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A B S T R A C T

We investigate the dynamics of coordination and consensus in an agent population. Considering agents
endowed with bounded rationality, we study asymmetric coordination games using a mapping to random field
Ising models. In doing so, we investigate the relationship between group coordination and agent rationality.
Analytical calculations and numerical simulations of the proposed model lead to novel insight into opinion
dynamics. For instance, we find that bounded rationality and preference intensity can determine a series of
possible scenarios with different levels of opinion polarization. To conclude, we deem our investigation opens
a new avenue for studying game dynamics through methods of statistical physics.
1. Introduction

Group coordination is a collective phenomenon of particular interest
in various contexts [1] and can be observed in human communities
and other animal groups. For instance, flocks, schools of fish, and
ant colonies often show hallmarks of group coordination. The latter
emerges, typically, to address specific functions, such as improving the
quality of flights and defending from attacks [2]. In human societies,
to cite a few, coordination underlies several activities, such as sports,
business developments, start-up growth, and company organization.
Therefore, understanding group coordination and its mechanisms can
clarify relevant social aspects of our society and nature. To this end,
game theory allows mapping group coordination to a specific equilib-
rium in a competition among strategies. For instance, let us consider a
group of friends conversing about music genres, sports teams, or polit-
ical candidates. Here, mapping opinions to strategies and exchanges of
ideas to game interactions, the convergence of the group to a common
opinion corresponds to the success of a strategy. These friends, mapped
to agents playing a game, may have personal preferences. So, in the
presence of an opinion of the majority, we wonder whether agents
biased towards a different opinion can suffer from social pressure. On
the one hand, falsifying their preference [3], i.e. avoiding expressing an
opposite opinion, may reduce conflicts and lead to group coordination.
On the other hand, in some cases, declaring an honest view can be
more profitable. In summary, the described real-world scenario, i.e. the
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conversating friends, mapped to an agent population allows us to
exploit game theory. For instance, in game theory, agents are defined
as rational when they act to maximize their payoff and can undergo
a strategy revision phase [4,5], so the resulting evolutionary dynamics
can lead the population towards some strategy equilibria corresponding
to opinion consensus/dissent. Notice that combining game theory with
evolutionary mechanisms is at the core of the evolutionary game theory
framework [6–12], fundamental for studying the strategy equilibria in
various scenarios.

We consider a population whose agents interact by playing asym-
metric games. Thus, conflicting preferences motivate the emergence
of equilibria where group coordination is not reached. Yet, we aim
to quantify these mechanisms and measure the polarization under
different conditions, such as various levels of rationality. Concerning
that, previous studies focused on similar aspects. To cite a few, [13–
16] study the asymmetric games theoretically and through simulations
assuming best-response dynamics, [17,18] perform experiments with
human subjects on different social networks. [19,20] study a version
of the random field Ising model at temperature 𝑇 = 0, while [21]
focuses on the mapping between a general 2-players game and the
Ising model. In [22], the authors attempt to connect the asymmetric
games on the network to an Ising model, which is encouraged in the
review [23]. Our main contributions include identifying the conditions
for which the studied asymmetric games are potential games [24] by
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mapping them to a random field Ising model and, through the latter,
studying analytically the effects of bounded rationality in asymmetric
games on networks. We remark that random fields have already been
investigated within the context of social dynamics [25] to describe
the dynamics of opinion consensus in open and closed (i.e. finite size)
populations. Then, our results, supported by numerical simulations,
show a rich spectrum of outcomes leading to various interpretations,
such as opinion polarization. The latter becomes particularly interesting
as it relates to the bounded rationality assumption considered in the
proposed model.

The remainder of the manuscript is organized as follows. In Sec-
tion 2, we introduce asymmetric games on networks with more detail,
give a condition for them to be potential games, and map their dy-
namics to an Ising model. Then, in Section 3, we study the model on
a complete network and a 𝑘-regular network, while Section 3 focuses
more on numerical simulations. Finally, we discuss the main finding in
Section 5. Two additional appendices report, respectively, the calcula-
tions to map the game dynamics to the Ising model (Appendix A) and
the study of asymmetric games with infinite rationality (Appendix B).

2. Model

Let us now introduce the asymmetric game we use on networks to
study the dynamics of group coordination, namely the 2-player Battle
of Sexes (BoS) [26]. This game has two strategies, 𝑥𝑖 = {0, 1}, and one
fixed identity 𝜃𝑖 = {0, 1}. The latter identifies the strategy preference of
each player, e.g. 𝜃𝑖 = 1 indicates that the 𝑖-player prefers the strategy
1 (and vice versa). So, the possible combinations of players’ identities
lead to the following payoff matrices

𝜃𝐣 = 𝟏
1 0

𝜃𝐢 = 𝟏 1 (1, 1) (0, 0)
0 (0, 0) (𝑆, 𝑆)

𝜃𝐣 = 𝟎
1 0

𝜃𝐢 = 𝟏 1 (1, 𝑆) (0, 0)
0 (0, 0) (𝑆, 1)

𝜃𝐣 = 𝟎
1 0

𝜃𝐢 = 𝟏 1 (𝑆, 𝑆) (0, 0)
0 (0, 0) (1, 1)

(1)

where the elements of the matrices (⋅, ⋅) indicate respectively the reward
of player 𝑖 and 𝑗 with the corresponding combination of strategies. 𝑆 ∈
[0, 1] denotes a parameter related to the preference strength: the higher
𝑆, the lower the difference in terms of reward between coordination
at the preferred and unpreferred strategy, so the lower the preference
intensity. In a network, each agent plays the 2-players BoS with each
one of its neighbours simultaneously, i.e. the agent’s chosen strategy
is the same for all its interactions [13,15]. We can write each player’s
utility function (total payoff) as

𝜋𝑖(𝑥𝑖; 𝜃𝑖) = 𝜒(𝑥𝑖; 𝜃𝑖)
∑

𝑗∈𝜕𝑖
𝐼{𝑥𝑖=𝑥𝑗} (2)

here

(𝑥𝑖; 𝜃𝑖) =

{

1 𝑖𝑓 𝑥𝑖 = 𝜃𝑖
𝑆 𝑖𝑓 𝑥𝑖 ≠ 𝜃𝑖

(3)

nd 𝐼{⋅} is the indicator function, equal to 1 if the condition ⋅ is
erified and zero otherwise. We refer to this class of games as the
roere’s model [15] and study the evolutionary dynamics of the agent
opulation, considering various initial conditions. At each time step, an
gent 𝑖 is randomly selected and chooses its strategy in function of the
urrent configuration of its ego network (i.e. its neighbours) through
he so-called Logit rule [27,28]. Specifically, the selected agent plays
𝑖 = 1 with probability

