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In this work we consider generic losses of rank for complex 
valued matrix functions depending on two parameters. We 
give theoretical results that characterize parameter regions 
where these losses of rank occur. Our main results consist in 
showing how following an appropriate smooth SVD along a 
closed loop it is possible to monitor the Berry phases accrued 
by the singular vectors to decide if –inside the loop– there are 
parameter values where a loss of rank takes place. It will be 
needed to use a new construction of a smooth SVD, which we 
call the “joint-MVD” (minimum variation decomposition).
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open access article under the CC BY license (http://
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Notation. We indicate with Ω an open and simply connected subset of R2 or R3. For 
points in Ω, the symbol ξ will indicate ξ = (x, y) if Ω ⊂ R2 or ξ = (x, y, z) if Ω ⊂ R3. 
If A is a complex matrix valued function having k ≥ 1 continuous derivatives on Ω, we 
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write A ∈ Ck(Ω, Cn×n) and call A smooth, and (to avoid trivialities), n ≥ 2 throughout. 
Unless stated otherwise, we will label singular values of a matrix A ∈ Cm×n, m ≥ n, 
in decreasing order σ1(A) ≥ . . . ≥ σn(A) ≥ 0, and do the same for the eigenvalues of a 
Hermitian matrix A ∈ Cn×n: λ1(A) ≥ . . . ≥ λn(A). Vectors v ∈ Rn are always column 
vectors. The notation A∗ indicates the conjugate transpose of A.

1. Introduction and background

Loss of rank of a matrix A ∈ Cm×n, m ≥ n, is an issue of paramount importance in 
linear algebra, underpinning the concerns of unique solution of a linear system and the 
equivalent problems of detecting linear independence of a set of vectors and of redun-
dancies in data sets. From a numerical analysis perspective (hence, in finite precision), 
and ignoring the concerns of computational expense, it is widely accepted that the SVD 
(singular value decomposition) of A is the most reliable and flexible tool to detect the 
rank of a matrix, for square as well as rectangular matrices.1 Our goal in this work is to 
understand how the SVD can, and should, be used to detect losses of rank for matrix 
valued functions A smoothly depending on parameters.

Of course, to be interesting and doable, parameter values where a loss of rank occurs 
should be isolated in parameter space, and moreover we will want to consider problems 
depending on the minimal possible number of parameters for the phenomenon to occur. 
A very simple counting of the number of degrees of freedom gives Table 1 for real and 
complex valued A of size (m, n), m ≥ n, in order to have rank(A) = n − 1.

Table 1
Values of the codimension for A ∈
Fm×n, m ≥ n, to have rank(A) =
n − 1 in the two cases of F = R and 
F = C.

F codimension rank(A) = n − 1
R m − n + 1
C 2(m − n) + 2

The real case tells us that we should expect a loss of rank already when m = n and A
depends on one real parameter (after all, this is detected by the scalar relation detA = 0). 
This case is fairly well understood and already adequately discussed in [2,3], and see also 
[4] for numerical methods able to detect and bypass the losses of rank of a smooth 
function A. The complex case is what we will consider in this work when m = n, 
which has the minimal possible codimension of 2 for a single loss of rank. Again, this 
setup is easily understood since det(A) = 0 are now two conditions, for the real and 
imaginary parts of the determinant. For the above reasons, we will consider losses of 

1 E.g., for square A (i.e., m = n), criteria based on the smallest singular value of A are much more robust 
than going through an LU-factorization of A and monitoring the determinant; this is even more true when 
A is rectangular and one should not form A∗A.
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rank for A ∈ C1(Ω, Cn×n), where Ω ⊂ R2 is open and simply connected. For a Hermitian 
function A, however, we will take Ω ⊂ R3, see Section 2.

Finally, we will also require points of loss of rank to be generic, a property which 
we define below. First, recall that a value v ∈ Rn is a regular zero for a smooth map 
F : Rn → Rn if F (v) = 0 and the derivative of F at v is invertible.

Definition 1.1. A point ξ0 ∈ Ω is a generic point of loss of rank for A ∈ C1(Ω, Cn×n) if 
it is a regular zero for the map

ξ ∈ Ω �→
[
Re(det(A(ξ)))
Im(det(A(ξ)))

]
∈ R2.

Our main contribution in this paper will be to device a topological test for the de-
tection of generic points where a matrix loses rank, a test which also lends itself to a 
nice algorithmic criterion to detect regions where A loses rank. Our test will be based 
on an appropriate generalization of the concept of Berry phase,2 by looking at the phase 
accrued by the singular vectors of a general function A. This will necessitate to find, 
smoothly, a certain SVD along a closed path, following what we will call the joint-MVD
along the path. The definition of the joint-MVD is new and to understand it properly 
we will revisit the Berry phase of a Hermitian eigenproblem and adopt a novel charac-
terization for generic coalescence of eigenvalues of the Hermitian eigenproblem.

Remark 1.2. At this stage, we point out that working with the Hermitian eigenproblem 
for A∗A will not help in finding a useful way to characterize parameter values where a 
coalescing occurs, regardless of the numerical concerns caused by forming the product. 
This is already evident in the 1-parameter case for a real square A, whereby through a 
generic coalescing the function det(A) will change sign, but det(ATA) will not. Indeed, 
the net effect of a reformulation like the one above is to turn a generic problem into a 
non-generic one.

A plan of the paper is as follows. Section 2 is both a review and a revisitation of 
the Hermitian eigenproblem and of generic coalescing of eigenvalues and of its relation 
to the Berry phase accumulated by an eigenvector associated to coalescing eigenvalues. 
Section 3 is devoted to the joint-MVD and losses of rank, and here we give our main 
result, Theorem 3.11 and discuss some of its consequences.

