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Abstract. In this paper we address an extension of the sequential pat-
tern mining problem which aims at detecting the significant differences
between frequent sequences with respect to given classes. The resulting
problem is known as contrast sequential pattern mining, since it merges
the two notions of sequential pattern and contrast pattern. For this prob-
lem we present a declarative approach based on Answer Set Programming
(ASP). The efficiency and the scalability of the ASP encoding are evalu-
ated on two publicly available datasets, iPRG and UNIX User, by varying
parameters, also in comparison with a hybrid ASP-based approach.
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1 Introduction

In recent times there is an increasing availability of data that contain sequences
of events, items, or tokens organized according to an ordered metric space. The
requirement to detect and analyze frequent subsequences has therefore become
a common problem. Sequential Pattern Mining (SPM) arose as a subfield of pat-
tern mining just to address this need (see, e.g., [18] for a survey). More precisely,
the typical task in SPM consists in finding frequent and non-empty temporal
sequences, called sequential patterns, from a dataset of sequences. Another in-
teresting class of pattern mining problems goes under the name of Contrast Pat-
tern Mining [4]. Here, the typical task is about detecting statistically significant
differences/similarities, called contrast patterns, between two or more disjoint
datasets (or portions of the same dataset). Sequential and contrast pattern min-
ing are known to have a higher complexity than, e.g., itemsets mining. However,
they have broad applications, e.g., the analysis of patient care pathways, educa-
tion traces, digital logs (web access for client profiling, intrusion detection from
network logs), customer purchases (rules for purchases recommendations), text
and bioinformatic sequences. In this paper we consider to merge the concepts
of sequential pattern and contrast pattern in order to find significant differences
between frequent sequences with respect to given classes. This gives rise to the
concept of contrast sequential pattern. The resulting problem of Contrast Sequen-
tial Pattern Mining (CSPM) is not new. However, it has been little addressed
so far (see [3] for a recent survey).
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In this paper we address the CSPM task by means of a declarative ap-
proach. In particular, we resort to Answer Set Programming (ASP) [14,2], a
well-established computational logic paradigm for declarative problem solving.
Declarative approaches are generally desirable in application domains where the
requirements of transparency, verifiability and explainability of the AI techniques
employed are of paramount importance, such as bio-informatics. For this reason
a novel stream of research called Declarative Pattern Mining (DPM) has been
proposed which can be more useful and appropriate in such contexts. To the best
of our knowledge, no DPM approach exists that supports intensive knowledge-
based contrast sequence mining. We have developed a concise and versatile ASP
encoding for CSPM and for managing complex preferences on patterns. In par-
ticular, we have extended previous work on ASP-based SPM with the necessary
code for checking which frequent sequential patterns out of the discovered ones
highlight significant differences with respect to two classes. We have evaluated
the encoding on two real-world public datasets of sequences (iPRG and UNIX
User) which are enriched with information about the class of reference for each
sequence. For a comparative evaluation, we have chosen a hybrid ASP-based
approach that combines a first step with a traditional algorithm for SPM and a
second step with ASP.

The paper is organized as follows. In Section 2 we overview the current re-
search in CSPM and DPM. In Section 3 we provide the necessary background
on ASP and CSPM. In Section 4 we describe our ASP enconding for the CSPM
task and in Section 5 we report the experimental results obtained on the chosen
datasets. Section 6 concludes the paper with final remarks.

2 Related works

Sequential and Contrast Pattern Mining are challenging tasks in data mining and
play an important role in many applications. Notably, PrefixSpan is an optimized
algorithm for mining sequences [11]. The notion of contrast is deeply discussed by
Dong in [4]. Chen et al. [3] provide an up-to-date comprehensive and structured
overview of the research in Contrast Pattern Mining which includes also the
case of contrast sequential patterns. In particular, Zheng et al. [23] present a
CSPM method for taxpayer behaviour analysis, and Wu et al. [22] propose a
top-k self-adaptive CSPM solution.