𝑖(1) =
𝑒𝑅𝑖[𝜋𝑖(1;𝜃𝑖)]

𝑒𝑅𝑖[𝜋𝑖(1;𝜃𝑖)] + 𝑒𝑅𝑖[𝜋𝑖(0;𝜃𝑖)]
= 𝑒𝑅𝑖[𝜋𝑖(1;𝜃𝑖)−𝜋𝑖(0;𝜃𝑖)]

1 + 𝑒𝑅𝑖[𝜋𝑖(1;𝜃𝑖)−𝜋𝑖(0;𝜃𝑖)]
(4)

and 𝑥𝑖 = 0 with probability 𝑃𝑖(0) = 1−𝑃𝑖(1). Notice that the probabilities
depend only on the payoff difference between the two strategies. Also,
we assume the agents have complete information about their ego
networks. The term 𝑅𝑖 ∈ [0,+∞) represents the rationality of the
𝑖th agent and reflects the inclination to pursue its personal interest
(i.e. maximizing its utility), but can have alternative interpretations
2

later discussed. Accordingly, 𝑅𝑖 → ∞ entails the 𝑖th agent playing
the best response, whereas 𝑅𝑖 = 0 entails an irrational attitude as the
strategy is randomly selected. In general, we consider 𝑅𝑖 = 𝑅 ∀𝑖 =
1,… , 𝑁 , and we rescale the rationality parameter 𝑅 by a factor equal
to the average degree of the network so that 𝑅 = 𝑟

⟨𝑘⟩ .
Following the above prescriptions, let us consider, for example, the

𝑖th agent with 𝑘𝑖 degree (i.e. number of neighbours) and identity 𝜃𝑖 = 1.
y indicating with 𝑤𝑖 the number of 𝑖th agent’s neighbours currently
laying 1, 𝜋𝑖(1; 1) = 𝑤𝑖 and 𝜋𝑖(0; 1) = 𝑆(𝑘𝑖 − 𝑤𝑖), so our agent chooses
he strategy 1 with probability 𝑃𝑖(1) =

𝑒𝑅𝑖 [𝑤𝑖−𝑆(𝑘𝑖−𝑤𝑖 )]

1+𝑒𝑅𝑖 [𝑤𝑖−𝑆(𝑘𝑖−𝑤𝑖 )]
and, indeed, the

trategy 0 with probability 1 − 𝑃𝑖(1).

.1. Mapping to Ising models

In Appendix A, we show that a game on a network 𝐺 = (𝑉 ,𝐸) with
ayoff matrices of the type

⋅
1 0

𝐢 1 (𝑎(11)𝑖 , ⋅) (𝑎(10)𝑖 , ⋅)
0 (𝑎(01)𝑖 , ⋅) (𝑎(00)𝑖 , ⋅)

has a potential if and only if

𝑎(11)𝑖 + 𝑎(00)𝑖 ) − (𝑎(01)𝑖 + 𝑎(10)𝑖 ) = 𝐶 ∀𝑖 = 1,… , 𝑁 (5)

here 𝐶 is a constant.
Thus, assuming a homogeneous rationality 𝑅 and Logit rule under-

ying the system evolution, the game is equivalent to an Ising model
volving by the Glauber dynamics with Hamiltonian 𝐻 = −

∑

𝑖∈𝑉 ℎ𝑖𝜎𝑖−
∑

𝑖𝑗∈𝐸 𝜎𝑖𝜎𝑗 , where the strategies 𝒙 = {0, 1}𝑁 are mapped to the spin
andom variables 𝝈 = {−1,+1}𝑁 . The mapping between the two models
s realized via the following correspondences:

𝑖 =
(𝑎(11)𝑖 + 𝑎(10)𝑖 ) − (𝑎(00)𝑖 + 𝑎(01)𝑖 )

4
𝑘𝑖 𝑖 = 1,… , 𝑁

𝐽 =
(𝑎(11)𝑖 + 𝑎(00)𝑖 ) − (𝑎(01)𝑖 + 𝑎(10)𝑖 )

4
𝛽 = 𝑅

(6)

where 𝑘𝑖 is the degree of the 𝑖th node in the network.
Now, applying these results to the payoff matrices (1) associated

with the Broere’s model, we see that the payoff matrices can be of two
types, depending on the individuals’ preference. Identifying the agents
with personal preference for the strategy 1 (resp. 0) as belonging to
class 𝐴 (resp. 𝐵), we have that

𝑎(11)𝐴 = 1 𝑎(00)𝐴 = 𝑆 𝑎(01)𝐴 = 𝑎(10)𝐴 = 0

𝑎(11)𝐵 = 𝑆 𝑎(00)𝐵 = 1 𝑎(01)𝐵 = 𝑎(10)𝐵 = 0
(7)

Being

(𝑎(11)𝐴 + 𝑎(00)𝐴 ) − (𝑎(01)𝐴 + 𝑎(10)𝐴 ) = (𝑎(11)𝐵 + 𝑎(00)𝐵 ) − (𝑎(01)𝐵 + 𝑎(10)𝐵 ) = 1 + 𝑆 (8)

the condition (5) is satisfied and the game has a defined potential.
Moreover, the parameters of the corresponding Ising model read

ℎ𝑖 =
1 − 𝑆
4

𝑘𝑖 ∀ 𝑖 ∈ 𝐴

ℎ𝑗 =
𝑆 − 1
4

𝑘𝑗 ∀ 𝑗 ∈ 𝐵

𝐽 = 1 + 𝑆
4

= 𝑅

(9)

3. Results

3.1. Complete networks

Connectivity plays a role of paramount relevance in a number
of phenomena, including the dynamics of evolutionary games [29,



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 181 (2024) 114666F. Zimmaro et al.

a
n
O
m
(
a

ℎ

ℎ

𝛽

N
M
n
𝑚

t

𝑓

n
t
s
o
(

s
i
v
a
f
a

1
(

m
l

i
a
p
t

30]. Understanding the dynamics of a model whose entities are fully
connected can be highly beneficial for assessing the effect of some
more complex interaction topology. Therefore, before analysing the
outcomes of the proposed model in 𝑘-regular networks, we observe
those achieved by a fully-connected structure with a large number of
nodes 𝑁 . In this setting, each agent has a degree 𝑘 = 𝑁 − 1 ≃ 𝑁 . Also,

fraction 𝛼 of agents prefer the +1 strategy (group A, 𝑁𝐴 = 𝛼𝑁 in
umber), while the others prefer the strategy 0 (group B, 𝑁𝐵 = 𝑁−𝑁𝐴).
nce the mapping (10), we are left with a bi-populated mean-field Ising
odel [31–33], for which we derive the free energy in the large 𝑁 limit

12), calculate the stationary points through the mean-field Eqs. (13)
nd predict the equilibrium states.