2. Hermitian problems: generic coalescing of eigenvalues and the Berry phase

In this section we consider A ∈ Ck(Ω, Cn×n), k ≥ 0; typically A will be Hermitian 
and Ω ⊂ R3.

2 ordinarily associated to the eigenvectors of a Hermitian function, see [1] and below.
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In general, it is well known that a continuous matrix function A taking values in 
Cn×n has continuous eigenvalues. Likewise, it is also well known that if A is a smooth 
(k ≥ 1) Hermitian matrix valued function on Ω, and λ1(A) ≥ . . . ≥ λn(A) are its 
eigenvalues, then A admits a Schur decomposition A = UΛU∗ with smooth factors as 
long as its eigenvalues are distinct everywhere on Ω; further, in this case, when the 
eigenvalues appear in decreasing order along the diagonal of Λ, the unitary factor U is 
unique up to post-multiplication by a diagonal unitary matrix Φ = diag(eiα1 , . . . , eiαn), 
where each αj is a smooth real valued function defined on Ω. A similar result holds for 
a block decomposition of A. That is, if A has two (or more) blocks of eigenvalues Λ1
and Λ2, of size n1, n2, that stay disjoint everywhere, then there is a smooth factorization 
A = U

[
B 0
0 C

]
U∗ where B and C are Hermitian n1 × n1 and n2 × n2, respectively, and 

have eigenvalues given by those in Λ1 and Λ2 (e.g., see [8,9]).
As it is well understood, the situation is very different when A has a pair of eigenvalues 

that coalesce and one can end up with no smoothness at all for the eigendecomposition 
of A (e.g., see [10]). This is why it is important to be able to locate parameter values 
where eigenvalues coalesce, and it is further mandatory to focus only on those parameter 
values where coalescing of eigenvalues occur in a generic way. As we noted in [7], generic 
coalescing of eigenvalues of a Hermitian function is a co-dimension 3 phenomenon, which 
we characterize next.

Definition 2.1 (Generic coalescence). Let A ∈ C1(Ω, Cn×n) be Hermitian, and Ω be 
an open subset of R3. Let λj(ξ) = λj(A(ξ)) be the continuous eigenvalues of A, with 
λ1(ξ) ≥ · · · ≥ λn(ξ). Suppose

λj(ξ) = λj+1(ξ) if and only if j = h and ξ = ξ0 ∈ Ω.

Then, ξ0 is said to be a generic point of coalescence for the eigenvalues of A according 
to the following.

i) If n = 2, write A(ξ) =
[

a(ξ) b(ξ) + ic(ξ)
b(ξ) − ic(ξ) d(ξ)

]
, where a, b, c, d are real valued 

functions, and let

F (ξ) =
[
a(ξ) − d(ξ)

b(ξ)
c(ξ)

]
. (1)

Then ξ0 is a generic point of coalescence for the eigenvalues of A if it is a regular 
zero for F (ξ).

ii) If n > 2, let R ⊂ Ω be a pluri-rectangular domain containing ξ0 in its interior, and let

A(ξ) = U(ξ)
[
P (ξ) 0

0 Λ(ξ)

]
U∗(ξ) (2)

be a Ck block Schur decomposition of A(ξ) on R, where
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Λ(ξ) = diag(λ1(ξ), . . . , λh−1(ξ), λh+2(ξ), . . . , λn(ξ)) ∈ R(n−2)×(n−2),

P (ξ) ∈ C2×2 has eigenvalues {λh(ξ), λh+1(ξ)} for all ξ ∈ R.

Then, ξ0 is a generic point of coalescence for the eigenvalues of A if it is a generic 
point of coalescence for the eigenvalues of P according to point i) above.

Next, we give an alternative condition to characterize genericity of coalescing eigen-
values of an Hermitian function, in a way that will be conducive to characterize generic 
losses of rank in Section 3, see Theorem 3.1. The stepping stone is the next result, 
characterizing a regular zero of a C1 function.

Lemma 2.2. Let F : Rp → Rn, p ≥ 1, be C1. Then x ∈ Rp is a regular zero for F if and 
only if F (x) = 0 and

lim
t→0

‖F (x + tv)‖2
2

t2
> 0 for any non-zero v ∈ Rp.

Proof. Note that

d

dt
‖F (x + vt)‖2

2 = 2F (x + vt)TDF (x + vt)v,

where DF is the derivative of F . Since F (x) = 0, we can write

lim
t→0

2F (x + vt)TDF (x + vt)v
2t = lim

t→0

F (x + vt)T − F (x)T

t
DF (x + tv)v

= d

dt
F (x + vt)TDF (x)v = vTDF (x)TDF (x)v = ‖DF (x)v‖2

2 .

Therefore, upon using the L’Hospital’s rule we get:

lim
t→0

‖F (x + tv)‖2
2

t2
= lim

t→0

d
dt ‖F (x + vt)‖2

2
2t = ‖DF (x)v‖2

2 ,

from which the statement of the Lemma follows. �
In Theorem 2.5, we will use Lemma 2.2 applied to the discriminant of a Hermitian 

function, by relating genericity of coalescence of eigenvalues to local properties of the 
discriminant.

Definition 2.3 (Discriminant). Let A ∈ Cn×n have eigenvalues λ1, . . . , λn. Then the 
discriminant of A is defined as

discr(A) =
∏

(λj − λ�)2.

�<j
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Remark 2.4. If A is Hermitian, then discr(A) is real valued and non-negative. Further, 
discr(A) = 0 if and only if A has a pair of repeated eigenvalues. Also, discr(A) is a 
homogeneous polynomial in the entries of A. Therefore, if A is a smooth function of 
ξ ∈ Rp, then so is discr(A).

