thus leading to systems that fail to align with human needs [88]. On the 
other hand, a detailed account of AI’s technical capabilities and limitations may escape the 
notice of an ethicist, thus undermining realistic expectations and posing technical prob-
lems. Thus, efforts should be made to develop cross-disciplinary education and research 
initiatives between the disciplines by establishing multidisciplinary teams to share and syn-
thesize knowledge.

Moreover, each discipline within HCAI contributes different methodologies and solu-
tions. For example, AI research often focuses on the quantitative metrics associated with 
measures like accuracy or efficiency through large-scale data analysis and empirical test-
ing [110]. Contrastingly, disciplines like HCI or ethics might focus on qualitative insights 
from user studies, interviews, or observational research [85]. Method differences can some-
times lead to conflicts or misunderstandings in integrating findings across disciplines, 
hence developing a coherent HCAI approach. In light of the aforementioned challenges, it 
becomes evident that an alternative interdisciplinary research approach is necessary. This 
approach should demonstrate due respect for the strengths inherent to each tradition, while 
simultaneously seeking common ground where methodologies of a mixed kind might 
prove effective in HCAI research.

Therefore, this stresses the collaborative frameworks that could address the issues 
generated from the knowledge gaps and differences in methodologies but that invoke 
effective work in interdisciplinarity. These kinds of frameworks could integrate other 
points of view in the design and evaluation process when developing an HCAI sys-
tem. It is one instance of how useful it would be to involve stakeholders from more 
than one discipline as active participants of a series of participatory design methodolo-
gies. Such frameworks would entail conflict resolution mechanisms to balance ethical 
considerations with technical feasibility so that technical goals do not overshadow a 
human-centered perspective. This means that developing such frameworks will have to 
be critical in ensuring the HCAI systems are technically robust, ethically sound, and 
human centered.

5.3 � Ethical considerations and bias mitigation

Due to the potentially important impact that AI systems may have on individuals and soci-
ety, challenges in HCAI raise ethical considerations and bias mitigation at the forefront.

As already stated in the previous section, bias in AI systems can arise from multiple 
sources, including biased training data, biased algorithmic design, or biases introduced 
during human-AI interactions. They are not very easy to detect or mitigate. This includes 
both technical solutions—e.g., algorithmic fairness techniques that change models to have 
less bias [9, 67, 96]—and ethical oversight and ongoing monitoring. Mitigation for bias 
also should consider the context in which the AI systems will be deployed, as biases can 
manifest very differently with regard to domain, population, or application. For example, 
an AI system used in hiring might inadvertently favor certain demographics if the train-
ing data reflects historical inequalities in employment [16]. All of these require continuous 
research on developing fairness-aware algorithms, diversifying and making data collection 
more representative, and establishing ethical guidelines and regulations that make bias 
audits and accountability mechanisms a requirement.
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Proper transparency and explainability are crucial to making AI systems work in prac-
tice and be trusted by their users. However, achieving transparency and explainability in 
models with acceptable performance, especially in very complex models such as deep neu-
ral networks, remains a challenge. In the end, contemporary approaches to explainability 
range from model-agnostic techniques—such as LIME or SHAP that give local approxi-
mations of model behavior—to inherently interpretable models designed to be simple and 
transparent. However, such explanations must make sense for the concrete type of users: AI 
experts, domain professionals, or lay users, and should facilitate appropriate decision-mak-
ing and oversight. The challenge is to balance the need for detailed and accurate explana-
tions without increasing the cognitive load for users and to ensure explanations are inform-
ative and useful.

5.4 � Privacy and data protection

HCAI systems increasingly rely on personal data on a very wide scale to offer fully per-
sonalized experiences, which is an important issue. AI systems should be developed with 
the observance of privacy regulations, like the GDPR of the EU [135] and other emerging 
regulatory frameworks in different parts of the world. Therefore, for the safety of user data, 
it seems to be the right one to develop AI using such a privacy-preserving technique as 
differential privacy [40], and federated learning [95], in which to continue research. All 
these are challenges in implementing these at a large scale without reducing the utility of 
AI systems. Furthermore, privacy issues are above and beyond technical solutions; they are 
linked with the issues of consent, data ownership, and the right to be forgotten.