DPM covers many pattern mining tasks such as sequence mining [19,5] and
frequent itemset mining [12,7]. In [19], the authors organize the constraints on
sequential patterns in three categories: 1) constraints on patterns, 2) constraints
on patterns embeddings, 3) constraints on pattern sets. These constraints are
provided by the user and capture his background knowledge. Then, they in-
troduce two formulations based on Constraint Programming (CP). Jabbour et
al. [12] propose SAT based encodings of itemset mining problems to overcome
space complexity issue behind the competitiveness of new declarative and flexible
models. In [7],MiningZinc is presented as a declarative framework for constraint-
based data mining.
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Besides SAT and CP, ASP is also widely used in DPM. The first proposal is
described by Guyet et al. [9]. The authors explore a first attempt to solve the
SPM problem with ASP and compare their method with a dedicated algorithm.
Next, in [5] Gebser et al. use ASP for extracting condensed representation of
sequential pattern. They focus on closed, maximal and skyline patterns. Samet
et al. in [21] show a method for mining meaningful rare sequential patterns with
ASP, whereas in [8] Guyet et al. propose to apply an ASP-based DPM approach
to investigate the possible association between hospitalization for seizure and
antiepileptic drug switch from a french medico-administrative database. Guyet
et al. [10] present the use of ASP to mine sequential patterns within two repre-
sentations of embeddings (fill-gaps vs skip-gaps) and various kinds of patterns:
frequent, constrained and condensed. Besnard and Guyet [1] address the task
of mining negative sequential patterns in ASP. A negative sequential pattern
is specified by means of a sequence consisting of events to occur and of other
events, called negative events, to be absent. In [15,16] Guyet’s ASP encodings for
SPM are adapted in order to address the requirements of an application in the
digital forensics domain: The analysis of anonymised mobile phone recordings.
Motivated by the same application, Lisi and Sterlicchio present an ASP-based
approach to contrast pattern mining in [17].

Whereas all the works mentioned so far are pure ASP-based DPM solutions,
particularly interesting is the hybrid ASP-based approach proposed by Para-
monov et al. [20] which combines dedicated algorithms for pattern mining and
ASP. The authors show that such two-step approach outperforms one-shot ones.

3 Preliminaries

3.1 Answer Set Programming

ASP is a declarative and expressive programming language to resolve difficult
research problems (e.g. security analysis, planning, configuration, semantic web,
etc.) introduced at the end of the 90s [2]. Every ASP programs is made up of
atoms, literals and logic rules. Atoms can be true or false and a literal is an atom
a or its negation not a. An ASP general rule has the following form:

a1 ∨ . . . ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm (1)

where all ai and bj are atoms. The previous rule says that if b1, . . . , bk are
true and there is not reason for believing that bk+1, . . . , bm are true then at
least one of the a1, . . . , an is believed to be true. The not statement is not the
standard logical negation but it is used to derive not p (i.e. p is assumed not to
hold) from failure to derive p. The left side of the← is called head while the right
side body. Rules of the form “a←” are called facts and they have no body. The
head is unconditionally true and the arrow is usually omitted. Rules of the form
“← b1, . . . , bk” are called constraints. Adding a constraint in a program deletes
answer sets that satisfy the constraint body. There are different ASP systems,
the most important are Clingo [6] and DLV [13].
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3.2 Contrast Sequential Pattern ¡mining

Sequential Pattern Mining [18] aims at identifying frequent subsequences within
a sequences database D. In the following, we briefly formalize the SPM prob-
lem. Throughout this article, [n] = {1, . . . , n} denotes the set of the first n
positive integers. Let Σ be the alphabet, i.e, the set of items. An itemset A =
{a1, a2, . . . , am} ⊆ Σ is a finite set of items. The size of A, denoted |A|, is
m. A sequence s is of the form s = ⟨s1s2 . . . sn⟩ where each si is an itemset,
and n is the length of the sequence. A database D is a multiset of sequences
over Σ. A sequence s = ⟨s1 . . . sm⟩ with si ∈ Σ is contained in a sequence
t = ⟨t1 . . . tn⟩ with m ≤ n, written s ⊑ t, if si ⊆ tei for 1 ≤ i ≤ m and
an increasing sequence (e1 . . . em) of positive integers ei ∈ [n], called an em-
bedding of s in t. For example, we have ⟨a(cd)⟩ ⊑ ⟨ab(cde)⟩ relative to em-
bedding (1, 3). Here, (cd) denotes the itemset made of items c and d. Given a
database D, the cover of a sequence s is the set of sequences in D that con-
tain s: cover(s,D) = {t ∈ D|s ⊑ t}. The number of sequences in D contain-
ing s is called its support, that is, supp(s,D) = |cover(s,D)|. For an integer
minsup (that is often referred to as the minimum support threshold), the prob-
lem of frequent sequence mining is about discovering all sequences s such that
supp(s,D) ≥ minsup. Each sequence that satisfies this requirement is called a
(sequential) pattern. For minsup = 2 we can see how ⟨a⟩, ⟨b⟩, ⟨c⟩, ⟨a b⟩, ⟨a c⟩,
⟨b c⟩ and ⟨a b c⟩ are common patterns in the database D reported in Table 1
without considering the reference classes.