The mapping for the complete network reads

𝑖 =
1 − 𝑆
4

𝑁 ∶= ℎ𝐴 ∀ 𝑖 ∈ 𝐴

𝑗 =
𝑆 − 1
4

𝑁 ∶= ℎ𝐵 = −ℎ𝐴 ∀ 𝑗 ∈ 𝐵

𝐽 = 1 + 𝑆
4

= 𝑅 = 𝑟
𝑁

(10)

otice that we obtain a generalization of the Random Field Ising
odel (RFIM) [34,35] with different numbers of sites with positive and

egative fields. Considering group A and B’s average magnetizations
𝐴∕𝐵 = 1

𝑁𝐴∕𝐵

∑

𝑖∈𝑉𝐴∕𝐵 𝜎𝑖 respectively (notice that 𝑚𝐴∕𝐵 = 2𝜌𝐴∕𝐵 − 1,
where 𝜌𝐴∕𝐵 is the fraction of individuals of group 𝐴∕𝐵 playing +1),
and the corresponding effective Hamiltonian

𝛽𝐻 = 𝑟
𝑁

[

−ℎ𝐴
∑

𝑖∈𝑉𝐴

𝜎𝑖 − ℎ𝐵
∑

𝑖∈𝑉𝐵

𝜎𝑖 − 𝐽
∑

𝑖𝑗∈𝐸
𝜎𝑖𝜎𝑗

]

, (11)

he free energy (see [31] for the derivation) reads

(𝑚𝐴, 𝑚𝐵 ;ℎ𝐴, ℎ𝐵 , 𝐽 , 𝑟, 𝛼) = − 𝑟
[

𝐽
2

(

𝛼2𝑚2
𝐴 + (1 − 𝛼)2𝑚2

𝐵 + 2𝛼(1 − 𝛼)𝑚𝐴𝑚𝐵

)

+ ℎ̃𝐴𝛼𝑚𝐴 + ℎ̃𝐵(1 − 𝛼)𝑚𝐵

]

+

− 𝛼𝐼(𝑚𝐴) − (1 − 𝛼)𝐼(𝑚𝐵) (12)

where ℎ̃𝐴∕𝐵 ∶=
ℎ𝐴∕𝐵
⟨𝑘⟩ =

ℎ𝐴∕𝐵
𝑁 = ± 1−𝑆

4 and 𝐼(𝑥) = − 1+𝑥
2 log( 1+𝑥2 ) −

1−𝑥
2 log( 1−𝑥2 ) is the binary entropy function. The values of the mag-
etizations 𝑚𝐴, 𝑚𝐵 at equilibrium, indicated with 𝑚∗

𝐴, 𝑚
∗
𝐵 , correspond

o the ones at the global minimum of the free energy functional. The
tationary points of the latter functional are the solution(s) of the set
f mean-field equations, obtained by setting to zero the derivatives of
12) with respect to 𝑚𝐴 and 𝑚𝐵 ,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚𝐴 = tanh

(

𝑟
[

ℎ̃𝐴 + 𝐽
(

𝛼𝑚𝐴 + (1 − 𝛼)𝑚𝐵

)]

)

𝑚𝐵 = tanh

(

𝑟
[

ℎ̃𝐵 + 𝐽
(

𝛼𝑚𝐴 + (1 − 𝛼)𝑚𝐵

)]

)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚𝐴 = tanh

(

𝑟
4

[

1 − 𝑆 + (1 + 𝑆)
(

𝛼𝑚𝐴 + (1 − 𝛼)𝑚𝐵

)]

)

𝑚𝐵 = tanh

(

𝑟
4

[

−1 + 𝑆 + (1 + 𝑆)
(

𝛼𝑚𝐴 + (1 − 𝛼)𝑚𝐵

)]

)

(13)

where the second system is the set of mean-field equations having
substituted the Ising parameters with the ones of the game. In Fig. 1
is reported the free energy and its stationary points for four values of
the rationality 𝑟, for 𝛼 = 0.5. In this particular case, exploiting the
ymmetry, we can take 𝑚∗

𝐴 + 𝑚∗
𝐵 as an order parameter and see that

t undergoes a transition from being unique and zero up to a certain
alue of the rationality (inverse temperature), to show a positive and
negative value (two stable fixed points) after that point. Moreover,

or very low rationalities (𝑟 = 0.1), the only fixed point is localized
round 𝑚∗ ≃ 𝑚∗ ≃ 0, meaning that the agents of both classes play
3

𝐴 𝐵
or 0 with approximately the same probability. For low rationalities
𝑟 = 2 in the figure), the fixed point is still unique but localized in the

fourth quadrant (𝑚∗
𝐴 > 0, 𝑚∗

𝐵 < 0), and a distance in average strategies
between the classes emerges (polarization). For higher rationality (𝑟 = 4
in the figure), two fixed points corresponding to local minima appear
as well as one saddle point: a phase transition of ferromagnetic type
has occurred, and the system ends up in one or the other minimum
with equal probability by spontaneous symmetry breaking. In the latter
states, one class has managed to induce the other to play in the majority
of its preferred strategy.

In [36], it is found that at least for ℎ𝐴 = ℎ𝐵 = 0 the equilibria of the
Glauber (Logit) dynamics and their associated stability correspond to
the stationary points of the free energy functionals, i.e. the solutions of
the mean-field system (13). We use the stationary states of the mean-
field free energy to predict the magnetizations at equilibrium (global
minimum) and, as a numerically tested approximation (see Fig. 2), to
identify the relaxation points of the game dynamics (local minima), also
for 𝛼 ≠ 0.5.