5.5 � Evaluation metrics and benchmarks

Defining appropriate assessment metrics for HCAI systems is a critically important but 
challenging issue, primarily because a proper performance evaluation should be done 
along two dimensions: technical performance and human-centered outcomes.

On one side, traditional AI assessment metrics, such as accuracy, precision, and recall, put 
a singular focus on algorithmic performance. However, those metrics often ignore a broader 
context of human-AI interaction, which includes user satisfaction, trust, and the effective-
ness of AI in supporting human decision-making. Holistic performance measures must com-
bine these human-centered dimensions—possibly combining qualitative feedback from users, 
metrics related to cognitive load, and measures of user engagement and understanding [39]. 
The issue is, therefore, to develop sound and integrated evaluation frameworks that can rec-
oncile the requirement for technical rigor with a sensitivity to the emergent fine details of 
human experience, enabling such systems to be both effective and user-friendly.

The effectiveness of HCAI systems can vary significantly depending on the context in 
which they are used, including the specific task, the characteristics of the user population, 
and the cultural or organizational setting. Developing evaluation frameworks that account 
for such variations is critical so that HCAI systems are robust and adaptable in different 
contexts. This calls for developing context-sensitive evaluation methods to capture the 
unique problems and opportunities the environment presents. For instance, an HCAI sys-
tem developed for clinical applications may require an evaluation not only on diagnostic 
performance but also on the assessment of usability by clinicians, its integration into exist-
ing workflows, and its acceptance by patients [27]. Contextual evaluation is a multidimen-
sional challenge because it must consider both technical and human aspects.
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5.6 � Long‑term impact

The long-term impact on human capabilities, the decision-making processes, and society 
at large of the adoption of HCAI systems is rather challenging and less explored. Under-
standing how sustained interaction with AI/ML systems shapes users longitudinally with 
respect to potential changes in trust, reliance, and decision-making behavior is necessary 
[125]. A second point involves the general societal impacts of the wide-scale adoption of 
AI—employment effects, social equity, and public trust in technology—which also need 
to be sensitively monitored and assessed. Long-term assessment is, therefore, a challenge 
where interdisciplinary work is to conceive and develop new testing tools and some kind of 
‘ethics protocols’ for the responsible deployment of HCAI systems. In this regard, longitu-
dinal studies can be powerful instruments to assess how HCAI systems affect humans and 
society at large. Sadly, throughout this literature review we were not able to retrieve tools, 
protocols and studies with this goal. Indeed, it is important to note that longitudinal stud-
ies require time, and the novelty of the HCAI field may limit the availability of published 
studies.

5.7 � Generalizability across domains

Ensuring that HCAI principles and solutions can be scaled and generalized across different 
domains and user populations is crucial for HCAI’s widespread adoption and impact.

For example, adapting HCAI systems to new domains while maintaining their human-
centered properties is a significant challenge. Domain adaptation involves transferring 
knowledge and skills from one domain to another, often with limited data or domain-spe-
cific expertise available in the new context [104]. For example, an AI system trained on 
medical data from one region may need to be adapted to work effectively in another region 
with different patient demographics, disease prevalence, or healthcare practices. Ensuring 
that the system remains effective, fair, and interpretable across domains requires robust 
transfer learning techniques and domain-specific adaptations that account for the unique 
challenges of each new environment.

Personalization is a key aspect of HCAI, as AI systems need to be tailored to individual 
user needs and preferences. However, achieving personalization at scale presents a signifi-
cant challenge, as it requires balancing the customization of AI experiences with the scal-
ability demands of large-scale systems. Techniques such as collaborative filtering, content-
based filtering, and reinforcement learning can be used to personalize AI systems, but these 
approaches must be carefully managed to avoid issues such as filter bubbles, overfitting, 
and unintended biases [96, 113]. Moreover, personalization efforts must be transparent and 
give users control over how their data is used and how their AI experiences are shaped.