Table 1. Example of a sequence dataset, in tabular format (left) and encoded with
ASP (right). Each sequence has a class label, that is used in CSPM.

ID Sequence Class
1 ⟨d a a c ⟩ C1

2 ⟨a c b c ⟩ C1

3 ⟨a c ⟩ C1

4 ⟨b ⟩ C1

5 ⟨a b c ⟩ C2

6 ⟨a b c ⟩ C2

7 ⟨c ⟩ C2

1 cl(1,c1). seq(1,1,d). seq(1,2,a). seq(1,3,a). seq(1,4,c).
2 cl(2,c1). seq(2,1,a). seq(2,2,c). seq(2,3,b). seq(2,4,c).
3 cl(3,c1). seq(3,1,a). seq(3,2,c).
4 cl(4,c1). seq(4,1,b).
5 cl(5,c2). seq(5,1,a). seq(5,2,b). seq(5,3,c).
6 cl(6,c2). seq(6,1,a). seq(6,2,b). seq(6,3,c).
7 cl(7,c2). seq(7,1,c).

A contrast sequential pattern is defined as a sequential pattern that occurs
frequently in one sequence dataset but not in the others [3]. We start by in-
troducing the concept of growth rate. Given two sequence datasets, D1 labelled
with class C1 and D2 labelled with class C2, the growth rate from D2 to D1 of
a sequential pattern s is defined as:

GRC1(s) =
supp(s,D1)/|D1|
supp(s,D2)/|D2|

(2)

If supp(s,D2) = 0 and supp(s,D1) ̸= 0 then GRC1
(s) =∞.

In the same way, the growth rate from D1 to D2 of s is defined as:

GRC2
(s) =

supp(s,D2)/|D2|
supp(s,D1)/|D1|

(3)
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If supp(s,D1) = 0 and supp(s,D2) ̸= 0 then GRC2
(s) =∞.

The contrast rate of s is denoted as:

CR(s) = max{GRC1 , GRC2} (4)

If GRC1
(s) = 0 and GRC2

(s) = 0 then CR(s) =∞.
A sequence s in a sequences dataset is said to be a contrast sequential pat-

tern if its contrast rate is not lower than the given threshold: CR(s) ≥ mincr.
Unlike frequent sequential pattern mining, contrast sequential pattern mining
can discover the characteristics of different classes in sequences datasets, which
has been widely used in sequential data analysis, such as protein/DNA dataset
analysis, anomaly detection, and customer behavior analysis.

With reference to the dataset in Table 1, we split D into D1 and D2 according
to the classes C1 and C2, respectively. For example, the sequence s = ⟨a c⟩ has
supp(s,D1) = 3, supp(s,D2) = 2, GRC1

(s) = 1.125, GRC2
(s) = 0.89, and

CR(s) = 1.125. Given t = ⟨a b c⟩, it has supp(t,D1) = 1, supp(t,D2) = 2,
GRC1(t) = 0.375, GRC2(t) = 2.67, and CR(t) = 2.67. If, e.g., mincr = 1, we
can conclude that s and t are contrast sequential patterns for C1 and C2 resp.,
because CR(s) ≥ mincr and CR(t) ≥ mincr.

4 ASP encoding for contrast sequence mining

In this section we describe the proposed ASP encoding and discuss the rationale
behind. Since CSPM merges the two notions of sequential pattern and contrast
pattern, it is necessary to first extract the frequent sequential patterns from the
input sequences (see Section 4.1) and then check which of these regularities are
actually contrast sequential patterns (see Section 4.2).