Last, we mention that the best-response regime is recovered for
𝑟 → ∞: in this regime (see [19] and, using a dynamical approach,
Appendix B), the fully polarized state (𝑚𝐴 = 1, 𝑚𝐵 = −1) is a stable
fixed point of the dynamics only for 𝑆 < 𝛼

1−𝛼 (assuming without loss of
generality that 𝛼 ≤ 0.5, see (B.6)), otherwise the only possible equilibria
are the two full consensus states (1, 1) and (−1,−1).

3.2. Random k-regular networks

Now, let us consider 𝑘-regular random networks [37], i.e. networks
whose nodes have the same finite degree 𝑘 with connections drawn
uniformly randomly. In this setting, by parametrizing 𝑅 = 𝑟

𝑘 , the
ean-field equation system coincides with (13). That is due to the

inear dependency of the field ℎ𝑖 on its degree 𝑘𝑖 (Eq. (9)) and the
homogeneity of degrees. Nevertheless, the mean-field approach is exact
in a complete network for 𝑁 → ∞, while the same does not apply
to regular networks. We expect the approximation to work better in
denser networks, i.e., networks having a higher 𝑘. In Fig. 2, we show
the mean-field predictions for the relaxation state (local minima of
the mean-field free energy) by comparing the simulation outcomes
of multiple games: we set 𝛼 = 0.4, thus 𝑆∗ = 0.67 (Eq. (B.6)), and
vary the rationality through 𝑟 for 𝑆 = 0.8 > 𝑆∗ (upper plots) and
for 𝑆 = 0.2 < 𝑆∗ (lower plots). The effects of the finite degrees are
discussed, at least in the regime of infinite rationality, in Appendix B.

3.3. Polarization and rationality

The mapping between the BoS game (on networks) and the Ising
model allowed us to gain a preliminary overview of the effects of
bounded rationality in these dynamics by an analytical approach. Now,
we study the relationships between group polarization and bounded
rationality by numerical simulations. For clarity, indicating with 𝜌𝐴∕𝐵(𝑡)
the evolution of the density of the agent with +1 opinion in the two
groups, the polarization is defined as the distance between the average
opinions of the two groups, i.e. 𝑃 (𝑡) = |𝜌𝐴(𝑡) − 𝜌𝐵(𝑡)|. Simulations
mplemented on a regular graph composed of 𝑁 = 1000 agents, with

finite degree 𝑘 = 30, 𝛼 = 0.4, consider various intensities of the
reference 𝑆 — see the legend of Fig. 3. In all cases, in the beginning,
he agents choose their preferred strategy, thus 𝜌𝐴(0) = 1, 𝜌𝐵(0) = 0. In

the figure, the dots are the values of the polarization at the stationary
state 𝑃 ∗ = |𝜌∗𝐴 − 𝜌∗𝐵| for different rationalities 𝑟 (𝑅 = 𝑟

𝑘 ), where 𝜌∗𝐴∕𝐵
are the averages of the densities of agents playing 1 at the state reached
after relaxation.

We see that the behaviour of the polarization as a function of
rationality is highly non-trivial. For all the values of 𝑆, at low ra-
tionalities, the polarization shows a monotonic behaviour for low 𝑟.
Then, polarization can either keep increasing (high 𝑆) until it becomes
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Fig. 1. Mean-field free energy for different rationalities 𝑟. The parameters of the game are set to 𝛼 = 0.5, 𝑆 = 0.6. In black, the local minima of the free energy, half-white and
half-black are the saddle points. In the last figure, as 𝑟 ≫ 1 the minima stand almost at the corners (1, 1) and (−1,−1), corresponding to full consensus.
Fig. 2. Mean-field predictions and simulations. The network is 𝑘-regular with 𝑁 = 5000 agents and 𝑘 = 30. The fraction of agents with +1 preference (group 𝐴) is 𝛼 = 0.4. The
figures show both the mean-field predictions for the stationary density of +1 spins with preference +1 (𝜌∗𝐴) of +1 spins with preference 0 (𝜌∗𝐵), and the behaviour of 𝜌𝐴(𝑡), 𝜌𝐵 (𝑡) as
a function of time for 10 simulations of the game with different initial conditions (𝜌𝐴(0), 𝜌𝐵 (0)), differentiated according to the couples of colours: light green/light blue correspond
to (0.9, 0.1), green/red to (0.1, 0.1), dark green/dark red to (0.9, 0.9). The dashed red/green horizontal lines are the mean-field predictions, i.e., the solutions of the mean-field system
corresponding to the local minima of the mean-field free energy, respectively 𝜌∗𝐴 = 1+𝑚∗

𝐴

2
and 𝜌∗𝐵 = 1+𝑚∗

𝐵

2
. In the upper row, 𝑆 = 0.8, while in the lower one 𝑆 = 0.2. The rationalities

𝑟 are specified in the titles of the plots.
maximum at infinite rationality (full polarization) or else it can de-
crease after reaching a peak (middle and low 𝑆). For middle 𝑆, at
4

a point, it suddenly bumps up to reaching almost full polarization
while, for low 𝑆, it stays very close to zero (almost consensus) even
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Fig. 3. Polarization at the stationary state, as a function of the rationality. We
consider simulated games on a regular graph of 𝑁 = 1000 agents with degree 𝑘 = 30 and
𝛼 = 0.4, for various intensities of the preference 𝑆 as in the legend. The initial condition
corresponds to everyone choosing his preferred strategy. The dots correspond to the
polarization value at the state after relaxation and are averaged over 10 independent
realizations of the model.

for infinite rationality. This behaviour roughly follows the mean-field
predictions but with some deviations that, in our interpretation, are
due to the finiteness of the degrees and the fluctuations induced by
limited rationality. The former may generate a cascade effect leading
the system to the state corresponding to consensus at the majority’s
preferred opinion (see Appendix B in the appendix for an extended
analysis), while limited rationality increases the fluctuations and thus
the possibility to fall into the basin of attraction of the consensus points.
Both the effects favour the approach to the (almost-)consensus states
even for stronger preference intensities (low 𝑆) concerning what is
predicted within the mean-field approximation (see Fig. 4d).