Theorem 2.5. Let A ∈ C1(Ω, Cn×n) be Hermitian, and Ω be an open subset of R3. Let 
λj(ξ) = λj(A(ξ)) be the continuous eigenvalues of A, with λ1(ξ) ≥ · · · ≥ λn(ξ). Suppose

λj(ξ) = λj+1(ξ) if and only if j = h and ξ = ξ0 ∈ Ω.

Then, ξ0 is a generic point of coalescence for the eigenvalues of A if and only if

lim
t→0

discr(A(ξ0 + tv))
t2

> 0, for any non-zero v ∈ R3.

Proof. Let

A(ξ) = U(ξ)
[
P (ξ) 0

0 Λ(ξ)

]
U∗(ξ)

for all ξ inside a pluri-rectangle R whose interior contains ξ0, as in (2). Then, we can 
write

discr(A(ξ)) = discr(P (ξ))
∏
j<�

(j,�) �=(h,h+1)

(λj(ξ) − λ�(ξ))2 = discr(P (ξ))g(ξ),

where g is defined by the above equation. Note that g is a smooth and strictly positive 
function of ξ. Then, we can write

lim
t→0

discr(A(ξ0 + tv))
t2

= g(ξ0) lim
t→0

discr(P (ξ0 + tv))
t2

, for any non-zero v ∈ R3.

The result follows from Lemma 2.2 with F as in (1) since, by letting P =
[

a b + ic
b− ic d

]
, 

we have discr(P ) = (a − d)2 + b2 + c2. �
In Section 3, we will need the following elementary result, which will be useful to 

relate a generic coalescing of eigenvalues to a generic loss of rank.

Lemma 2.6. Let A ∈ Cn×n and ε ∈ R, and consider the Hermitian matrix function

M =
[
εI A
A∗ −εI

]
. (3)

Then M has eigenvalues ±
√
σ2
j + ε2, and
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discr(M) = 4n
∏
j<�

(σ2
j − σ2

� )4
∏
j

(σ2
j + ε2). (4)

Proof. A direct computation gives

det(tI −M) = det(t2I − (A∗A + ε2I)),

from which the two statements follow. �
We conclude this section with some known results (mostly from [3,7]) that allow us 

to lay the groundwork for detecting losses of rank in Section 3.

2.1. Hermitian 1 parameter, Berry phase, and covering of a sphere

First, consider the case of Hermitian A smoothly depending on one parameter: 
A ∈ Ck(R, Cn×n). In this case, there is a standard way of resolving the degree of non-
uniqueness of its Schur decomposition, which in the end leads to the concept of Berry 
phase. We summarize this as follows, see [7].

Theorem 2.7. Let A ∈ Ck([0, 1], Cn×n), k ≥ 1, be Hermitian with distinct eigenvalues 
λ1(t) > . . . > λn(t) for all t ∈ [0, 1]. Then, given a Schur decomposition of A at t = 0, 
A(0) = U0Λ0U

∗
0 , there exists a uniquely defined so called Minimum Variation Decompo-

sition (MVD) A(t) = U(t)Λ(t)U∗(t), t ∈ [0, 1], satisfying U(0) = U0, Λ(0) = Λ0, where 
U minimizes the total variation

Vrn(U) =
1∫

0

∥∥U̇(t)
∥∥

F dt (5)

among all possible smooth unitary Schur factors of A over the interval [0, 1].
In addition, suppose that A is 1-periodic and of minimal period 1. Then, we have:

i) U satisfies

U(0)∗U(1) = diag(eiα1 , . . . , eiαn), (6)

where each αj ∈ (−π, π], j = 1, . . . , n, is the so called Berry phase associated to λj;
ii) if Q ∈ Ck([0, 1], Cn×n) is a 1-periodic unitary Schur factor for A over [0, 1], parti-

tioned by columns Q = [q1, · · · , qn], then

αj = i

1∫
q∗j (t)q̇j(t)dt mod 2π, for all j = 1, . . . , n. (7)
0
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For our purposes, the relevance of the Berry phase is because of its relation to detection 
of coalescing eigenvalues in a region of R3, homotopic to a sphere, as we recall next.

Let Sr =
{
ξ ∈ R3 : ‖ξ‖2 = r

}
be the sphere of radius r > 0 centered at the origin in 

R3, and consider for Sr the following parametrization:

⎧⎪⎨⎪⎩
x(s, t) = r sin(πs) cos(2πt)
y(s, t) = r sin(πs) sin(2πt)
z(s, t) = r cos(πs)

, (8)

with (s, t) ∈ [0, 1] × [0, 1]. The sphere Sr can be thought of as covered by the family of 
loops {Xs}s∈[0,1],

Xs(·) = (x(s, ·), y(s, ·), z(s, ·)),

as s increases from s = 0 to s = 1.
Let A : ξ ∈ R3 �→ A(ξ) ∈ Cn×n be a Ck Hermitian matrix valued function, and 

suppose that all eigenvalues of A are distinct on some sphere Sr, r > 0. Then, the re-
striction of A to each loop in {Xs}s∈[0,1] is a 1-periodic function and therefore, according 
to Theorem 2.7, each eigenvector of A continued along Xs accrues a Berry phase αj(s), 
j = 1, . . . , n. All αj(s)’s can be defined to be continuous functions of s, again see [7]. 
Moreover, since X0 and X1 are just points, the corresponding MVD (see Theorem 2.7) 
of A must have constant factors, and therefore

αj(0) = 0 mod 2π,
αj(1) = 0 mod 2π.