4.1 From sequences to sequential patterns

The sub-problem of mining frequent sequential patterns is encoded according to
the principles outlined in [5]. However, in our case, we need to consider also the
reference class. In particular, D is represented as a collection of ASP facts of the
kind seq(s, p, i) and cl(s, c), where the seq predicate says that an item i occurs
at position p in a sequence s while the cl predicate says that s is labelled with
class c. Table 1 shows the ASP encoding of a sequence dataset.

Besides minsup and mincr, maxlen and minlen are introduced to denote
the maximum and the minimum pattern length, respectively. Also, c1 and c2
stand for the classes C1 and C2, respectively. The lower the value of minsup and
mincr the more patterns will be extracted; the lower the value of maxlen, the
smaller the ground program will be. Therefore the parameters allow a tuning
for the program efficiency. Finally, each answer set comprises a single pattern of
interest. More precisely, an answer set represents a (contrast) sequential pattern
s = ⟨si⟩i≤th≤m such that 1 ≤ m ≤ maxlen from atoms pat(1, s1), ..., pat(m, sm).
The first argument expresses the position of the item inside the pattern. For
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example the atoms pat(1, a), pat(2, b) and pat(3, c) describe a contrast sequential
pattern ⟨a b c⟩ for the database in Table 1.

For this sub-problem the basic “fill-gaps” encoding provided by [10] can be
used with little modifications.

4.2 From frequent sequences to contrast patterns

The sub-problem of filtering contrast patterns out of the frequent sequences
discovered by the encoding reported in Section 4.1 requires additional ASP rules.

1 card(Card, c1) :- Card = #count{T : cl(T, c1)}.

2 card(Card, c2) :- Card = #count{T : cl(T, c2)}.

3

4 sup(Sup, c1) :- Sup = #count{T : support(T), seq(T, _, _), cl(T, c1)}.

5 sup(Sup, c2) :- Sup = #count{T : support(T), seq(T, _, _), cl(T, c2)}.

6

7 gr_rate("inf", c1) :- sup(Sup1, c1), Sup1 != 0, sup(0, c2).

8 gr_rate("inf", c2) :- sup(Sup2, c2), Sup2 != 0, sup(0, c1).

9 gr_rate(@gr(Sup1, Card1, Sup2, Card2), c1) :- sup(Sup1, c1),

10 card(Card1, c1), sup(Sup2, c2), card(Card2, c2), Sup1 > 0, Sup2 > 0.

11 gr_rate(@gr(Sup2, Card2, Sup1, Card1), c2) :- sup(Sup1, c1),

12 card(Card1, c1), sup(Sup2, c2), card(Card2, c2), Sup1 > 0, Sup2 > 0.

13

14 contr_pat(yes, Class) :- gr_rate("inf", Class).

15 contr_pat(@csp(Cr, mincr), Class) :- gr_rate(Cr, Class), Cr != "inf".

16

17 :- contr_pat(no, c1), contr_pat(no, c2).

In the code above Lines 1-2 compute the cardinality of the datasetsD1 andD2

whereas Lines 4-5 compute the support of a pattern s in D1 and D2 respectively.
Lines 9-10 calculate GRC1(s) in accordance with the formula in Eq. (2), while
Line 6 capture the case of GRC1(s) =∞. ASP does not support the computation
of formulas that return decimal values. For this reason, a Python script has been
developed which can be called from within ASP (with the @ command followed
by the function name). The result will no longer be treated in ASP as a constant
but rather as a string. Analogously, Lines 12-13 encode the computation of GRC2

according to Eq. (3) and Line 7 concerns the infinite case for GRC2 . Finally, Lines
14-15 check if the sequence s in hand is a contrast pattern for either C1 or C2 by
means of a Python function because it compares decimal numbers. If the growth
rate is less than mincr, a constant no is returned, yes otherwise. Lines 14-15 set
the first term of the contrast pattern to yes in accordance with the formulas in
Eq. (2) and (3), respectively. The constraint at Line 17 discards all answer sets
that do not represent contrast patterns for any of the two classes.

Below, the same example of CSPM reported at the end of Section 3.2 is
solved by running our ASP encoding over the ASP facts in Table 1 with minsup
= 20% and mincr = 1.

