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Abstract
We study the impact of fuzziness on the behavior of Fuzzy Rule-Based Classifiers (FRBCs) defined by trapezoidal fuzzy
sets forming Strong Fuzzy Partitions. In particular, if an FRBC selects the class related to the rule with the highest activation
(so-calledWinner-Takes-All approach), then fuzziness, as quantified by the slope of the membership functions, has no impact
in classifying data in regions of the input space where rules dominate. On the other hand, fuzziness affects the behaviour of
the FRBC in regions where the confidence in classification is low. As a consequence, in the context of Explainable Artificial
Intelligence, fuzziness is profitable in FRBCs only if classification is accompanied by an explanation of the confidence of the
provided outputs.

Keywords Fuzziness · Strong fuzzy partition · Fuzzy rule-based classifier · XAI

1 Introduction

Explainable artificial intelligence (XAI) is a blooming
research field propelled by the increasing demand of intel-
ligent systems which should provide accurate answers to
complex problems as well as some kind of human-oriented
added values (explanations in choices, rationale and confi-
dence in decisions, possible alternative strategies, and so on)
(Hagras 2018). The field of application of XAI spans sev-
eral areas, including Industry 4.0 scenarios (Lu 2019; Xu
et al. 2018). From the methodological viewpoint, there are
many ways to embody explainability in intelligent systems,
from opening black-box models (Guidotti et al. 2018) to the
development of specific methods (Biran and Cotton 2017).
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Fuzzy Logic systems have a great potential in the devel-
opment of XAI solutions. In fact, they are able to express
knowledge in a human-oriented fashion thanks to the adop-
tion of a paradigm enabling the use of natural language terms
(Computing with Words) (Zadeh 1999). Such a capability
allows to provide the users with readable explanations of
the embodied knowledge (represented in a perception-based
fashion), and may guarantee also illustrative details concern-
ing the inference process behind certain results (Zadeh 2008).

Nevertheless, attention must be paid to the semantics of
the formal objects involved in knowledge representation and
reasoning. This is to avoid that explanation is only illusory
appearance which does not convey any piece of meaningful
information. Therefore, when designing an XAI system, the
quality of the underlying model should not be evaluated in
terms of predictive accuracy only, but also taking into account
the capability of generating meaningful information. This is
not an easy task; yet it sheds light on new ways of analyzing
existing approaches or devising new ones.

In this paper we focus on Fuzzy Rule-Based Classifiers
(FRBCs), which are commonly praised for their ability of
representing knowledge in an interpretable form (Gorza-
łczany and Rudziński 2017; Alonso et al. 2008). In essence,
an FRBC is based on a knowledge base represented by a
collection of rules. They are easy to be read and understood,
provided that they have been designed by taking into account
interpretability constraints (AlonsoMoral et al. 2021). Given
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an input sample, a fuzzy inference mechanism is triggered,
so that the FRBC returns in output a class label. Therefore,
an FRBC usually behaves like many other classifiers—not
necessarily based on fuzzy logic—but enables a clear inter-
pretation of the knowledge base through the adoption of
linguistic terms that reflect the imprecision of perception-
based concepts.

In XAI, an obvious step forward consists in endowing
FRBCswith the ability to explain the inferred class for a given
object. In literature, powerful methods have been designed
to give highly comprehensible explanations by using Natu-
ral Language Generation (NLG) techniques (Alonso et al.
2017). Usually, such explanation systems provide a sym-
bolic description representing the reasoning process behind
the automatic classification; however, the next question is:
howmuch does the fuzziness of the involved linguistic terms
affect such explanation? That is the core of this study.

In Sect. 2 we give an account of Strong Fuzzy Partitions
(SFPs), which are widely used in FRBC design. Although
FRBCs can be designed in different ways, we restrict our
attention to SFPs with trapezoidal fuzzy sets because they
enable the design of interpretable classification rules, thus
explaining their widespread employment. Also, trapezoidal
fuzzy sets can be easily designed so as to satisfy SFP con-
straints, while being flexible enough to adapt to data. The
sameSection introduces someproperties of trapezoidal fuzzy
sets that are instrumental for the arguments reported in
Sect. 2.1, where FRBCs are formalized and the impact of
fuzziness on the classification function is analyzed. The out-
comes of an experimental session are reported in Sect. 3
to give a visual and quantitative account of the theoretical
results on some synthetic data. Finally, a concluding section
discusses the theoretical results from a methodological point
of view.