Let Br be the solid ball Br =
{
ξ ∈ R3 : ‖ξ‖2 ≤ r

}
, so that Sr is the boundary of Br.

Theorem 2.8. (Adapted from [7, Theorems 4.6, 4.8 and 4.10]) Let A ∈ C1(Br, Cn×n) be 
Hermitian, and let λ1(ξ), λ2(ξ), . . . , λn(ξ) be its continuous eigenvalues, not necessarily 
labeled in descending order, and let αj(s), s ∈ [0, 1], be the continuous Berry phase 
functions associated to λj over Sr, for all j = 1, . . . , n.

(i) If λ1(ξ), λ2(ξ), . . . , λn(ξ) are distinct for all ξ ∈ Sr, then

n∑
j=1

αj(s) =
n∑

j=1
αj(0), for all s ∈ [0, 1],

(ii) If λ1(ξ), λ2(ξ), . . . , λn(ξ) are distinct for all ξ ∈ Br, then

αj(1) = αj(0) for all j = 1, . . . n.
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(iii) Finally, suppose that λj(ξ) = λk(ξ) if and only if (j, k) = (h1, h2) and ξ = 0, and 
that ξ = 0 is a generic point of coalescence for the eigenvalues of A. Then:⎧⎪⎨⎪⎩

αj(1) = αj(0), for all j 	= h1, h2
αh1(1) = αh1(0) ± 2π,
αh2(1) = αh2(0) ∓ 2π.

3. SVD, joint-MVD, and generic losses of rank

We are ready to characterize generic losses of rank for a smooth general matrix func-
tion of two parameters, A = A(x, y) (see Definition 1.1). In particular, in Theorem 3.1
we will relate a generic loss of rank to the local behavior of the smallest singular value 
of A.

Theorem 3.1. A point ξ0 ∈ Ω is a generic point of loss of rank for A ∈ C1(Ω, Cn×n) if 
and only if

lim
t→0+

σn(A(ξ0 + tv))
t

> 0 for any non-zero v ∈ R2.

Proof. Consider the following 2n × 2n Hermitian matrix

B(ξ) =
[

0 A(ξ)
A∗(ξ) 0

]
.

Its eigenvalues are ±σ1(ξ), . . . , ±σn(ξ), and therefore we can write

det(B(ξ)) = (−1)n |det(A(ξ))|2 = (−1)n
∏
j

σj(ξ)2.

On the other hand, we have

det(B(ξ)) = (−1)n
(
Re(det(A(ξ)))2 + Im(det(A(ξ)))2

)
.

Let

F (ξ) =
[
Re(det(A(ξ)))
Im(det(A(ξ)))

]
∈ R2.

Then, by virtue of Definition 1.1 and Lemma 2.2, ξ0 is a generic point of loss of rank if 
and only if

lim
t→0

‖F (ξ0 + tv)‖2
2

t2
> 0 for any non-zero v ∈ R2,

and this is equivalent to
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lim
t→0

(−1)n det(B(ξ0 + tv))
t2

> 0 for any non-zero v ∈ R2.

Since the ordered singular values are continuous, and we have σ1 ≥ . . . ≥ σn−1 > 0 in a 
neighborhood of ξ0, we can write

lim
t→0

σ2
n(A(ξ0 + tv))

t2
> 0 for any non-zero v ∈ R2.

Then, the sought statement follows from taking the square root of the limit. �
Next, in Theorem 3.2, we relate a generic loss of rank to the coalescing of the eigen-

values of a Hermitian function of 3 parameters.

Theorem 3.2. Let A = A(ξ) ∈ C1(Ω, Cn×n), Ω ⊂ R2, have distinct singular values for 
all ξ ∈ Ω. Consider

M(η) =
[

εI A(ξ)
A∗(ξ) −εI

]
,

where η = (ξ, ε) ∈ Ω ×R. Let ξ0 be the only point in Ω where A loses rank. Then, ξ0 ∈ Ω
is a generic point of loss of rank for A if and only if η0 = (ξ0, 0) is a generic point of 
coalescence for the eigenvalues of M .

Proof. We will show that Theorems 3.1 and 2.5 are equivalent through Lemma 2.6. First, 
note that η0 is the only point in Ω ×R where two eigenvalues of M coalesce. Obviously, 
the coalescing pair is ±

√
σ2
n + ε2.

Because of Theorem 3.1, ξ0 is a generic point of loss of rank for A if and only if

lim
t→0

σ2
n(A(ξ0 + tv))

t2
> 0 for any non-zero v ∈ R2 (9)

and this is equivalent to

lim
t→0

σ2
n(A(ξ0 + tv)) + γ2t2

t2
> 0 for any non-zero (v, γ) ∈ R2 ×R.

Now, equation (4) can be rewritten as

discr(M) =

⎛⎝4n
∏
j<�

(σ2
j − σ2

� )4
n−1∏
j=1

(σ2
j + ε2)

⎞⎠ (σ2
n + ε2),

and the first of the two factors of this product is strictly positive in Ω ×R. Then, through 
Lemma 2.6, Equation (9) is equivalent to

lim discr(M(η0 + tv))
> 0, for any non-zero v ∈ R3, (10)
t→0 t2



L. Dieci, A. Pugliese / Linear Algebra and its Applications 700 (2024) 137–157 147
which, by Theorem 2.5, expresses the fact that η0 is a generic point of coalescence for 
the eigenvalues of M . �

We will leverage the relation between losses of rank of A and coalescing of eigenvalues 
of M of Theorem 3.2, but of course without forming M but working directly with an 
appropriate SVD of A. The stepping stone will be Theorem 3.4, for whose proof the next 
Lemma will be handy.