1 pat(1,a) pat(2,c) gr_rate("0.89",c2) contr_pat(no,c2) gr_rate("1.125",c1) contr_pat(yes,c1)
2 pat(1,a) pat(2,b) pat(3,c) gr_rate("2.67",c2) contr_pat(yes,c2) gr_rate("0.375",c1) contr_pat(no,c1)
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Table 2. Features of iPRG and UNIX User sub-datasets: The number of distinct
symbols, the number of sequences, the total number of symbols in the dataset, the
maximum sequence length, the average sequence length, and the density (calculated

by ||D||
|Σ||D| .)

Dataset |Σ| |D| ∥D∥ max|T| avg|T| density
iPRG 21 8628 111,743 12 11.95 0.62
iPRG 25 25 20 50 657 12 11.88 0.64
iPRG 100 100 20 200 2591 12 11.83 0.64
iPRG 500 500 21 1000 12,933 12 11.92 0.62
iPRG 1000 1000 21 2000 25,841 12 11.91 0.61

UNIX 2672 9099 165,748 1256 18.22 0.01
UNIX 25 25 70 50 365 55 7.3 0.10
UNIX 100 100 178 200 2281 175 11.41 0.06
UNIX 500 500 420 1000 13,289 187 13.29 0.03
UNIX 755 755 540 1510 20,234 214 13.4 0.02

5 Experiments

In this section we examine the computational behavior of the ASP encoding
described in Section 4. In pattern mining, it is usual to evaluate the effectiveness
(number of extracted patterns) and the time and space efficiency of an algorithm.
Moreover in ASP-based DPM approaches it is important to know the solver and
grounder time. To this end, we conducted experiments on the following datasets:

– iPRG: each transaction is a sequence of peptides that is known to cleave in
presence of a Trypsin enzyme,3

– UNIX User: each transaction is a sequence of shell commands executed by
a user during one session.4

We have chosen these datasets because (i) they are suitable for the task
considered in this paper (classified sequences), (ii) they have been already used
in the DPM literature, in particular in [10,19] although for a different task,
and (iii) they are publicly available. Notably, transactions in both datasets are
labelled with one of two classes, pos and neg.

In the following we report and discuss the results obtained from scalability
tests on iPRG (Section 5.1) and UNIX User (Section 5.2). As a solver, we have
used the version 5.4.0 of clingo, with default solving parameters. The timeout
(TMO) has been set to 5 hours. The ASP programs were run on a laptop com-
puter with Windows 10 (with Ubuntu 20.04.4 subsystem), AMD Ryzen 5 3500U
@ 2.10 GHz, 8GB RAM without using the multi-threading mode of clingo. Multi-
threading reduces the mean runtime but introduces variance due to the random
allocation of tasks. Such variance is inconvenient for interpreting results with
repeated executions.

3 https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html
4 https://archive.ics.uci.edu/ml/datasets/UNIX+User+Data

https://dtai.cs.kuleuven.be/CP4IM/cpsm/datasets.html
https://archive.ics.uci.edu/ml/datasets/UNIX+User+Data
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As regards the comparison with alternative solutions to the CSPM problem in
hand, it has not been possible to run experiments with dedicated algorithms like
[23,22] since their code is not available. Thus, we have considered a hybrid ASP-
based approach inspired by [20]. The results from the comparative evaluation
are reported and discussed in Section 5.3.

Full code and detailed experimental results are available online.5.

5.1 Scalability tests on iPRG

In order to study the behaviour of the ASP encoding over iPRG, we have created
several subsets of this dataset of increasing size (Table 2).

For each sub-dataset, we show runtime and memory behaviour of the encod-
ing in two settings (see Table 3). On the left the minimum support threshold
(minsup) varies from 10% to 50% while mincr = 3, minlen = 2, and maxlen = 5
remain fixed, and on the right the minimum contrast rate (mincr) varies from 1
to 5 while minsup = 20%, minlen = 2, and maxlen = 5 remain fixed. When we
increase minsup and/or mincr, the number of patterns and the runtime decrease.
The minimum support threshold at 20% represents a cut point as regards the
number of patterns found. Obviously, as the size of the dataset increases, the run-
time and memory parameters grow up but the grounding phase (time− solv. t.)
not significantly. In the case of Table 3(e, f, g, h) the execution is interrupted
as it exceeds the time limit of 5 hours. Also, the choice of minsup = 10% in-
fluences the dimension of the program and consequently the execution time as
shown in Table 3(e, g). We recall that these tests were conducted using a single
thread for the reasons mentioned before. With more threads the total execution
time will decrease. As regards memory usage, this grows up in proportion to the
size of the input dataset but remains stable as minsup or mincr increases. Low
minsup values allow to find more patterns but at a higher runtime. In fact, the
thresholds minsup and mincr have the pruning function, the former for frequent
sequences and the latter for contrast sequences.