5.8 � Human‑AI trust dynamics

Building and maintaining trust between humans and AI systems is a critical factor in the 
success of HCAI, as trust influences how users interact with, rely on, and benefit from AI 
technologies.

Trust calibration involves ensuring that users have an appropriate level of trust in AI 
systems, neither over-relying on them nor under-utilizing them. Over-reliance on AI can 
occur when users place too much trust in the system, potentially leading to complacency, 
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errors, or failures in oversight [41]. On the other hand, under-utilization can result from a 
lack of trust, where users ignore or reject valuable AI insights, diminishing the potential 
benefits of the technology [125]. Achieving proper trust calibration requires designing AI 
systems that are accurate and reliable but also transparent and explainable, helping users 
understand when and how to trust the system. This involves providing users with clear 
feedback about the AI’s confidence levels, limitations, and the rationale behind its deci-
sions and training users to interact effectively with AI systems.

Moreover, when AI systems make mistakes or fail, it can lead to a loss of user trust, 
which can be difficult to regain. Trust recovery is a critical challenge in HCAI, requir-
ing the development of mechanisms that allow AI systems to recover from errors and 
rebuild user confidence. This might involve transparent communication about the 
nature of the error, steps taken to correct it, and assurances that similar mistakes will 
be avoided in the future [12]. Trust recovery also involves providing users with tools 
to intervene, correct, or override the AI’s decisions, empowering them to maintain 
control and confidence in the system. Developing effective trust recovery strategies is 
essential for ensuring long-term user engagement and the successful integration of AI 
into human workflows.

Finally, anthropomorphism, or the attribution of human-like characteristics to AI sys-
tems, can significantly influence user trust and expectations. While anthropomorphic 
design can make AI systems more relatable and easier to interact with, it can also lead to 
unrealistic expectations about the system’s capabilities and reliability [44]. Managing the 
effects of anthropomorphism is a delicate balancing act, requiring designers to carefully 
consider how human-like features, such as voice, appearance, or behavior, are implemented 
in AI systems. The goal should be to enhance usability and trust without misleading users 
or creating dependencies that could undermine human agency or responsibility.

5.9 � Cognitive load and human factors

Optimizing the cognitive aspects of human-AI interaction is crucial for ensuring that AI 
systems are both effective and user-friendly, minimizing the cognitive burden on users.

AI systems often generate large amounts of data and insights, which can overwhelm 
users and lead to information overload. Balancing the provision of AI-generated insights 
with human cognitive limitations is a significant challenge, as too much information can 
reduce decision-making quality and increase user frustration [45, 76]. Effective HCAI 
design must prioritize the clarity, relevance, and timeliness of the information presented 
to users, using techniques such as information filtering, summarization, and adaptive 
interfaces that adjust the level of detail based on the user’s context and preferences. The 
goal is to provide users with the right amount of information at the right time, supporting 
informed decision-making without overwhelming them.

Capturing and maintaining user attention is another essential aspect for ensuring that 
AI systems are used effectively. However, it must be done in a way that avoids distrac-
tion or cognitive fatigue. AI systems should be designed to deliver notifications, alerts, 
and other forms of feedback that align with the user’s current task and attention level, 
avoiding interruptions that could disrupt workflow or concentration [8]. Attention man-
agement strategies might include prioritizing notifications based on urgency, using non-
intrusive cues, and allowing users to customize their interaction settings. The challenge 
is to balance keeping users informed and allowing them to focus on their primary tasks 
without unnecessary distractions.
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Therefore, ensuring that users develop accurate mental models of AI capabilities and 
limitations is crucial for effective human-AI interaction. Misaligned mental models can 
lead to inappropriate use of the system, either through over-reliance or under-utilization. 
HCAI systems must be designed to align mental models with clear, consistent, and intui-
tive interfaces that help users understand the system’s functions, limitations, and decision-
making processes. This might involve visualizations, tutorials, and interactive explanations 
that guide users in forming accurate mental models. Additionally, ongoing user training 
and education can help to refine these models over time, ensuring that they remain aligned 
with the evolving capabilities of the AI system.