2 Strong fuzzy partitions with trapezoidal
fuzzy sets

Let X = [l, u] ⊂ R be a Universe of Discourse and let
A1, A2, . . . , An+1 be a sequence of normal and convex fuzzy
sets defined on X . Such a sequence of fuzzy sets constitutes
a Strong Fuzzy Partition (SFP) (Dubois et al. 1995; Loquin
and Strauss 2006; Perfilieva 2006) provided that:1

∀x ∈ X :
n+1∑

i=1

Ai (x) = 1 (1)

Eq. (1) is often referred as Ruspini condition after (Rus-
pini 1969). The employment of SFPs is quite common in

1 We will denote by Ai both the fuzzy set and its membership function
for the sake of conciseness in our notation.

fuzzy modeling, especially when interpretability is a model-
ing requirement (Alonso Moral et al. 2021).

The membership function of a trapezoidal fuzzy set is a
piece-wise linear function constrained by four parameters
a, b, c, d ∈ X . Provided that a ≤ b ≤ c ≤ d, a trapezoidal
fuzzy set T [a, b, c, d] is defined for each x ∈ X as follows:

T [a, b, c, d](x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x−a
b−a , x ∈ [a, b[
1 x ∈ [b, c[
x−d
c−d , x ∈ [c, d[
0 x < a ∨ x ≥ d

(2)

It should be observed that a trapezoidal fuzzy set collapses
to a triangular fuzzy set whenever b = c.

Trapezoidal fuzzy sets are convenient in FRBC design
because they can be easily constrained in order to generate
an SFP. To produce an SFP composed by trapezoidal fuzzy
sets with membership functions Ai = T [ai , bi , ci , di ] (i =
1, . . . , n + 1), the following conditions must hold:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1 = b1 = l,

ai+1 = ci , (i = 1, . . . , n)

bi+1 = di , (i = 1, . . . , n)

cn+1 = dn+1 = u

(3)

The intersection point between two contiguous fuzzy
sets Ai , Ai+1 is called cut-point and it is denoted by ti
(i = 1, . . . , n).2 It is easy to verify that

Ai (ti ) = Ai+1(ti ) = 0.5

In this way, a sequence t1, t2, . . . , tn of cut-points is defined
such that ti−1 ≤ ti , which can be extended by including
t0 = l and tn+1 = u. As a consequence, the 0.5-cut of a
trapezoidal fuzzy set

[Ai ]0.5 = {x ∈ X : Ai (x) ≥ 0.5}

coincides with an interval identified by consecutive cut-
points:

[Ai ]0.5 = [
ti−1, ti

]
1 ≤ i ≤ n + 1 (4)

A key feature of a trapezoidal fuzzy set is the slope of the
left and right boundaries, which are informally identified as
the two areas of the domain where the membership degrees
are neither 0 nor 1. Formally, the left and right boundaries
are the open intervals ]a, b[ and ]c, d[ respectively. (One
of the two boundaries can be empty for the leftmost and

2 We used the term cut in our previous papers (Castiello and Mencar
2019; Castiello et al. 2019; Mencar et al. 2013).
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rightmost fuzzy sets; both boundaries are empty in the case
of a singleton fuzzy set.)

In case of non-empty boundaries, the corresponding slope
of a trapezoidal fuzzy set T [a, b, c, d] is

sl = 1

b − a

for the left boundary and

sr = 1

c − d

for the right boundary. An interesting property for the sake
of our study is that the 0.5-cut of a trapezoidal fuzzy set is
unaffected by the left and right slopes if the cut-points are
fixed. In fact, according to the definition of trapezoidal fuzzy
set (2),

Ai (ti ) = 0.5 → ti = ci + di
2

= ai+1 + bi+1

2

therefore, by replacing ci with c′
i = ci − k and di with d ′

i =
di + k, for any k that preserves (2), and changing ai+1 and
bi+1 accordingly, the position of the cut-points ti does not
change, therefore the 0.5-cut of Ai as in (4) is unaffected.

