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Abstract: The gut microbiota (GM) plays a crucial role in human health, particularly during the first
years of life. Differences in GM between breastfed and formula (F)-fed infants may influence long-
term health outcomes. This systematic review aims to compare the gut microbiota of breastfed infants
with that of F-fed infants and to evaluate the clinical implications of these differences. We searched
databases on Scopus, Web of Science, and Pubmed with the following keywords: “gut microbiota”,
“gut microbiome”, and “neonatal milk”. The inclusion criteria were articles relating to the analysis
of the intestinal microbiome of newborns in relation to the type of nutrition, clinical studies or case
series, excluding reviews, meta-analyses, animal models, and in vitro studies. The screening phase
ended with the selection of 13 publications for this work. Breastfed infants showed higher levels
of beneficial bacteria such as Bifidobacterium and Lactobacillus, while F-fed infants had a higher
prevalence of potentially pathogenic bacteria, including Clostridium difficile and Enterobacteriaceae.
Infant feeding type influences the composition of oral GM significantly. Breastfeeding promotes a
healthier and more diverse microbial ecosystem, which may offer protective health benefits. Future
research should explore strategies to improve the GM of F-fed infants and understand the long-term
health implications.

Keywords: gut microbiota; intestinal microbiome; neonatal milk; formula feeding; breastfeeding

1. Introduction

A crucial role is played by the gut microbiome (GM) in human diseases and health,
particularly in early life [1–3].

Trillions of microorganisms cohabit with cells inside the human organism, influencing
health and quality of life [4–7]. The most important density of microorganisms is reached
in the gut, where it is called the intestinal microbiome [8]. The importance of intestinal
microbiome can be correlated with human development, metabolism, and behavior [9–11].

Microbial colonization of the intestinal tract is crucial for the maturation of the immune
system in neonates. Beneficial bacteria, such as Bifidobacterium and Lactobacillus, stimulate
antibody production and modulate the activity of immune cells, promoting immune
tolerance and preventing autoimmune and allergic diseases. Components of breast milk,
including oligosaccharides, antimicrobial proteins, and short-chain fatty acids, support
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the growth of beneficial bacteria and aid in the development of a balanced and protective
immune system. In the intestinal system, both indigenous microorganisms and transient
microorganism are present [12,13] A small number of opportunistic microorganisms can
threaten intestinal health when the gut ecosystem’s balance is disrupted [14–16].

In breast milk, there are oligosaccharides and immunoglobulins that promote im-
munity and development. These promoting factors seem to protect the newborn both
actively and passively, opposing intestinal diseases [17–19]. Factors influencing the GM in
neonates include feeding and nutrition, the use of probiotics and antibiotics, gestational
and postnatal age, and environmental factors.

Among environmental factors, pH, oxygen levels/redox state, the availability of water
in the environment for microbial growth, and temperature can be crucial for the maturation
of intestinal microbiome [20–24]. Other factors associated with the advance of GM of
the newborn can be the type of delivery of the infant or the contact with skin during
breastfeeding. GM depends on delivery mode because of the migration of the vaginal
and intestinal microbiome of the mother [12,25]. Also, contamination by the skin during
breastfeeding can shape GM during the first months of life of infants [26–28]. Although the
origin of the microbiome remains unclear, an important role seems to be played by the type
of nutrition, especially by components contained in mothers’ human milk [29–33].

The first years of life are fundamental for the development and constitution of the
microbiota. It is preferable to feed the infant with breast milk for the first six months of
the life of the baby because the type of feeding can condition the bacteria composition and
characteristics of microbiome [13,34,35]

Human milk given by the mother is capable of shaping the advance and the constitu-
tion of viruses, bacteria, protists, archaea and fungi, collectively termed the microbiome,
that occupy infant barrier surfaces [13,36,37] (Figure 1).
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Figure 1. Maternal milk components can shape the development of infants’ microbiome.

The effects of breast milk on shaping the development of microbiome in infants
due to antimicrobial/immune-stimulatory and nutritional maternal milk proteins are
particularly evident in intestinal system [38–40]. The human milk microbiota, human
milk oligosaccharides (HMOs), short-chain fatty acids (SCFAs), and antimicrobial proteins
are components of breast milk of special interest since they all affect the GM of infants,
which has been linked to the body composition of babies [41–43]. Human milk’s SCFAs
and antimicrobial proteins may also have a systemic impact on a baby’s metabolism.
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Additionally, there is some evidence around the impact of all these components on infant
growth (Figure 2) [44].
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Figure 2. Maternal milk components can shape the development of infants’ microbiome and influence
infant growth.

Despite the impact of mother’s breast milk on intestinal microbiome composition,
it is not fully known how human milk may affect the GM of newborn and the impact
deriving from it on intestinal and general health. Through the comparison of intestinal
microbiome between breastfed infants and F-fed infants, it is possible to evaluate the
differences between the microbial composition and analyze the true impact of mothers’
milk on the promotion of infants’ health [5].

This systematic review aims to evaluate microbial diversity in newborns breastfed
or fed with F milk from selected studies and to examine the clinical implications of the
different compositions of the GM.

2. Materials and Methods
2.1. Protocol and Registration

This systematic review was conducted following the standards of the Preferred Re-
porting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 statement [45].
The review protocol was registered at PROSPERO under the unique number 552212.

2.2. Search Processing

The search period started on 10 March 2024, and the last search was carried out on
2 May 2024.