5.10 � Adaptability and learning

Creating AI systems that adapt to changing user needs and environments is a critical chal-
lenge in HCAI, requiring advanced learning mechanisms and continuous user interaction.

AI systems that continuously learn and improve from ongoing user interactions offer 
the potential for more personalized and effective human-AI collaboration. However, con-
tinuous learning also introduces risks, such as the potential for overfitting recent data or 
introducing biases as the system adapts to new information [34]. Adaptivity and adapt-
ability are solutions for enabling system modification when new needs arise during its 
use. Adaptivity is automatically determined by the system that tailors itself on the basis 
of repeated user interactions and habits; adaptability is determined by users, who are 
provided with tools to manually perform actions to tailor the system [53]. Balancing the 
need for adaptability with the stability and reliability of the system is a crucial chal-
lenge. Techniques such as incremental learning, transfer learning, and online learning 
can enable continuous adaptation while mitigating risks. Additionally, involving users in 
the learning process is essential, allowing them to provide feedback, correct errors, and 
guide the system’s learning trajectory.

Moreover, enabling AI systems to transfer knowledge and skills learned in one con-
text to new, related contexts is essential for their scalability and versatility. Transfer learn-
ing techniques allow AI systems to leverage existing knowledge to perform well in new 
domains with limited data [104]. For example, an AI system trained to recognize medical 
conditions in one population might need to transfer its knowledge to another population 
with different characteristics. The challenge lies in ensuring that the transferred knowledge 
remains accurate and relevant, avoiding negative transfer where performance degrades in 
the new context. Effective transfer learning requires robust models that can generalize well 
across different contexts and mechanisms to adapt and fine-tune the system to the specific 
needs of the new environment.

In this context, another important concept is co-evolution, which in HCAI refers to the 
mutual adaptation and growth of human users and AI systems over time. As AI systems 
learn from human interactions, they should improve their performance and enhance the 
user’s capabilities, such as decision-making skills or domain knowledge [55, 64]. Simi-
larly, users should become more proficient in using AI tools, developing a deeper under-
standing of leveraging AI effectively in their tasks. Designing for co-evolution requires 
creating AI systems that are adaptable and responsive to user feedback and capable of 
fostering user learning and development. This might involve interactive learning environ-
ments, personalized feedback, and the gradual introduction of more advanced AI features 
as the user’s proficiency increases.
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5.11 � Regulatory and legal frameworks

Navigating the complex legal and regulatory landscape surrounding HCAI ensures that 
AI systems are developed and deployed responsibly, with appropriate safeguards and 
accountability.

Determining accountability in cases where AI systems contribute to decision-making 
errors or harmful outcomes is a significant legal and ethical challenge. As AI systems 
become more autonomous and integrated into critical decision-making processes, ques-
tions of liability become increasingly complex [61]. For example, suppose an AI-driven 
medical diagnosis system provides incorrect advice that leads to patient harm. In that case, 
whether the responsibility lies with the AI developer, the healthcare provider, or the user 
who relied on the AI’s advice may be unclear. Addressing this challenge requires the devel-
opment of clear legal frameworks that assign responsibility and liability in a way that is 
fair, transparent, and consistent with ethical principles.

Moreover, AI regulations are rapidly evolving, with different jurisdictions implement-
ing various rules and guidelines to govern the development and use of AI technologies. 
Ensuring that HCAI systems comply with these regulations is a significant challenge, par-
ticularly for companies that must adhere to diverse regulatory environments [136]. Com-
pliance requires ongoing monitoring of regulatory developments, adapting AI systems to 
meet new legal requirements, and ensuring that AI practices align with local laws and 
international standards. This challenge is further complicated by the need to balance regu-
latory compliance with innovation, as overly restrictive regulations could stifle the devel-
opment of new HCAI technologies.