In the following, we are going to dwell on this concept
to analyze the impact of the boundaries on the inference
mechanism of an FRBC. As a note of caution, in this work
we assume that the cut-points are kept fixed because we are
not interested in the ability of an FRBC in adapting to data,
but rather on how the fuzziness of the trapezoidal fuzzy sets
affects the classification function.

2.1 Classification via fuzzy rules

Let X1, X2, . . . , Xm be a collection of Universes of Dis-
course, each defined as

X j = [
l j , u j

] ⊂ R

for j = 1, 2, . . . ,m. For each X j , an SFP A1, j , . . . , An j+1, j

of trapezoidal fuzzy sets on X j is considered. Also, let C be
a finite set of class labels.

A rule R is identified by the pair

R = (A, c)

where the antecedent is a fuzzy setA defined over the Carte-
sian productX of the aforementionedUniverses ofDiscourse

X = X1 × · · · × Xm,

with membership function

A(x) = min{Ai1,1(x1), . . . , Aim ,m(xm)},

being x = (x1, . . . , xm) ∈ X, and c ∈ C is the consequent
of the rule.

An FRBC is defined by a collection

S = {R1, R2, . . . , Rr }

of rules Rk = (Ak, ck), with the constraint that any couple
of rules cannot share the same antecedent, i.e. Ak′ 
= Ak′′
for any k′ 
= k′′. It should be noted that the collection S
is determined on the basis of the aforementioned SFP and it
does not necessarily coincide with a grid partition (in this
sense, the grid partition represents just a special case of
the described arrangement). In general, data-driven meth-
ods generate a small set of rules based on available training
data to avoid combinatorial rule explosion, therefore we can
expect to count in S a fewer number of rules with respect to
those related to the full combination of possibilities coming
from a grid partition. As a consequence of our assumptions,
the Ruffini condition is imposed while partitioning each sin-
gle dimension, but it does not represent a constraint to be
verified on the rule antecedents.

The FRBC S is supposed to be applicable to a domain D
such that

D ⊆
⋃

k

suppAk (5)

where suppAk = {x : Ak(x) > 0}. In this way, we avoid the
undesirable case of inputs for which no rules can be applied.
The design process of an FRBC should ensure that no data
fall outside the support of all rules.3

Given an input x ∈ D, the inference function of the FRBC
S is carried out as

fS (x) = c

such that c = ck∗ and

k∗ = argmax
k

Ak (x)

i.e., the class returned by the FRBC is the one related to
the rule with highest membership degree for the given input
(ties are solved arbitrarily.) This inference rule is also called
“Winner-Takes-All” (Angelov and Xiaowei 2008).

3 It may be the case that some classifiers designed from data do not
have rules covering some newly-observed data samples: In this situa-
tion, the classifier either refuses to classify or it carries out a random
classification.
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Given a rule R = (A, c), we define the region of domi-
nance of R as

[A]+0.5 = {x : A(x) > 0.5}

It is important to notice that the region of dominance of a rule
is completely characterized by the cut-points of the underly-
ing SFPs; in fact,

[A]+0.5 = ]
ti1−1,1, ti1,1

[ × · · · × ]
tim−1,m, tim ,m

[
(6)

where ti j , j = ti j , being ti j the i j -th cut-points of the SFP
defined on X j for all i j > 0. The validity of (6) can be
easily checked by observing that A(x) > 0.5 if and only
if, for each j = 1, 2, . . . ,m, Ai j , j (x j ) > 0.5. This can be
achieved when x j belongs to the 0.5-cut of Ai j , j with the
exclusion of the boundary points.

Thanks to the concept of region of dominance, it is possi-
ble to establish a useful result concerning the classification
function of a FRBC:

Lemma 1 Let S = {R1, R2, . . . , Rr } be an FRBC and let D
be an input domain. For any x ∈ D, if ∃k : x ∈ [Ak]+0.5, then

fS(x) = ck

Proof Since x ∈ [Ak]
+
0.5 = {x : Ak(x) > 0.5}, however

chosen a dimension j in {1, 2, . . . ,m} the following must
hold:

Ai j , j,k(x j ) > 0.5

where i j = 1, 2, . . . , n j is the index of the fuzzy set in the
j-th dimension, and k = 1, 2, . . . , r is the index of the rule;
thus Ak = Ai1,1,k × · · · × Aim ,m,k .