3.4. Asymmetric games of Hernandez et al.

Both the models of Broere et al. [15] and Hernandez et al. [13]
consider two classes of agents, 𝐴,𝐵, with conflicting preferences of
equal intensities. The difference is in the fact that Hernandez et al.
consider a further reward for the agent’s choice independent of the
neighbours’ choices, i.e. what we call single term 𝜒 (1) in (A.1), which
is greater if the chosen strategy corresponds to the preferred one. Thus,
for the model of Hernandez et al. with rewards 0 < 𝛽 < 𝛼 < 2𝛽 (see the
payoff matrix of [13]), we have in our notation

𝑟(1)𝐴 = 𝛼 𝑟(0)𝐴 = 𝛽 𝑟(1)𝐵 = 𝛽 𝑟(0)𝐵 = 𝛼

𝑎(11)𝐴 = 𝛼 𝑎(10)𝐴 = 0 𝑎(11)𝐵 = 𝛽 𝑎(10)𝐵 = 0

𝑎(01)𝐴 = 0 𝑎(00)𝐴 = 𝛽 𝑎(01)𝐵 = 0 𝑎(00)𝐵 = 𝛼 (14)

Thus, by following the mapping towards the Ising model reported in
the appendix, one notes that 𝜒 (1) just adds a term in the magnetic field
(Eq. (A.27)), which is subleading in 𝑘.

4. Discussion

In this work, we studied asymmetric games with bounded rational-
ity, mapping their dynamics to that of an Ising model. We consider
agents endowed with a fixed preference in a binary opinion system,
leading to the formation of two communities (or groups). Namely, each
group is biased towards one of the two opinions, say 0 and 1, respec-
tively. Also, while preferences cannot change, i.e. are fixed, agents
can change opinions. The agents’ rationality, corresponding to the
system temperature [38], affects the population dynamics [39]. Then,
5

mapping the agent population to the Ising model, the convergence of
the agents towards stable opinions resembles a phase transition. For
instance, low rationality entails the existence of a single equilibrium.
Conversely, higher values of rationality may lead the system towards
configurations with two or more stable states. In this context, an
equilibrium corresponds to a state with two groups having an average
density stable over time. While the mathematical formulation of the
model is independent of the agent population structure, we performed
the analysis considering a complete and a 𝑘-regular network. The
analytical calculations rely on the mean-field approximation that, as
known, is not exact for 𝑘-regular networks. Therefore, for the second
structure (i.e. the 𝑘-regular network), we investigated the effects of
finite degrees using numerical simulations. Our analyses include two
conditions, i.e. bounded and infinite rationality.

It turns out that bounded rationality and preference intensity deter-
mine a series of possible scenarios characterized by different levels of
polarization (i.e. the distance between the groups in terms of average
opinion). Within the mean-field theory, we find the following cases:

• low rationality: there exists a unique stable state weakly polarized
(whose polarization depends on the preference intensity);

• high rationality and low preference intensity: there exist two fixed
points corresponding to almost-consensus states at one and the
other opinion (so with very low polarization);

• high rationality and high preference intensity: there exists instead
a single fixed point corresponding to a strongly polarized state;

• very high rationality and in the limit of infinite rationality, for
high preference intensities: two consensus fixed points pop up and
stand together with the polarized one.

In the presence of multiple fixed points, the reached one depends
on the initial conditions and single realizations. The finiteness of the
network and the network’s degrees, breaking the mean-field assump-
tions, favours in general (almost-)consensus states, especially for low
rationality.

Interpreting the rationality as the agents’ attention to minimize
their personal and social dissonances (as in [40,41]), increasing the
latter from a weakly polarized state may lead the system to an almost-
complete consensus state or a very polarized one, depending on the
preference intensity. Accordingly, a policy-maker aiming to curb con-
flicts in a community should be aware of groups of individuals with
fixed conflicting preferences towards specific issues — see also [42]
on this topic. For instance, raising attention to one of these issues can
divide public opinion and severely increase polarization. On the other
hand, if the preference intensities are sufficiently low, raising attention
to an issue makes public opinion reach a low conflict, almost-consensus
state, albeit some individuals have falsified their preferences.

Beyond that, our work sheds light on the dynamics of asymmetric
games, typically studied by numerical simulations and infinite rational-
ity [19]. Let us remark that the mapping to the Ising model is performed
by assuming opposite preferences of equal intensity (Broere’s model),
Logit-rule as a dynamical rule for the opinion update, and homogeneous
rationality in the population.

5. Conclusion

In summary, our work clarifies some aspects of the dynamics of
asymmetric games through random field models. Interestingly, the
achieved results find interpretations within the context of opinion
dynamics and the formation of coordination. While previous investi-
gations, oriented towards social systems, attempted to describe sim-
ilar scenarios, in this investigation, we focus on asymmetric games
played by agents endowed with bounded rationality and map them
to random field Ising models. As reported above, results show the
emergence of opinion polarization and consensus, depending on the

agents’ rationality. In light of that, we deem our study sheds light on
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Fig. 4. Best-response: mean-field predictions and low degree effects. (a), (b) and (c) show the vector field related to the mean-field predictions of the dynamics (Eq. (B.2))
and the corresponding stable fixed points (black dots at the corners). Moreover, the trajectories of the system evolutions from various initial conditions, corresponding to different
colours, are reported. The initial states are indicated with the coloured dots. In all the simulations and predictions 𝑁 = 1000 and 𝛼 = 0.4. In (a) and (c), as 𝑆 < 𝑆∗ the polarized
state is a stable fixed point. Nevertheless, the polarized state is actually reached only in (a) (𝑘 = 300), while for a lower degree, in (c) (𝑘 = 30), it is never reached as the mean-field
assumptions break. Figure (d) reports the empirical thresholds (triangles) as a function of the degree of the regular graph, for various values of 𝛼 as in the legend and 𝑁 = 1000.