Below, as an illustrative example, we report some contrast sequential patterns
found in iPRG 100 100 for minsup = 10% and mincr = 3.

1 pat(1,4) pat(2,5) pat(3,9) gr_rate("0.05",neg) contr_pat(no,neg) gr_rate("19.0",pos) contr_pat(yes,pos)

2 pat(1,9) pat(2,9) pat(3,2) pat(4,11) gr_rate("inf") contr_pat(yes,pos)

3 pat(1,11) pat(2,16) pat(3,8) gr_rate("12.0") contr_pat(yes,neg) gr_rate("0.08") contr_pat(no,pos)

4 pat(1,2) pat(2,16) pat(3,8) gr_rate("inf") contr_pat(yes,neg)

Line 1 describes the contrast pattern ⟨4 5 9⟩ that represents the sequence
⟨Q P N⟩ of peptides.6 This pattern has high contrast rate for the pos class.
Conversely, Line 3 shows a contrast pattern (⟨11 16 8⟩ = ⟨L D K⟩) for the neg
class. The patterns ⟨9 9 2 11⟩ = ⟨N N I L⟩ and ⟨2 16 8⟩ = ⟨I D K⟩ at Lines 2
and 4, respectively, have an important property. They occur only in the pos and
neg classes respectively because the growth rate value is infinite.

5 https://github.com/mpia3/Contrast-Sequential-Pattern-Mining.git
6 The meaning of each item can be found at the link where the dataset is published.

https://github.com/mpia3/Contrast-Sequential-Pattern-Mining.git
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Table 3. Number of patterns, runtime (seconds), solver time (seconds) and memory
consumption (MB) on all iPRG sub-datasets. TMO means that the execution has
exceeded the imposed 5-hour timeout.

(a) iPRG 25 25, mincr = 3

minsup #pat time solv. t. memory

10% 712 3.065 2.96 25.96
20% 24 1.550 1.35 23.89
30% 2 1.050 0.86 23.89
40% 0 0.480 0.34 23.89
50% 0 0.243 0.08 23.89

(b) iPRG 25 25, minsup = 20%

mincr #pat time solv. t. memory

1 0 0.085 0.00 22.31
2 0 0.076 0.00 21.93
3 0 0.086 0.00 21.67
4 0 0.086 0.00 22.31
5 0 0.086 0.00 22.18

(c) iPRG 100 100, mincr = 3

minsup #pat time solv. t. memory

10% 561 47.553 46.82 87.05
20% 15 22.585 21.43 60.05
30% 0 10.279 9.02 60.04
40% 0 5.474 4.34 60.00
50% 0 3.488 2.23 60.00

(d) iPRG 100 100, minsup = 20%

mincr #pat time solv. t. memory

1 72 20.290 19.12 59.16
2 37 21.855 20.74 61.77
3 15 21.974 20.73 60.05
4 9 18.289 17.15 60.04
5 8 18.338 17.11 59.98

(e) iPRG 500 500, mincr = 3

minsup #pat time solv. t. memory

10% 71 TMO TMO 852.24
20% 12 3543.002 3524.08 852.24
30% 0 1712.463 1692.43 852.24
40% 0 140.521 120.08 852.24
50% 0 98.535 79.49 852.24

(f) iPRG 500 500, minsup = 20%

mincr #pat time solv. t. memory

1 71 TMO TMO 852.24
2 20 403.259 383.63 859.90
3 12 3440.552 3421.60 852.24
4 8 606.101 586.90 851.83
5 4 TMO TMO 1447.55