By definition of FRBC, any other rule in S (other than Rk)
is characterized by an antecedent which is different fromAk .
Let Rk′ be the rule in S such that Ai j , j,k 
= Ai j , j,k′ . The
definition of SFP implies that

Ai j , j,k′(x j ) < 0.5

Therefore, Ak′(x) < 0.5.
As a consequence, the membership degree of x to Rk is

highest among all the rules and therefore fS(x) = ck .
��

Informally speaking, the previous lemma states that
regions of dominance establish subsets of the input domain
where only one rule dictates the class label. It is therefore
possible to define a subset of the input domain, namely

B = D ∩
⋃

k

[Ak]
+
0.5

where the classification function is determined by one rule
only for each input. What is more important for the purpose
of our study is the following corollary:

Corollary 1 The set B is unaffected by the modifications
applied on the slopes of the underlying fuzzy sets, provided
that the corresponding cut-points are fixed.

The corollary follows by observing that B is included in
the union of the regions of dominance of all the rules of an
FRBC and, since each region of dominance is defined by the
0.5-cuts of the underlying fuzzy sets, which are not affected
by the slopes of the fuzzy sets, then B is also unaffected by
such slopes.

Based on these results, it is possible to affirm that an FRBC
S behaves like a crisp classifier in the region B:

Lemma 2 Given an FRBC S and a crisp classifier defined as
follows:

f ′(x) =
{
ck if ∃k s.t. ∀ j : x j ∈ ]

ti j−1, j,k, ti j , j,k
[

undefined otherwise

then, ∀x ∈ B : fS(x) = f ′(x).

Notice that f ′ does not depend on any of the parameters
that define the trapezoidal fuzzy sets underlying the FRBC
S, but only on the set of cut-points. Therefore, within B the
classification function of an FRBC is completely unaffected
by the slopes of all the trapezoidal fuzzy sets. In other words,
it does not benefit from the involved fuzziness.

Outside B, however, the fuzziness of the fuzzy sets plays
a role in determining the confidence of the decision carried
out by the FRBC. For each x ∈ U = D \B, by definition we
have

∀k : Ak(x) ≤ 0.5

IfAk(x) = 0.5, then theremay exist another rule Rk′ , k 
= k′,
such that Ak(x) = 0.5. This is verified if rules Rk and Rk′
share the same fuzzy sets in the antecedent with the excep-
tion of one dimension only, say j ′, where the fuzzy sets of
the two rules intersect. In such a case, if ck 
= ck′ the classi-
fication ambiguity can be solved by an arbitrary choice (e.g.,
random).

If Ak(x) < 0.5 for all k = 1, 2, . . . , r , the classification
function can be better analyzed from the viewpoint of Possi-
bility Theory (Dubois and Prade 2015). In fact, the inference
schema of an FRBC is compatible with a possibilistic inter-
pretation of the embodied fuzzy rules. Namely, each rule
defines the possibility distribution that an object class is ck
provided that the observed features belong to Ak . We write

πk = Ak(x)
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to denote the possibility degree that the true class is ck given
the input x according to the k-th rule. Rules with the same
consequent class merge into a single possibility distribution
defined by the union of all the antecedent. Formally, for all
c ∈ C :

πc =
⋃

k:ck=c

Ak(x) = max
k:ck=c

Ak(x)

When an input is given, the possibility degree is com-
puted for all class labels, and the class label with the highest
possibility degree is chosen. This operation can be justified
by introducing the measure of necessity (or certainty): infor-
mally speaking, the certainty about a class label is evaluated
in terms of impossibility of the other class labels. Formally:

νc = 1 − max{πc′ : c′ 
= c}

Thus, by selecting the class with the highest possibility
degree, it is ensured that the certainty degree is also high-
est.