Lemma 3.3. Let A ∈ Cn×n be diagonalizable. Let λ ∈ C be an eigenvalue of A of mul-
tiplicity 1 such that λ2 is an eigenvalue of A2 of multiplicity 2. Let u, v ∈ Cn span the 
eigenspace of A2 associated to the eigenvalue λ2. Then, the eigenspace of A associated 
to λ is spanned by a linear combination of u and v.

Proof. If A had an eigenvector not in span{u, v}, then A2 would have a 3-dimensional 
invariant subspace associated to λ2, contradicting the hypothesis on the multiplicity of 
λ2. �
Theorem 3.4. Let A ∈ Cn×n and A = UΣV ∗ be a SVD of A, where Σ = diag(σ1, . . . , σn). 
Suppose that all singular values of A are distinct and non-zero, and let ε ∈ R. Let M be 
given by (3). Then, M admits the following eigendecomposition

W ∗MW =
[
S 0
0 −S

]
,

where S = diag
(√

σ2
1 + ε2, . . . ,

√
σ2
n + ε2

)
,

W =
[
UC −UD
VD V C

]
,

C = diag(c1, . . . , cn), D = diag(d1, . . . , dn), and the diagonal entries of C and D are 
given by ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cj = 1√
2

σj√
σ2
j + ε2 − ε

√
σ2
j + ε2

dj = 1√
2

√
σ2
j + ε2 − ε√

σ2
j + ε2 − ε

√
σ2
j + ε2

, j = 1, . . . , n. (11)

Proof. Recall that the eigenvalues of M are ±
√
σ2
j + ε2 and they are all distinct as long 

as the singular values of A are all distinct and non-zero.
Let A = UΣV ∗ be a singular value decomposition of A, with Σ = diag(σ1, . . . , σn)

and U = [u1, . . . , un], V = [v1, . . . , vn], be partitioned by columns. Then, we have that
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M2 =
[
ε2I + AA∗ 0

0 ε2I + A∗A

]
,M2

[
uj

0

]
= (σ2

j+ε2)
[
uj

0

]
, M2

[
0
vj

]
= (σ2

j+ε2)
[

0
vj

]
,

for all j = 1, . . . , n. If σ1 > · · · > σn > 0, it follows from Lemma 3.3 that, for all 
j = 1, . . . , n, there exist cj , dj ∈ C not both zero such that

M

[
cjuj

djvj

]
=
√

σ2
j + ε2

[
cjuj

djvj

]
. (12)

These equations can be rewritten as

[
(εcj + σjdj)uj

(σjcj − εdj)vj

]
=

⎡⎣cj√σ2
j + ε2uj

dj
√

σ2
j + ε2vj

⎤⎦ , j = 1, . . . , n, (13)

and thus ⎧⎨⎩
(
ε−

√
σ2
j + ε2

)
cj + σjdj = 0

σjcj −
(
ε +

√
σ2
j + ε2

)
dj = 0

, j = 1, . . . , n. (14)

Now, for any j = 1, . . . , n, (14) has infinitely many non trivial solutions (cj, dj), where 
cj and dj are real valued and cannot have opposite sign. Imposing the normalization 
conditions c2j +d2

j = 1, and settling (without loss of generality) on the positive solutions, 
we get the expressions for cj and dj given in (11). Finally, let C = diag(c1, . . . , cn), 
D = diag(d1, . . . , dn), S = diag

(√
σ2

1 + ε2, . . . ,
√
σ2
n + ε2

)
. Then equations (12) read 

M

[
UC
V D

]
=
[
UC
V D

]
S, and by letting W =

[
UC −UD
VD V C

]
, one easily sees that W is 

unitary and that

W ∗MW =
[
S 0
0 −S

]
,

which is the desired result. �
Remark 3.5. Each cj and dj in (11) depends smoothly on ε and on σj , and moreover 
C(−ε) = D(ε) and D(−ε) = C(ε), while S(ε) = S(−ε) because of how S is defined. 
Now, consider:

M(ε) =
[
UC(ε) −UD(ε)
V D(ε) V C(ε)

] [
S(ε) 0

0 −S(ε)

] [
C(ε)U∗ D(ε)V ∗

−D(ε)U∗ C(ε)V ∗

]
,

and observe that C(ε), D(ε), S(ε) depend smoothly on ε (since the singular values of A
are distinct and non zero). Then one has
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M(−ε) =
[
UC(−ε) −UD(−ε)
V D(−ε) V C(−ε)

] [
S(−ε) 0

0 −S(−ε)

] [
C(−ε)U∗ D(−ε)V ∗

−D(−ε)U∗ C(−ε)V ∗

]
=
[
UD(ε) −UC(ε)
V C(ε) V D(ε)

] [
S(ε) 0

0 −S(ε)

] [
D(ε)U∗ C(ε)V ∗

−C(ε)U∗ D(ε)V ∗

]
.

The main result of this paper will show that a loss of rank is detected by the phases 
accumulated by the singular vectors for an appropriate smooth decomposition of A(x, y)
along a closed loop. To properly define/understand our result, it is necessary to clarify 
what “appropriate” means, and this requires looking at how to define/compute a smooth 
SVD along a closed loop.

3.1. Smooth SVD: 1 parameter

We will follow the approach of [3]. We have a smooth function A, depending on a real 
parameter t ∈ [0, 1] and with distinct singular values for all t. Then, the SVD factors of 
A are smooth and satisfy the system of differential equations given in (15).