Finally, intellectual property issues related to AI are complex and evolving, particularly 
regarding the ownership and protection of AI-generated content and innovations. Questions 
arise about who owns the rights to AI-generated works, such as art, music, or software, 
and how traditional intellectual property laws should be applied to AI-driven creativity 
[127]. Additionally, concerns about protecting AI algorithms and data and the potential for 
patenting AI techniques could hinder innovation and competition. Addressing these intel-
lectual property challenges requires updating existing legal frameworks to account for the 
unique aspects of AI, promoting fair and open access to AI technologies, and fostering col-
laboration between legal experts, technologists, and policymakers.

6 � Need for symbiotic AI systems

Previous sections have detailed critical aspects of HCAI, emphasizing the importance of 
designing AI systems that complement and enhance human decision-making processes. An 
explicit need for this arises in complex, high-stakes environments like medical applica-
tions, where the implications of decisions made by AI may have consequences for patients’ 
life. Indeed, traditional AI has been well integrated into the fields of medical imaging and 
diagnosis and, to some extent, in treatment planning. However, these capabilities signifi-
cantly fall short of supporting integration with clinical workflows because of interpretabil-
ity issues, lack of trust, and ethical concerns.

These challenges are highlighted in the vision of “symbiotic AI,” which has received 
much attention over the past few years as a vehicle to bridge the gap between AI and 
humans [64, 101]. Symbiotic AI (SAI) requires a progressive and deeper relationship 
between humans and AI, specifically, the symbiosis of their two forms of intelligence, 
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where both humans and AI augment each other’s knowledge and capabilities thanks to 
a collaboration that balances each other’s strengths and weaknesses [17]. Therefore, 
SAI systems improve themselves through users while also providing a way for users to 
improve themselves. However, to create ethical and sustainable SAI systems, this symbi-
osis requires users to be in control, to reach the goal of creating systems that ensure reli-
ability, safety, and trustworthiness, supporting humans rather than replacing them. There 
is a growing body of research indicating that the best AI systems are augmentations of 
human expertise, not replacements [17, 124]. For instance, medical imaging studies have 
shown that diagnostic accuracy improves significantly when AI systems assist human 
radiologists, instead fan working independently by themselves [145]. This symbiotic 
relation allows the strength of AI—its capability to deal with large volume data and rec-
ognize complex patterns—to be coupled with human intellect, thereby enabling proper 
understanding of context, managing uncertainty, and making ethical judgments. Based 
on the above, we provide the following definition of SAI systems.

Definition 2. Symbiotic AI Systems

Symbiotic AI (SAI) systems are HCAI systems powered by a continuing and deeper collaboration 
between humans and AI, i.e., a symbiosis of human intelligence and artificial intelligence. Humans and 
AI mutually augment their capabilities, balancing each other’s strengths and weaknesses without ham-
pering neither the autonomy of humans nor the performances of AI, leaving humans in control of the 
system’s decisions. In an SAI system, AI benefits from a continuous stream of new user-provided data 
to refine itself, while humans benefit from AI’s improved performances and knowledge.

AI, HCAI, and SAI systems are therefore specializations of each other (Fig.  3). For 
example, let’s consider a simple AI system for cell classification. Physicians may require a 
better understanding of its decision-making process, asking for explanations, different ways 
of providing outputs, etc. Thus, the AI system can be specialized into an HCAI system by 
using HCI methods, which involve users in the system design and evaluation. Finally, the 
HCAI system can be further specialized into an SAI system by adopting ways of improving 
the system and the human knowledge incrementally and interactively through Human-AI 
collaboration. Better examples of incremental improvements are provided in Sect. 6.

In light of these considerations, the transition to SAI systems represents not just a tech-
nical shift but also a paradigm shift in how we conceive the role of AI. Such systems are 
designed to function as partners in decision-making processes, enabling a more holistic 
approach that best integrates human and machine intelligence.