If x ∈ B it is easy to verify that the certainty degree of the
selected class is higher than 0.5 (it is equal to 1 if x belongs to
the core of the antecedent of a rule; this is a consequence of
using SFPs). However, if x ∈ U the analysis deserves some
notes of caution. By construction, for any c ∈ C the possi-
bility degree is πc ≤ 0.5, therefore νc ≥ 0.5. In fact, νc is
evaluated as the 1-complement of a quantity that is smaller
than πc (therefore, smaller than 0.5). In other words, the cer-
tainty degree of any class label is higher than its possibility:
this is an anomalous result since, in normal situations, cer-
tainty is never greater than possibility.4

Furthermore, for a given class c it is possible to compute
the certainty degree that another class is the true one. This
can be simply reckoned by computing the impossibility that
c is the true class, i.e. νC\{c} = 1−πc. In the case that x ∈ U,
whatever class label c is selected, we obtain νC\{c} ≥ 0.5,
that is, for any possible class label emitted by the classifier,
it is more certain that another class is a true one. Again, this
is a situation that should be avoided in classification. It must
be observed that this case does not happen if x ∈ B.

It is important to notice that the slopes of the trapezoidal
fuzzy sets affect the volume of the setU. Ideally, this volume
should be as small as possible, which can be achieved by
crisp rules. On the other hand, by using triangular fuzzy sets
as a special case of trapezoidal fuzzy sets, the volume of U
is maximized.

4 Intuition helps: what is possible could not be certain, but what is
certain must be possible.

3 Numerical results

We tested the impact of the theoretical results shown in the
previous section on some synthetic datasets. A granulation
method was applied to generate SFPs for each dimension
related to the data at hand. Namely, for each dataset we used
DC* to generate the cut-points and the initial SFP for each
dimension (Castiello et al. 2019). DC* is a specific algorithm
designed to perform a double clustering process devoted to
extract interpretable fuzzy granules of information from data
and to express them in form of fuzzy classification rules.
A first clustering of data is performed using a prototype-
guided algorithm; then the derived prototypes are projected
on each dimension and those projections are further clustered
by exploiting the capabilities of the A* search algorithm.

We applied DC* to the bi-dimensional synthetic datasets
depicted in Figs. 1, 2 which illustrate the cut-point configura-
tions produced by DC* together with the data points. Table 1
sums up the main characteristics of the datasets. As can be
observed, the datasets differ in the number of classes and
datapoints. Also, the application of DC* produced cut-points
that in some cases are in agreement with the data distribution,
while in some other cases they appear to be less appropriate
for discriminating among classes.

Once cut-points have been generated from data, SFPs
have been designed in terms of trapezoidal fuzzy sets that
are constrained to intersect in correspondence of cut-points.
This has been accomplished in different ways: three heuristic
methods called “Constant Slope” (CS), “Variable Fuzziness”
(VF) and “Core Points” (CP) (Mencar et al. 2013) and two
data-driven techniques based on Particle Swarm Optimiza-
tion (PSO) (Castiello andMencar 2019). The two data-driven
techniques, called “Leftmost Slope Constraint” (LSC) and
“Constant Slope Constraint” (CSC) aims at optimizing the
slopes of trapezoidal fuzzy sets in order to achieve the highest
classification accuracy on the dataset.

In Table 2 we show the classification accuracy achieved
for each dataset and for each method used for generating
the SFPs. We observe a high stability of classification accu-
racy for any given dataset. The most relevant changes can be
observed for datasets SD6 and SD7: the corresponding plots
in Fig. 2 show the presence of granules (i.e. boxes bounded
by cut-points, which correspond to rules if there are enough
data) where data pertaining to different classes are mixed.
Such cases are related to some DC* results which turned out
to be less appropriate in terms of class discrimination; how-
ever, in those regions the classification function produces
varied outputs while the slopes of the trapezoidal fuzzy sets
are modified.

In Fig. 3 we provide a comparison of the SFPs obtained
by applying the different methods put in action during the
experimental session. The SD2 dataset has been chosen as
an example and only one dimension has been considered for
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Fig. 1 The datasets SD1-SD4 adopted for the numerical simulation.
The shadowed areas correspond to regions outside the support of all rule
antecedents. Data points falling in these areas are classified randomly
by DC*. Regions delimited by cut-points and without shadowed areas
correspond to the regions of dominance of some rules.