Theorem 3.6 (Adapted from [3]). Let A ∈ Ck([0, 1], Cn×n), k ≥ 1, have distinct singular 
values σ1(t) > . . . > σn(t) > 0 for all t ∈ [0, 1]. Then, given any initial singular value 
decomposition A(0) = U0Σ0V

∗
0 , there exists a Ck singular value decomposition A(t) =

U(t)Σ(t)V ∗(t), t ∈ [0, 1], defined as solution of the following differential-algebraic initial 
value problem: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Σ̇ = U∗ȦV −HΣ + ΣK,

U̇ = UH,

V̇ = V K,

U(0) = U0,Σ(0) = Σ0, V (0) = V0.

. (15)

The matrix functions H and K are skew-Hermitian on [0, 1], with entries given by

Hj� = σ�(U∗ȦV )j� + σj(U∗ȦV )�j
σ2
� − σ2

j

Kj� = σ�(U∗ȦV )�j + σj(U∗ȦV )j�
σ2
� − σ2

j

(16)

for all j 	= 
. The diagonal entries of H and K are real valued and satisfy

Hjj −Kjj =
Im

(
(U∗ȦV )jj

)
σj

, for all j = 1, . . . , n. (17)

Remark 3.7. Obviously, the requirement (17) does not fully determine the diagonal en-
tries of H and K and we are left with n conditions to impose. To uniquely determine a 
smooth SVD path, one possibility was suggested in [3], simply set Hjj = 0 (or Kjj = 0) 
for all j, and this was shown in [7] to be equivalent to selecting the SVD path that 
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minimizes the total variation of U (or V ) on [0, 1] given in (5) and defined originally in 
[2]; we call these the U -MVD or V -MVD, respectively.

None of the options of Remark 3.7 to select a smooth SVD path would be useful for 
our purposes of detecting when A loses rank. The correct smooth SVD path for us is 
identified in the next Theorem.

Theorem 3.8. Let A ∈ Ck([0, 1], Cn×n), k ≥ 1, have distinct singular values σ1(t) >
. . . > σn(t) for all t ∈ [0, 1]. Then, given any initial singular value decomposi-
tion A(0) = U0Σ0V

∗
0 , there exists a uniquely defined Ck singular value decomposition 

A(t) = U(t)Σ(t)V ∗(t), t ∈ [0, 1], satisfying U(0) = U0, Λ(0) = Λ0, V (0) = V0 and such 
that the pair (U, V ) minimizes the quantity

1∫
0

√∥∥U̇(t)
∥∥2

F +
∥∥V̇ (t)

∥∥2
F dt (18)

among all possible smooth unitary SVD factors of A over the interval [0, 1].

Proof. Since the Frobenius norm is unitarily invariant, to minimize the quantity in (18)
is the same as to minimize

1∫
0

√∥∥U∗(t)U̇(t)
∥∥2

F +
∥∥V ∗(t)V̇ (t)

∥∥2
F dt.

We now show that all the singular value decompositions satisfying eqs. (15) to (17) share 
the same value for∑

j �=�

∣∣∣(U∗(t)U̇(t)
)
j�

∣∣∣2 +
∣∣∣(V ∗(t)V̇ (t)

)
j�

∣∣∣2 , for all t ∈ [0, 1].

In fact recall that, being the singular values all distinct, each unitary factor (U or V ) is 
unique up to post-multiplication by a smooth diagonal unitary matrix function Φ(t) =
diag

(
eiφ1(t), . . . , eiφn(t)). Let U(t) and Q(t) = U(t)Φ(t) be two matrices of left singular 

vectors satisfying eqs. (15) to (17). A simple computation shows that∣∣∣(U∗(t)U̇(t)
)
j�

∣∣∣ =
∣∣∣(Q∗(t)Q̇(t)

)
j�

∣∣∣ , for all j 	= 
 and t ∈ [0, 1].

Of course, analogous considerations hold for V (t). Therefore, minimizing (18) is equiva-
lent to minimizing

1∫ √∥∥diag
(
U∗(t)U̇(t)

)∥∥2
F +

∥∥diag
(
V ∗(t)V̇ (t)

)∥∥2
F dt,
0
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that is

1∫
0

√√√√ n∑
j=1

(
|Hjj(t)|2 + |Kjj(t)|2

)
dt

=
1∫

0

√√√√1
2

n∑
j=1

(
|Hjj(t) −Kjj(t)|2 + |Hjj(t) + Kjj(t)|2

)
dt.

Since the difference Hjj −Kjj is prescribed by (17), the minimizing choice is given by

Hjj(t) + Kjj(t) = 0, for all t ∈ [0, 1] and all j = 1, . . . , n.

Using this, along with eqs. (15) to (17), yields (uniquely) the desired unitary factors U
and V . �
Definition 3.9. Any smooth singular value decomposition of A ∈ Ck([0, 1], Cn×n) satisfy-
ing (18) will be called a joint minimum variation decomposition, or simply “joint-MVD”.

Remarks 3.10.

(i) If A is Hermitian, then U and V are equal, and unique up to changes of sign of their 
columns. In this case, the joint-MVD of A is effectively the MVD of Theorem 2.7.

(ii) If A is periodic, then –using the joint-MVD– each singular vector acquires a phase 
factor over one period, and the corresponding left and right singular vectors acquire 
the same phase. This can be thought of as a generalization of the Berry phase to 
non-Hermitian matrix functions and in fact it is the same value as the Berry phase 

accrued by the eigenvectors of 
[

0 A
A∗ 0

]
.

3.2. Main result

We can finally formulate and prove the main result of this paper, showing that a 
loss of rank inside a closed loop is detected by the phases accumulated by the singular 
vectors.