(g) iPRG 1000 1000, mincr = 3

minsup #pat time solv. t. memory

10% 12 TMO TMO 3258.44
20% 3 TMO TMO 3242.55
30% 0 7375.746 7284.13 3253.90
40% 0 2061.364 1972.19 3232.85
50% 0 TMO TMO 3433.55

(h) iPRG 1000 1000, minsup = 20%

mincr #pat time solv. t. memory

1 12 TMO TMO 3258.44
2 18 TMO TMO 3166,26
3 3 TMO TMO 3207.61
4 0 TMO TMO 3172.99
5 0 TMO TMO 3118.20

5.2 Scalability tests on UNIX User

As regards the UNIX User dataset we have created several subsets of the same
size as iPRG (see Table 2), except for one (namely, UNIX 755 755) where the
rationale behind the size of 755 is the fact that the positive sequences are only
755 in the original dataset and we wanted to keep the two classes balanced.

Analogously to the experiments conducted with iPRG, we report runtime and
memory usage for two batches of tests (see Table 4). One concerns the variation
of the minimum support threshold (minsup) from 10% to 50%, while keeping
mincr = 3, minlen = 2, and maxlen = 5 fixed. The other concerns the variation
of the minimum contrast rate (mincr) from 1 to 5 while leaving unchanged
minsup = 20%, minlen = 2, and maxlen = 5. The particularity of the dataset
lies in the size of its alphabet, clearly higher than iPRG. Such a size affects
sequences with a higher average length. In fact the largest sequence, whatever
the size of the dataset considered, is clearly larger than iPRG. This also affects
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the number of patterns found, lower than for iPRG because the single sequence
has much more variance. Moreover, the alphabet size affects the overall time.
From a comparison between Tables 3(e, f) and 4(e, f) it is clear the difference
in magnitude of the time taken. All tables show the same behavior in memory
as iPRG. When the data size is high, the overall time exceeds the timeout only
when support threshold is less or equal than 20% (see Table 4(e, g, h)).

Table 4. Number of patterns, runtime (seconds), solver time (seconds) and memory
consumption (MB) on all UNIX User sub-datasets. TMO means that the execution
has exceeded the imposed 5-hour timeout.

(a) UNIX 25 25, mincr = 3

minsup #pat time solv. t. memory

10% 335 0.414 0.26 23.5
20% 1 0.105 0.02 22.93
30% 0 0.095 0.01 22.93
40% 0 0.086 0.01 22.93
50% 0 0.087 0.00 21.38

(b) UNIX 25 25, minsup = 20%

mincr #pat time solv. t. memory

1 1 0.132 0.01 22.94
2 1 0.103 0.02 22.94
3 1 0.099 0.02 22.93
4 1 0.104 0.02 22.93
5 1 0.103 0.02 21.21

(c) UNIX 100 100, mincr = 3

minsup #pat time solv. t. memory

10% 18 3.679 2.69 59.58
20% 0 1.792 1.02 59.57
30% 0 1.342 0.56 59.57
40% 0 0.973 0.24 37.48
50% 0 0.886 0.14 37.35

(d) UNIX 100 100, minsup = 20%

mincr #pat time solv. t. memory

1 0 2.409 1.4 59.4
2 0 1.841 1.10 59.55
3 0 0.818 1.03 59.57
4 0 1.789 1.04 59.53
5 0 1.753 1.04 59.56

(e) UNIX 500 500, mincr = 3

minsup #pat time solv. t. memory

10% 9 TMO TMO 850.79
20% 1 129.941 110.99 850.79
30% 0 59.270 37.88 850.79
40% 0 50.735 30.39 850.79
50% 0 35.419 15.68 850.79

(f) UNIX 500 500, minsup = 20%

mincr #pat time solv. t. memory

1 1 74.553 53.96 855.96
2 1 123.825 104.54 846.29
3 1 123.167 103.68 848.51
4 1 125.537 106.22 850.38
5 1 128.747 109.14 850.38

(g) UNIX 755 755, mincr = 3

minsup #pat time solv. t. memory

10% 1 TMO TMO 2653.12
20% 0 TMO TMO 2642.25
30% 0 235.760 188.53 1849.92
40% 0 146.888 99.52 1850.01
50% 0 120.360 72.95 1850.00