Fig. 3   SAI is a specialization of HCAI, which results from the adoption of HCI methods in AI
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7 � Two case studies on medical applications

This section elaborates on SAI by providing two case studies in the medical field. These are 
specific, real-life examples of how SAI might be implemented and illustrate how human-AI 
symbiosis can be effectively achieved for sound, reliable, and ethically correct AI systems 
in medicine, leading to better patient care and positive outcomes. More precisely, Sect. 7.1 
reports the example of an AI system that has been successfully redesigned as a SAI sys-
tem and which implementation is currently almost completed. On the other hand, Sect. 7.2 
reports the example of a more embryonic project, which provides a new testing ground in a 
higher-risk scenario.

7.1 � Low‑risk scenarios: Rhinocytology

Rhinocytology is a specialization of medical cytology that focuses on studying the 
cells of nasal mucosa [60]. Unlike other similar fields (for example, hematology), 
nasal cytology does not yet benefit from a network of laboratories that are able to 
carry out the analysis. Therefore, the diagnostic process is slow and costly, as it 
requires direct observation under the microscope, requiring prolonged effort by rhino-
cytologists [60]. In this context, Rhino-Cyt, an AI system, has been developed aiming 
to assist physicians’ activities through the automatic count of cells [36]. The system 
employs a CNN to analyze the digital image of a nasal cytological preparation to 
identify (i.e., segment) and classify cells, recognizing nine different cytotypes: (i) cil-
iated, (ii) muciparous, (iii) basal cells, (iv) striated cells, (v) neutrophils, (vi) eosin-
ophils, (vii) mast cells, (viii) lymphocytes, and (ix) metaplastic cells [35]. Finally, 
Rhino-Cyt produces the cell count for each cytotypes, supporting the cytological 
examination and, by merging the result with other medical procedures and exams, 
the final diagnosis [35, 60]. It should be noted that the general permissiveness of the 
rhinocytological exam (reflected in its wide ranges [60]), the generally acceptable 
consequences of a wrong diagnosis, and the support provided by additional exams 
that do not use medical imaging techniques lower the overall risk of the use of AI 
with respect to other fields.

In a recent redesign, Rhino-Cyt’s interface has been heavily expanded to sup-
port the requirements of a HCAI system [28, 31]. Namely, the system now provides 
explanations for its classifications, allowing end-users to intervene in both the clas-
sification itself and the explanation, thus enabling the customization of the classifier 
[31]. The result of the redesign follows a HOTL approach, but it moves towards a 
HITL approach by allowing customizations to reduce the number of interventions in 
the long run. However, the current state of Rhino-Cyt does not yet fully represent 
an example of SAI system. In fact, although its design followed a human-centered 
approach, the system is still used as an “oracle” and does not learn continuously from 
the users’ behaviors. To improve this aspect, additional governance structures may be 
put in place to evaluate the decisions of physicians (to check that the data is unbiased 
and untainted, ensuring correctness and fairness) and to add new data points back 
into the dataset, transforming the basic AI model into an interactive machine learning 
model. The benefits of a symbiotic relationship between the classifier and the physi-
cians are multiple:
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	 i.	 Human benefits

a.	 Through the support of an AI-enabled system, still using a direct manipulation 
graphical interface, physicians can more easily (and potentially more objectively) 
recognize and classify cells, leading to a faster and better diagnosis.

a	 Through interventions mechanisms, the classification can be double-checked ensur-
ing better performances.

c.	 Through explanations, physicians can improve their knowledge by recognizing and 
classifying cells that would leave them uncertain due to uncommon features (provid-
ing an example of machine teaching [119]).

	 ii.	 AI system benefits

a.	 Through interactive machine learning, the AI model can continuously learn and 
improve its performance thanks to improved and larger datasets.

b.	 Through interactive machine learning, the AI model can benefit from always up-to-
date data, mitigating the risk of concept drifting [139] in the long run and ensuring 
a correct classification throughout the whole lifecycle of the AI system.