For each 𝛼, the mean-field prediction 𝑆∗

𝛼 (B.6) is also reported (horizontal thin lines).
relevant aspects of asymmetric games, and the proposed formalization
in terms of random fields can support further works in this direction.
Notwithstanding, several aspects still deserve attention. To cite a few,
future investigations may study the role of heterogeneous networks
(e.g. small-world structures and scale-free networks [43], multi-layer
networks [44], and networks with higher-order interactions [45]), the
effect of homophily reflecting the preferences’ assignment, as in a
previous work [46], and that of larger opinion systems. Eventually,
further developments can relate to the framework of evolutionary game
theory. For instance, treating opinions as strategies, the preferences
could describe the agents’ attitude towards cooperation or defection in
dilemma games. To conclude, we remark that our results rely on the
mapping to the Ising model. Thus, further developments in applying
statistical mechanics to opinion dynamics and (evolutionary) game
theory [47] can exploit the formalism we proposed in this work.
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Appendix A. Asymmetric network games and Ising models

A general coordination or anticoordination game on a network
𝐺 = (𝑉 ,𝐸) with arbitrary order interactions, 𝑖 = 1,… , 𝑁 agents, two
strategies 𝑥𝑖 = {0, 1} and response (dynamical rule) depending only
on the agent’s possible payoffs, can be expressed through the payoff
functions of each agent

𝜋𝑖(𝑥𝑖, 𝐱−𝐢) = 𝜒 (1)
𝑖 (𝑥𝑖) + 𝜒 (2𝐶)

𝑖 (𝑥𝑖)
∑

𝑗∈𝜕𝑖
𝐼{𝑥𝑖=𝑥𝑗} + 𝜒 (2𝐴𝐶)

𝑖 (𝑥𝑖)
∑

𝑗∈𝜕𝑖
𝐼{𝑥𝑖≠𝑥𝑗}

+ 𝜒 (3𝐶)
𝑖 (𝑥𝑖)

∑

⟨𝑖𝑗𝑘⟩∈𝐺
𝐼{𝑥𝑖=𝑥𝑗=𝑥𝑘} +⋯

where 𝜒 (1)
𝑖 (𝑥𝑖) is the reward for agent 𝑖 choosing strategy 𝑥𝑖, 𝜒

(2𝐶)
𝑖 (𝑥𝑖)

the reward for each successful coordination at 𝑥𝑖, 𝜒
(2𝐴𝐶)
𝑖 (𝑥𝑖) for each

pairwise anti-coordination, 𝜒 (3𝐶)
𝑖 (𝑥𝑖) for each coordination in an hyper-

edge with two neighbours of 𝑖 and so on.
We consider so far only single and pairwise interactions, so the

payoff before reduces to

𝜋𝑖(𝑥𝑖, 𝐱−𝐢) = 𝜒 (1)
𝑖 (𝑥𝑖) + 𝜒 (2𝐶)

𝑖 (𝑥𝑖)
∑

𝐼{𝑥𝑖=𝑥𝑗} + 𝜒 (2𝐴𝐶)
𝑖 (𝑥𝑖)

∑

𝐼{𝑥𝑖≠𝑥𝑗} (A.1)

𝑗∈𝜕𝑖 𝑗∈𝜕𝑖
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𝛼

𝛾
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𝜋

T

ℎ

Now we can use the matrix representation of the payoff, expliciting

𝜒 (1)
𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑟(1)𝑖 if 𝑥𝑖 = 1

𝑟(0)𝑖 if 𝑥𝑖 = 0
(A.2)

𝜒 (2𝐶)
𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑎(11)𝑖 if 𝑥𝑖 = 1

𝑎(00)𝑖 if 𝑥𝑖 = 0
(A.3)

𝜒 (2𝐴𝐶)
𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑎(10)𝑖 if 𝑥𝑖 = 1

𝑎(01)𝑖 if 𝑥𝑖 = 0
(A.4)

considering for the moment 𝑟(1)𝑖 = 𝑟(0)𝑖 = 0, for each pairwise interaction
of the agent 𝑖

⋅
1 0

𝐢 1 (𝑎(11)𝑖 , ⋅) (𝑎(10)𝑖 , ⋅)
0 (𝑎(01)𝑖 , ⋅) (𝑎(00)𝑖 , ⋅)

(A.5)

Now using the vector representation 𝑎 = (𝑎(11), 𝑎(10), 𝑎(01), 𝑎(00)), we
decompose such vector in four orthogonal components

⃗ = (1, 1,−1,−1) (A.6)

𝛽 = (1,−1, 1,−1) (A.7)

𝛾 = (1,−1,−1, 1) (A.8)

𝜂 = (1, 1, 1, 1) (A.9)

so that a generic payoff matrix can be written in the so called normal-
form as

⋅
1 0

𝐢 1 (𝛼𝑖 + 𝛽𝑖 + 𝛾𝑖 + 𝜂𝑖, ⋅) (𝛼𝑖 − 𝛽𝑖 − 𝛾𝑖 + 𝜂𝑖, ⋅)
0 (−𝛼𝑖 + 𝛽𝑖 − 𝛾𝑖 + 𝜂𝑖, ⋅) (−𝛼𝑖 − 𝛽𝑖 + 𝛾𝑖 + 𝜂𝑖, ⋅)

(A.10)

from which we interpret 𝛼𝑖 as the reward to choose the preferred
action, 𝛾𝑖 the reward for achieving coordination, 𝛽𝑖 the external payoff
depending only on the other agent’s action and 𝜂𝑖 as a free independent
reward, all for agent 𝑖. The coefficients come from the system 𝑎𝑖 =
𝛼𝑖𝛼⃗ + 𝛽𝑖𝛽 + 𝛾𝑖𝛾 + 𝜂𝑖𝜂, i.e.,

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 1
1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝛼
𝛽
𝛾
𝜂

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑎(11)

𝑎(10)

𝑎(01)

𝑎(00)

⎤

⎥

⎥

⎥

⎥

⎦

(A.11)

which inverted gives

𝛼𝑖 =
𝑎(11)𝑖 + 𝑎(10)𝑖 − 𝑎(01)𝑖 − 𝑎(00)𝑖

4
𝛽𝑖 =

𝑎(11)𝑖 − 𝑎(10)𝑖 + 𝑎(01)𝑖 − 𝑎(00)𝑖
4

𝑖 =
𝑎(11)𝑖 − 𝑎(10)𝑖 − 𝑎(01)𝑖 + 𝑎(00)𝑖

4
𝜂𝑖 =

𝑎(11)𝑖 + 𝑎(10)𝑖 + 𝑎(01)𝑖 + 𝑎(00)𝑖
4

(A.12)

When the response function determining the dynamics depends only
n the difference between the payoffs for the selected agent associated
o the two strategies (e.g. best response, stochastic best response,
ogit-rule etc.), we have that

(1, 𝐱−𝐢) − 𝜋(0, 𝐱−𝐢) =
[

𝑎(10)𝑖

∑

𝑗∈𝜕𝑖
(1 − 𝑥𝑗 ) + 𝑎(11)𝑖

∑

𝑗∈𝜕𝑖
𝑥𝑗

]