Theorem 3.11. Let A ∈ C1(Ω, Cn×n), Ω ⊂ R2, have distinct eigenvalues everywhere in 
Ω. Suppose that ξ0 ∈ Ω is a generic point of loss of rank for A, and that A has full rank 
everywhere else in Ω. Let Γ be a circle centered at ξ0 entirely contained in Ω, and let it be 
parametrized by γ(t) = ξ0+[r cos(2πt), r sin(2πt)], t ∈ [0, 1]. Let A(γ(t)) = U(t)Σ(t)V ∗(t)
be the joint-MVD of A(γ(t)) over the interval [0, 1]. Let βj ∈ (−π, π], j = 1, . . . , n, be 
defined through the following equation:

U∗(0)U(1) = V ∗(0)V (1) = diag(eiβ1 , . . . , eiβn).
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Then, we have

n∑
j=1

βj = π mod 2π.

Proof. Without loss of generality, we may take ξ0 = (0, 0). Consider the Hermitian 
matrix function of three parameters

M(x, y, z) =
[

zI A(x, y)
A∗(x, y) −zI

]
, (x, y) ∈ Ω and z ∈ R.

Because of Theorem 3.4, for all (x, y, z), M has the Schur eigendecomposition

W (x, y, z)∗M(x, y, z)W (x, y, z) =
[
S(x, y, z) 0

0 −S(x, y, z)

]
,

where

S(x, y, z) = diag
(√

σ1(x, y)2 + z2, . . . ,
√

σ2
n(x, y) + z2

)
,

W (x, y, z) =
[
U(x, y)C(x, y, z) −U(x, y)D(x, y, z)
V (x, y)D(x, y, z) V (x, y)C(x, y, z)

]
.

Let us label the eigenvalues λ1, . . . , λ2n of M in the same order as they appear along 

the diagonal of 
[
S 0
0 −S

]
, that is so that λj =

√
σ2
j + z2, λn+j = −

√
σ2
j + z2, for 

j = 1, . . . , n.
Consider the sphere Sr parametrized by (s, t) ∈ [0, 1] × [0, 1] as in (8). It follows from 

Theorem 3.2 that M and its eigenvalues satisfy the hypotheses of Theorem 2.8-(i,ii) on 
Br, with the pair of eigenvalues that undergoes coalescence being (λn, λ2n). For each 
j = 1, . . . , 2n, let αj(s), s ∈ [0, 1], be the continuous Berry phase function associated to 
λj over Sr, where we choose αj(0) = 0 for all j = 1, . . . , 2n − 1, and α2n(0) = 2π. Then, 
Theorem 2.8 gives

2n∑
j=1

αj(s) = 2π, for all s, and

⎧⎪⎨⎪⎩
αj(1) = 0, for all j 	= n, 2n,
αn(1) = 2π,
α2n(1) = 0.

(19)

Now, let

ϕ(s) :=
n∑

j=1
αj(s), s ∈ [0, 1].

From the conclusion of Remark 3.5, and through (7) and (8), we have that αj+n(s) =
αj(1 − s), for all j = 1, . . . , n and all s ∈ [0, 1]. Therefore, using (19), we have ϕ(s) +
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ϕ(1 − s) = 2π for all s ∈ [0, 1], and in particular ϕ 
(

1
2

)
= π. Finally, note that, taking 

s = ŝ := 1
2 , we have z(ŝ, t) = 0, and therefore

M(x(ŝ, t), y(ŝ, t), z(ŝ, t)) =
[

0 A(γ(t))
A∗(γ(t)) 0

]
, for all t ∈ [0, 1].

From the previous identity, and from the definition of joint-MVD, it follows that, for 
each j = 1, . . . , n, the phase βj accrued by the j-th singular vectors of the joint-MVD of 
A(γ(·)) along Γ coincides with the Berry phase αj(ŝ) accrued by the eigenvector of M
associated to the eigenvalue λj of M along the circle (x(ŝ, t), y(ŝ, t), 0). This concludes 
the proof. �
Theorem 3.12. With the same notation and hypotheses of Theorem 3.11 above, except 
for A being full rank everywhere in Ω, we have:

n∑
j=1

βj = 0 mod 2π.

Proof. The proof follows the same line as that of Theorem 3.11, using Theorem 2.8-
(i,iii). �

Finally, we have the following result that follows at once from Theorems 3.11 and 
3.12.

Corollary 3.13. Let A ∈ C1(Ω, Cn×n), Ω ⊂ R2, have distinct singular values everywhere 
on Ω. Let Γ be a circle entirely contained in Ω, and β1, . . . , βn be the phases accrued by 
the singular vectors of the joint-MVD of A along Γ. Suppose

n∑
j=1

βj = π mod 2π.

Then, there exists a point of loss of rank for A inside the region enclosed by Γ.

Remark 3.14. Corollary 3.13 was formulated relative to a circle Γ. However, this is not 
necessary. Using the same homotopy argument we adopted in [6], it is enough to have Γ
be a simple closed curve.

4. Examples

The first example illustrates how Corollary 3.13 is used to infer the presence of a point 
of loss of rank inside the region bounded by a closed curve.
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Fig. 1. Reference figure for Example 1: graph of the smallest singular value σ4(A(x, y)) and two circles Γ1
and Γ2 in parameters’ space, Γ1 being the largest one on the left.