7.2 � High‑risk scenarios: tumor detection

One of the successful applications of medical imaging techniques has the human brain as 
a subject of study. In fact, Magnetic Resonance Imaging (MRI) and Positron-Emission 
Tomography (PET) scans of the brain have been successfully used to aid in the diagnosis 
of various diseases. Examples of possible applications are tumor detection [30, 73] and to 
aid the diagnosis of Alzheimer’s disease [11, 23]. Focusing on the former application, the 
importance of an accurate and early recognition of tumors is crucial, as it improves the 
odds of surgical removal, potentially saving lives. Therefore, also considering the invasive-
ness of a wrong surgical procedure in case of wrong recognition, this particular application 
of AI is an extremely higher risk scenario with respect to the previous one. Still, AI use is 
beneficial as it may improve physicians’ performance and objectivity, as per the previous 
case study.

Although the employment of medical imaging techniques with AI is not limited to brain 
tumor detection (e.g., MRIs are also employed for breast cancer [120]), we focus on the 
simple case study presented in [30]. A CNN has been trained on a publicly available data-
set to detect brain tumors accurately [30]. However, the AI model itself does not prove to 
be helpful for physicians’ actual use. For example, a user-centered design approach would 
allow us to provide answers to various relevant questions, such as: Are physicians interested 
only in the location of the tumor or in other variables? Are physicians interested in knowing 
the confidence of the AI detection? Are physicians interested in knowing the parameters that 
brought to the recognition of a tumor? Are they interested in only knowing that “something” 
is there, or should AI disambiguate between tumors and (as an example) cysts?

Such questions are extremely relevant as they immediately impact the way the AI sys-
tem is to be engineered, and some answers may require some modifications to the archi-
tecture of the ML model that powers the recognition. Although some of the answers are 
potentially found in the literature (e.g., the variables to which physicians are interested), 
user studies are still crucial: recent research shows that differences in demographic details 
of the end-users’ sample heavily affect the perceived usefulness of explanations and other 
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variables [47]. Similarly to the previous case study, exacerbated by the lack of an actual 
diagnosis-support system and related user studies, such ML models do not represent exam-
ples of SAI systems. However, we are confident that, by implementing a collaboration 
between the AI system and the end-users, thus investing into fostering a symbiotic relation-
ship between the two, several benefits may be obtained:

	 i.	 Human benefit.

a	 Through the support of an AI-enabled system, physicians can more easily (and 
potentially more objectively) recognize tumors, also in early stages where humans 
may have troubles, leading to a faster and better diagnosis [140, 145].

b	  Through interventions mechanisms, the classification can be double-checked ensur-
ing better performances.

	 ii.	  AI system benefits.

a	  Through interactive machine learning, the AI model can continuously learn and 
improve its performance thanks to improved and larger datasets.

b	 Through interactive machine learning, the AI model can benefit from always up-to-
date data, mitigating the risk of concept drifting [138] in the long run and ensuring 
a correct classification throughout the whole lifecycle of the AI system.

8 � Conclusions

This article provided a survey of articles related to the emerging field of HCAI, highlight-
ing its interdisciplinary nature and the complexities involved in creating HCAI systems. 
The diverse range of disciplines, concepts, and existing solutions that play a crucial role in 
designing and evaluating HCAI systems are discussed. The findings emphasize the impor-
tance of the collaboration among experts from various disciplines (including HCI, AI, SE, 
ethics) as well as experts from specific application domains to tackle the challenges, also 
discussed in the article, of creating AI systems that are truly human-centered.

Definitions of HCAI systems and of SAI systems are provided. SAI builds on the prin-
ciples of HCAI, but requires a deeper, more integrated collaboration between humans 
and AI. The case studies on medical applications presented in this article demonstrate the 
potential of SAI.

Overall, this work contributes to providing valuable resources for researchers and prac-
titioners, offering insights and recommendations for creating both HCAI and SAI systems.
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