−
[

𝑎(00)𝑖

∑

𝑗∈𝜕𝑖
(1 − 𝑥𝑗 ) + 𝑎(01)𝑖

∑

𝑗∈𝜕𝑖
𝑥𝑗

]

= (A.13)

= (𝑎(11)𝑖 − 𝑎(01)𝑖 )
∑

𝑗∈𝜕𝑖
𝑥𝑗 − (𝑎(00)𝑖 − 𝑎(10)𝑖 )

∑

𝑗∈𝜕𝑖
(1 − 𝑥𝑗 ) =
7

(A.14)
= 2(𝛼𝑖 + 𝛾𝑖)
∑

𝑗∈𝜕𝑖
𝑥𝑗 − 2(−𝛼𝑖 + 𝛾𝑖)

∑

𝑗∈𝜕𝑖
(1 − 𝑥𝑗 ) (A.15)

having applied the decomposition before.
As the dynamics depends only on the preference and coordination

terms, without loss of generality we can simplify the game considering
the payoff matrix without the 𝛽 and 𝜂 terms

⋅
1 0

𝐢 1 (𝛼𝑖 + 𝛾𝑖, ⋅) (𝛼𝑖 − 𝛾𝑖, ⋅)
0 (−𝛼𝑖 − 𝛾𝑖, ⋅) (−𝛼𝑖 + 𝛾𝑖, ⋅)

(A.16)

Moreover [48], such game has a potential if and only if

𝛾𝑖 = 𝛾𝑗 ∀ 𝑖𝑗 ∈ 𝐸 (A.17)

so, assuming that the network has a single connected component, if and
only if

(𝑎(11)𝑖 + 𝑎(00)𝑖 ) − (𝑎(01)𝑖 + 𝑎(10)𝑖 ) = 𝐶 ∀ 𝑖 = 1,… , 𝑁 (A.18)

with the same constant 𝐶. Thus, the game evolving with Logit rule is
mappable to an Ising model evolving with Glauber dynamics [24,27].

Considering 𝛾𝑖 = 𝛾 ∀𝑖 and manipulating the expression of the payoff
difference we get

𝜋(1, 𝐱−𝐢) − 𝜋(0, 𝐱−𝐢) = 2
∑

𝑗∈𝜕𝑖
(𝛼𝑖 + 𝛾(2𝑥𝑗 − 1)) =

= 2𝑘𝑖𝛼𝑖 + 2𝛾
∑

𝑗∈𝜕𝑖
(2𝑥𝑗 − 1)

(A.19)

where 𝑘𝑖 is the degree of node 𝑖.
We then pass to the spin variables 𝝈 = {−1,+1}𝑁 through 𝜎𝑖 =

2𝑥𝑖 − 1 ∀ 𝑖 = 1,… , 𝑁 , so

𝜋(1, 𝐱−𝐢) − 𝜋(0, 𝐱−𝐢) = 𝜋(1,𝝈−𝐢) − 𝜋(−1,𝝈−𝐢) = 2𝑘𝑖𝛼𝑖 + 2𝛾
∑

𝑗∈𝜕𝑖
𝜎𝑗 (A.20)

Successively, we write the energy difference between two configu-
rations after the flipping of a spin of an Ising model with fields 𝒉 =
{ℎ𝑗}𝑗∈𝑉 and homogeneous couplings 𝐽𝑖𝑗 = 𝐽 ∀ 𝑖𝑗 ∈ 𝐸, on the same
network

𝐻(𝜎𝑖 = 1,𝝈−𝐢) −𝐻(𝜎𝑖 = −1,𝝈−𝐢) = −2ℎ𝑖 − 2𝐽
∑

𝑗∈𝜕𝑖
𝜎𝑗 (A.21)

From that we get immediately the mapping of the general game on net-
work evolving with Logit rule with rationality 𝑅 to an Ising model on
the same network evolving with Glauber dynamics with Hamiltonian

𝐻 = −
∑

𝑖
ℎ𝑖𝜎𝑖 − 𝐽

∑

𝑖𝑗∈𝐸
𝜎𝑖𝜎𝑗 (A.22)

and inverse temperature 𝛽, respectively

𝑃𝑖(𝑥𝑖) =
𝑒𝑅[𝜋𝑖(𝑥𝑖;𝜃𝑖)−𝜋𝑖(0;𝜃𝑖)]

1 + 𝑒𝑅[𝜋𝑖(1;𝜃𝑖)−𝜋𝑖(0;𝜃𝑖)]
𝑃𝑖(𝜎𝑖) =

𝑒−𝛽[𝐻(𝜎𝑖 ,𝝈−𝐢)−𝐻(−1,𝝈−𝐢)]

1 + 𝑒−𝛽[𝐻(+1,𝝈−𝐢)−𝐻(−1,𝝈−𝐢)]

(A.23)

he mapping reads

𝑖 = 𝑘𝑖𝛼𝑖 =
(𝑎(11)𝑖 + 𝑎(10)𝑖 ) − (𝑎(00)𝑖 + 𝑎(01)𝑖 )

4
𝑘𝑖 𝑖 = 1,… , 𝑁 (A.24)

𝐽 = 𝛾 =
(𝑎(11)𝑖 + 𝑎(00)𝑖 ) − (𝑎(01)𝑖 + 𝑎(10)𝑖 )

4
(A.25)

𝛽 = 𝑅 (A.26)

Last, it is easy to see that the single term 𝜒 (1)
𝑖 adds a term to the payoff

difference of 𝑟(1)𝑖 − 𝑟(0)𝑖 , so modifies the Ising magnetic fields in the way

ℎ𝑖 = 𝑘𝑖𝛼𝑖 +
𝑟(1)𝑖 − 𝑟(0)𝑖

2

=
(𝑎(11)𝑖 + 𝑎(10)𝑖 ) − (𝑎(00)𝑖 + 𝑎(01)𝑖 )

4
𝑘𝑖 +

𝑟(1)𝑖 − 𝑟(0)𝑖
2

𝑖 = 1,… , 𝑁
(A.27)
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𝑆

𝐽 = 𝛾 =
(𝑎(11)𝑖 + 𝑎(00)𝑖 ) − (𝑎(01)𝑖 + 𝑎(10)𝑖 )

4
(A.28)

Appendix B. Mean-field results for best-response

Here, we analyse the case in which all the selected agents choose
the action that gives them the highest payoff. This dynamical rule
(best response) corresponds to assuming agents with infinite rationality
(𝑅 → ∞). We write the dynamical equations in the mean-field (well-
mixed) approximation and prove that, in this case, only two or three
equilibrium states are present: two consensus states at one or the other
strategy, and one polarized state where each individual chooses its
preferred opinion. We find that the polarized state is a (stable) fixed
point of the system only for some combinations of the preference
intensity 𝑆 and the system composition 𝛼.