Fig. 2 The datasets SD5-SD8 adopted for the numerical simulation.
See also Fig. 1
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Table 1 Description of the datasets involved in the experimental session

Dataset # Input # Classes # Samples

SD1 2 3 200

SD2 2 3 400

SD3 2 3 400

SD4 2 2 5300

SD5 2 3 300

SD6 2 3 600

SD7 2 2 500

SD8 2 2 300

Table 2 Accuracy (%) of fuzzy classifiers embedding the SFPs
obtained through the application of different strategies

Dataset Heuristic methods PSO methods

CS VF CP LSC CSC

SD1 82.00 82.00 82.00 82.00 82.00

SD2 96.25 96.25 96.25 96.25 96.25

SD3 92.50 92.50 92.50 92.50 92.75

SD4 67.30 67.30 66.32 67.32 67.30

SD5 83.67 83.67 83.67 83.67 83.67

SD6 67.83 67.83 65.83 68.83 68.17

SD7 68.00 68.60 62.40 68.60 68.40

SD8 66.67 66.67 66.67 66.67 66.67

the sake of illustration. It can be observed how the classifi-
cation results are highly stable through the application of the
different methods, in spite of the differences achieved while
designing the trapezoidal fuzzy sets involved in the SFPs.

4 Conclusions

We considered the classification carried out by a FRBC
where fuzzy sets in antecedent are aggregated through the
min operator and inference is determined by the Winner-
Takes-All rule. The theoretical results—supported by the
numerical experiments—show that the fuzziness of the lin-
guistic terms involved in an FRBC, as quantified by the slope
of the corresponding trapezoidal fuzzy sets, does not affect
the classification function in the region where the classifier is
more confident (that is, where the degree of certainty of the
returned class is greater than 0.5). On the other hand, fuzzi-
ness affects the behaviour of an FRBC in a region of the input
space where classification is problematic from the possibilis-
tic point of view. However, if an FRBC learning algorithm
is capable to capture the hidden relations among data, then
most of them will fall in the regions of dominance of some
rules, thus reducing the effects of classification outside such
safe regions. Fig. 3 Comparison of computed SFPs for dataset SD2 (first dimension)
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All in all, the performance of an FRBC is predominantly
determined by the position of the fuzzy sets in their domain,
which is well captured by the collection of cut-points: when
the cut-point positions are modified, the decision boundary
of the classifier changes accordingly, thus affecting perfor-
mance. On the other hand, by changing the fuzziness of
the membership functions, the impact on the classifier is
marginal, provided that SFPs are adopted and a class is
selected by choosing the class label of the rule showing the
highest membership degree. As an extreme case, whichmay
correspond to the adoption of a grid partition strategy to split
the input space, a fuzzy rule-based classifier may act exactly
as a crisp classifier, thus implying that fuzziness does not
play any role at all in the classification inference.

What is therefore the role of fuzzy sets in an FRBC? In a
Machine Learning perspective, fuzzy sets are useful to fine-
tune the decision boundaries in the presence of samples far
from the clusters characterizing the regions of dominance
of some rule. However, such a result appears to be marginal,
since the performance of an FRBCcan be improved by inject-
ingmore flexibility. For example, SFPsmay be put aside, but
some care must be taken to preserve interpretability. More-
over, fuzziness can play a relevant role by using different
inference schemes, e.g. by allowing the inference of sets of
classes, possibly associated with some confidence informa-
tion.

In the context of XAI, however, the quality of the decision
returned by an intelligent system is of utmost importance.
In this sense, the fuzziness embodied in the FRBC gives
valuable information about the confidence of classification.
In particular, the classification function of an FRBC can be
enriched by adding to the predicted class label a measure of
confidence, i.e. the possibility and certainty degrees express-
ing the truthfulness of the inferred prediction according to
the embodied knowledge base. (Eventually, this additional
information can be rendered in legible form through some
NLG process.) Finally, the membership degrees, rather than
being arbitrarily determined, can be semantically grounded
on some data properties (e.g., membership can be defined in
terms of similarity with respect to a prototypical sample or
interval). In such cases, it is possible to provide a faithful
explanation of the reasons behind the decision carried out by
an FRBC.

In conclusion, fuzziness may have a reduced role in the
inference mechanism of an FRBC, while being relevant in
terms of explanation of the produced results. Hence, we
believe that these results convey an important message to
the designers of fuzzy rule-based classifiers, since it repre-
sents a hint concerning the real utility of fuzziness in fuzzy
modeling.
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