Example 4.1. For this example we have explicitly constructed the 4 ×4 matrix function in 
(20), where the entries of the matrices M0 to M2 are pseudorandom numbers uniformly 
distributed in [−1, 1], rounded up to the nearest hundredth:

A(x, y) = M0 + xM1 + yM2 , (x, y) ∈ R2, (20)

with

M0 =

⎡⎢⎣ 0.03 + 0.23i −0.71 + 0.16i −0.43 − 0.53i 0.90 − 0.40i
0.11 − 0.96i −0.84 − 0.16i 0.26 + 0.72i −0.20 − 0.62i
0.40 − 0.98i 0.96 + 0.12i 0.19 − 0.25i 0.33 + 0.26i
−0.76 − 0.46i 0.37 − 0.22i −0.50 − 0.28i 0.41 − 0.76i

⎤⎥⎦ ,

M1 =

⎡⎢⎣−0.02 − 0.79i 0.48 − 0.76i −0.63 + 0.45i 0.42 − 0.03i
−0.22 + 0.19i 0.99 + 0.05i −0.80 + 0.77i −0.48 − 0.73i
0.34 + 0.83i 0.94 + 0.48i −0.77 − 0.74i −0.39 − 0.26i
0.10 − 0.56i −0.63 − 0.14i 0.94 + 0.00i 0.09 − 0.64i

⎤⎥⎦ ,

M2 =

⎡⎢⎣ 0.13 + 0.40i 0.43 − 0.83i −0.53 + 0.15i 0.59 + 0.59i
0.07 + 0.29i 0.85 − 0.07i −0.08 − 0.86i 0.75 − 0.16i
−0.53 + 0.26i 0.17 + 0.61i 0.53 − 0.16i 0.86 − 0.83i
0.95 + 0.56i 0.23 + 0.69i −0.29 − 0.99i −0.46 + 0.19i

⎤⎥⎦ .

A visual inspection of the surface σ4(A(x, y)) suggests the presence of a point of loss 
of rank for A, see Fig. 1. So, we have numerically computed the joint-MVD of A along 
two circles, a larger one Γ1 enclosing the supposed point of loss of rank, and a smaller 
one Γ2 not enclosing the point, see again Fig. 1. Thus, we have computed β1, . . . , β4, 
i.e. the phases accrued by the four columns of the unitary factors of the joint-MVD 
of A along the two circles. Table 2 shows the computed phases, rounded up to the 
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Table 2
Numerically computed phases 
for Example 4.1.

Γ1 Γ2

β1 −0.0206 +0.7928
β2 −2.5572 −0.7905
β3 +2.6831 +0.0004
β4 +3.0363 −0.0027
4∑

j=1
βj +3.1416 +0.0000

fourth decimal place. The outcome of the computation clearly confirms the expecta-
tion of Theorems 3.11 and 3.12: there is a loss of rank inside Γ1, but not inside Γ2. 
All the computations have been performed using the MATLAB function complexSvdCont
available at https://www .mathworks .com /matlabcentral /fileexchange /160876 -smooth -
singular -value -decomp -of -complex -matrix -function. The MATLAB code follows closely the 
algorithm proposed in [5] for the computation of the MVD of Hermitian matrix func-
tions. In a nutshell, it performs a variable-stepsize continuation of the smooth SVD of a 
matrix function of one parameter where, at each step, a suitable Procrustes problem is 
solved to minimize the quantity in (18).

The next example shows that, in general, by taking the MVD of just U and/or V
will not produce a phase accumulation revealing the presence of a generic point of loss 
of rank, and that taking the joint MVD is necessary.

Example 4.2. Let

A(x, y) =
[
1 1
0 x− iy

]
, (x, y) ∈ R2,

and Γr be the circle parametrized by

γ(t) = r[cos(2πt), sin(2πt)], r > 0, t ∈ [0, 1].

Notice that A is full rank everywhere except at the origin (0, 0), where it has a generic 
point of loss of rank. By direct computation, it is easy to obtain that:

i) letting β1, β2 be the phases accrued by, respectively, the first and second column of 
the unitary factors of the joint-MVD of A along Γr, one has

β1(r) = π
r2( 1

2
(√

r4 + 4 − r2
)

+ 1
)2 + r2

, β2(r) = π − β1(r), for all r ≥ 0,

so that 
∑

βj = π and, in agreement with Corollary 3.13, the point of loss of rank at 
the origin is properly detected;

https://www.mathworks.com/matlabcentral/fileexchange/160876-smooth-singular-value-decomp-of-complex-matrix-function
https://www.mathworks.com/matlabcentral/fileexchange/160876-smooth-singular-value-decomp-of-complex-matrix-function
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ii) letting α1, α2 be the phases accrued by the columns of the unitary factors of the 
U -MVD of A along Γr, one has

α1(r) = 2β1(r) mod 2π, α2(r) = −α1(r), for all r ≥ 0;

iii) no phase is accrued by the columns of the unitary factors of the V -MVD of A along 
Γr, for any value of r.

In other words, the MVD of just U and/or V does not produce a phase accumulation 
revealing the presence of a generic point of loss of rank, whereas the joint MVD does. 
Moreover, to detect the presence of a generic point of loss of rank, one has to con-
sider the phase accrued by all singular vectors, as looking solely at the singular vectors 
corresponding to the smallest singular value is not sufficient.

5. Conclusions

In this work we considered how to detect generic losses of rank for a complex valued 
matrix function A smoothly depending on two parameters. We proved that a generic loss 
of rank is detected by monitoring the (Berry) phases accrued by the singular vectors of 
an appropriate SVD along closed loops in parameter space containing the value where 
the loss of rank occurs. To achieve this, we had to introduce a novel smooth path of 
the SVD, which we called “joint MVD” (joint minimum variation decomposition) for 
the singular vectors. We complemented our theoretical results with numerical examples 
both to locate losses of rank, and to show the necessity of considering the joint MVD.

Although we have considered a single loss of rank within a planar region Ω, it should 
be possible to deal with the case of multiple (generic) losses of rank in a similar way to 
how we dealt with multiple coalescing eigenvalues in [6, Section 3], and we plan to look 
at this problem in the future.
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