We refer to 𝛼 ≡ 𝛼𝐴 as the fraction of individuals with 1 as preferred
action (and thus 𝛼𝐵 = 1 − 𝛼), as in the main text, and to

𝜌̃𝐴 =

∑

𝑖∶𝜃𝑖=1 𝑥𝑖
𝑁

∈ [0, 𝛼] 𝜌̃𝐵 =

∑

𝑖∶𝜃𝑖=0 𝑥𝑖
𝑁

∈ [0, 1 − 𝛼] (B.1)

as the time-dependent number of agents with preferences respectively
1 and 0 playing action 1, over the total number of agents. Notice that
𝜌̃𝐴∕𝐵 = 𝛼𝐴∕𝐵𝜌𝐴∕𝐵 .

It is easy to see that the preference intensity determines the thresh-
old of nearest neighbours playing action +1 over which is convenient
to play +1 (without any preference this threshold is 1

2 ) and vice versa.
Within the well-mixed approximation, i.e. when each agent’s ego-
network perfectly reflects the whole system and no local fluctuations
are included, the changes ̇̃𝜌𝐴, ̇̃𝜌𝐵 of the dynamical variables per unit
ime (1 unit time corresponds to 𝑁 steps of the dynamics, in order to
ccount for the system size) read

̇̃𝜌𝐴 = (𝛼 − 𝜌̃𝐴)𝜃(𝜌̃𝐴 + 𝜌̃𝐵 − 𝑆
1+𝑆 ) − 𝜌̃𝐴𝜃(

𝑆
1+𝑆 − (𝜌̃𝐴 + 𝜌̃𝐵))

̇̃𝜌𝐵 = (1 − 𝛼 − 𝜌̃𝐵)𝜃(𝜌̃𝐴 + 𝜌̃𝐵 − 1
1+𝑆 ) − 𝜌̃𝐵𝜃(

1
1+𝑆 − (𝜌̃𝐴 + 𝜌̃𝐵))

(B.2)

here 𝜃(𝑥) is the Heaviside step function, i.e. equal to 1 if 𝑥 > 0
nd 0 otherwise. Thus the dynamics can be divided into three zones,
epending on the total density of agents playing 1 in the system 𝜌 =
𝐴 + 𝜌𝐵 =

∑

𝑖 𝑥𝑖
𝑁 : when 𝜌 < 𝑆

1+𝑆

̇̃𝜌𝐴 = −𝜌̃𝐴
̇̃𝜌𝐵 = −𝜌̃𝐵

(B.3)

hen 𝜌 ∈ [ 𝑆
1+𝑆 ,

1
1+𝑆 ]

̇̃𝜌𝐴 = 𝛼 − 𝜌̃𝐴
̇̃𝜌𝐵 = −𝜌̃𝐵

(B.4)

and when 𝜌 > 1
1+𝑆

̇̃𝜌𝐴 = 𝛼 − 𝜌̃𝐴
̇̃𝜌𝐵 = 1 − 𝛼 − 𝜌̃𝐵

(B.5)

It is easy to verify, by solving the fixed point equations and performing
a simple linear stability analysis, that each of the zones potentially has
a stable fixed point: these are, in the 𝜌𝐴, 𝜌𝐵 plane, respectively (0, 0)
for the first, (𝛼, 0) for the second and (𝛼, 1 − 𝛼) for the third zone. If
it is true that both the consensus state are always located within the
corresponding areas and thus always exist, this cannot be said for the
fully polarized one: (𝛼, 0) is a (stable) fixed point if and only if it falls
in the area defined by the second condition 𝜌 ∈ [ 𝑆

1+𝑆 ,
1

1+𝑆 ], so if 𝛼 is in
the range [ 𝑆

1+𝑆 ,
1

1+𝑆 ]. If without loss of generality, we take 𝛼 < 0.5, the
atter condition corresponds to a threshold on the preference intensity
∗ = 𝛼

1 − 𝛼
(B.6)

For values of 𝑆 above 𝑆∗, starting from everyone choosing his preferred
action the system will move to consensus towards one of the two
opinions (typically the one of the majority), while for 𝑆 < 𝑆∗ the
8

preference intensity is sufficient to make the system remain in the fully
polarized state. The mean-field dynamics is represented by the vector
field and it is tested on a large degree network 𝑘 = 300 of 𝑁 = 1000
agents for multiple initial conditions, in Fig. 4a for 𝑆 = 0.5 and in
Fig. 4b for 𝑆 = 0.8.

When testing the mean-field predictions on a sparser graph, we
see that the accuracy of the mean-field predictions and specifically
the mean-field threshold (B.6) considerably decreases even for random
graphs with large average degrees, as shown in Fig. 4c for 𝑘 = 30. In
Fig. 4d we report the empirical threshold as a function of the average
degree of a random regular graph of 𝑁 = 1000 agents, for various
compositions 𝛼 corresponding to the different colours. The empirical
threshold is defined as the largest value of 𝑆 for which, starting from
the fully polarized state of the system, over an ensemble of the system’s
trajectories the majority of them do not approach full consensus. The
motivation for the correction to the mean-field predictions for the
threshold resides in the validity of the mean-field assumption that
assumes that each agent’s ego-network is a perfect sample of the whole
network, both topologically (the neighbours’ belonging classes) and
dynamically (distribution of current opinions): in a random graph some
nodes have an ego-network that deviates from the average one, the
more the smaller is the average degree. Thus, having e.g. a higher num-
ber of connections with one class with respect to the average, the agents
would adopt more easily that class’ preference and may induce other
agents of the same population to follow them, generating a cascade
effect that provokes consistent fluctuations, i.e. deviations from the
mean-field predicted behaviour, possibly making the system fall into
the basin of attraction of the consensus points. By analysing the numer-
ical simulations, we speculate that the effect is amplified by the noise
induced by bounded rationality, which generally increases the fluctu-
ations and thus the possibility of falling into the basin of attraction of
the equilibrium states corresponding to (almost-)consensus.
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