(h) UNIX 755 755, minsup = 20%

mincr #pat time solv. t. memory

1 0 286.354 238.35 1848.77
2 0 13,709.513 13,661.11 1851.55
3 0 TMO TMO 2642.25
4 0 TMO TMO 1848.83
5 0 TMO TMO 3766.38

Some contrast sequential patterns mined from UNIX 25 25 are shown below
as an illustrative example. Each item represents a UNIX command.7

1 pat(1,12) pat(2,14) pat(3,15) pat(4,13) pat(5,12) gr_rate("inf",neg) contr_pat(yes,neg)
2 pat(1,103) pat(2,2611) pat(3,29) pat(4,2812) gr_rate("inf",pos) contr_pat(yes,pos)

Line 1 shows the sequence ⟨12 14 15 13 12⟩ = ⟨fg | more finger fg⟩ that is
a contrast pattern only for the neg class while Line 2 a sequence found only for
the pos class: ⟨103 2611 29 2812⟩ = ⟨quota emacs− nw netscape assoc.out⟩.
7 The reader can find the conversion table at the link where the dataset is published.
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5.3 Comparison with a hybrid ASP-based approach

As a baseline for a comparative evaluation we have considered a two-step ap-
proach that features an ASP filtering on top of a dedicated algorithm for SPM.
In the first step, PrefixSpan [11] is applied to discover frequent sequential pat-
terns, while in the second step, the patterns are post-processed by using the ASP
rules reported in Section 4.2 to find the constrasting ones. The resulting hybrid
PrefixSpan+ASP approach has been applied on the same datasets (see Table
2) and with the same parameters used in the scalability tests reported in the
previous two sections. The results obtained with the pure ASP and the hybrid
method as regards the time and memory dimensions are graphically presented
in Figure 1 in a comparative way.

(a) iPRG (b) iPRG

(c) iPRG (d) iPRG

(e) UNIX (f) UNIX

(g) UNIX (h) UNIX

Fig. 1. Comparison between pure and hybrid ASP-based approaches.
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It is interesting to note the behavior of the two approaches. For both iPRG
and UNIX User, the one-shot approach performs slightly better than the two-
step approach when the dataset size is not large (up to 100-100 sequences). This
can be observed especially for memory usage (see Figure 1 (b, d, f, h)).

6 Conclusions and future work

This article has presented a declarative approach to the CSPM task which is
based on ASP. To the best of our knowledge, this is the first proposed ASP
encoding for this task. It takes advantage of the Python interface for Clingo to
design more complex ASP programs, e.g., numerical computation as in our case.
The encoding has been extensively evaluated on real-world (publicly available)
datasets to draw conclusions about the efficiency of the approach. Low min-
sup and mincr values allow to find more patterns. However, this comes with an
increasing runtime. So, the results from the scalability tests are promising al-
though they can not be considered conclusive about the validity of the approach.
For this reason, a comparison with two-step approaches is particularly interest-
ing. The results obtained with the hybrid PrefixSpan+ASP approach confirm
and complement the conclusions of [20] concerning the advantages of hybrid ap-
proaches over pure approaches as regards time performance. Our contribution is
the empirical evidence for a DPM task (namely, CSPM) that was not covered
by [20]. In particular, the analysis of memory usage provides new hints on the
behaviour of ASP-based DPM solutions.

Much work needs to be done for the future. In order to improve the per-
formance, we intend to explore the extraction of condensed representations (e.g.
maximal and closed patterns) in the context of CSPM. Also, further experiments
are needed to complete the efficiency analysis of our ASP encoding, such as the
ones aimed at studying the interplay between memory usage and pattern length
as done in [10]. Another direction for future development of the present work
is to consider other forms of contrast pattern as described in [3]. Our proposal
is indeed general enough to enable the encoding of several types of constraints.
The addition/deletion of constraints allows the modeling of problem variants.
Overall, an advantage of DPM is that for most well-specified tasks, the devel-
opment effort is significantly lower than for procedural approaches. We do not
expect DPM to be competitive with dedicated algorithms, but to take advan-
tage of the versatility of declarative frameworks to propose pattern mining tools
that could exploit background knowledge during the mining process to extract
less but meaningful patterns. To this aim, we plan to enrich the datasets for
future experiments with domain knowledge, e.g., chemistry or biology related
constraints in the iPRG dataset.
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