“Gut Microbiota”, “Gut Microbiome”, and “Neonatal Milk” were the search terms
utilized on the databases (PubMed, Web of Science, and Scopus) to select the papers under
evaluation, with the Boolean operator “AND” and “OR”. The search was restricted to just
items released in English over the previous ten years (April 2014–April 2024) (Table 1).

Table 1. Database search indicators.

Article screening
Strategy

Database: Scopus, Web of Science and PubMed

Keywords: A “Gut Microbiota”; B “Gut Microbiome”; C “Neonatal Milk”

Boolean variable: “AND” and “OR”

Timespan: 2014–2024

Language: English
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2.3. Eligibility Criteria

Reviewers working in pairs conducted a comprehensive assessment of all eligible
trials using the following inclusion criteria: (1) randomized controlled trials or randomized
controlled clinical trials, (2) case series with more than five clinical cases, (3) studies
involving human participants, (4) availability of the full text, and (5) articles published
in English. The exclusion criteria were set as follows: (1) systematic or literature reviews,
(2) editorials, (3) case reports, (4) case series with fewer than five cases, (5) in vitro studies,
(6) studies involving animals, and (7) articles not published in English. These criteria were
meticulously applied during the selection process to ensure that the studies included in
this systematic review met the standards of quality and relevance.

Thos review was conducted using the PICO criteria:

- Population: term and preterm infants breastfed or artificially fed.
- Intervention: study of the microbiota of these infants.
- Comparison: analysis of the difference in the microbiome of term and preterm new-

borns breastfed or artificially fed.
- Outcome: main findings regarding differences in GM between breastfed and F-fed

infants.

2.4. Data Processing

Two reviewers (G.L. and A.D.I.) independently screened the data extracted from each
database using predefined inclusion and exclusion criteria. The reviewers were blinded to
each other’s decisions. In a concluding meeting, both reviewers compared their results. If
a reviewer deemed a paper potentially eligible, the full text was obtained and analyzed,
with this process carried out independently and in duplicate. The data extracted from
each eligible primary study included information such as authors and publication date,
study type, study objectives, materials and methods, and results. Disagreements between
reviewers regarding the article’s selection were discussed and settled.

2.5. Quality Assessment

The quality of the included papers was assessed by two reviewers, R.F. and E.I., using
ROBINS, a tool developed to assess risk of bias in the results of non-randomized studies
that compare health effects of two or more interventions. Seven points were evaluated and
each was assigned a degree of bias. A third reviewer (F.I.) was consulted in the event of a
disagreement until an agreement was reached. The questions in the domains evaluated in
the ROBINS are the following:

- Bias due to confounding;
- Bias arising from measurement of exposure;
- Bias in the selection of participants into the study;
- Bias due to post-exposure intervention;
- Bias due to missing data;
- Bias arising from measurement of the outcome;
- Bias in the selection of the reported results.

3. Results

Keyword searches of the Web of Science (536), Scopus (225), and PubMed (719)
databases yielded a total of 1480 articles. After removing duplicates (406), 1074 articles re-
mained. Out of these, 1061 were excluded for not meeting the predefined inclusion criteria.
The screening process concluded with 13 publications selected for this study (Figure 3).
The results of each study are presented in Table 2.
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Table 2. Selected literary items.

Authors Study Design Number of
Patients

Average
Age/Gender Materials and Methods Outcomes

C. Cai et al.,
2019 [46]

Prospective
cohort study 20 PI

(born < 37 weeks)

Fecal samples were
collected in early and late
feeding stages. GM
composition was evaluated
through an oxidative
stress marker.

GM of the infants fed the
HM+ HMF diet showed
an abundance of
Veillonella (p < 0.05),
which contrasted with
that of the infants fed
HM+ F.

L. Béghin et al.,
2021 [47]

Randomized
controlled trial 280

TI
born between 37
and 42 weeks

The study evaluated the
effects of 4 infant F in term
infants (TI).

FERM/scGOS/lcFOS F
brought the microbiome
(M) composition closer to
that of breastfed infants.
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Table 2. Cont.

Authors Study Design Number of
Patients

Average
Age/Gender Materials and Methods Outcomes

Ü. Parm et al.,
2015 [48]

Multicenter study 159 PI
born ≤ 32 weeks

The study evaluated the
relationship between
nutrition type and mucosa
colonization and the
development of late sepsis
(LOS) and necrotizing
enterocolitis (NEC) in PI.

Breast milk reduced the
risk of LOS and mortality
in PI.

X. Cong et al.,
2016 [49]

Prospective
longitudinal study 29

PI
28 weeks 0 days–
32 weeks 6 days
gestational age,
0–7 days old,

The study evaluated
day-to-day GM patterns in
PI. In total, 378 stool
samples were collected
daily, and Deoxyribo
Nucleic Acid (DNA)
extracted from stool was
used to sequence the V4
region of the 16S rRNA
gene region.

Infants fed their mother’s
own breastmilk (MBM)
had a higher diversity
of GM.

X. Cong et al.,
2017 [50] Comparative study 33

PI
28 weeks 0 days–
32 weeks 6 days
gestational age,
0–7 days old,

The study evaluated the
effect of feeding types on
GM colonization of PI in
NICU with the use of six
types of feeding.

PI fed MOM (at least 70%
of the total diet) had the
highest abundance of
Clostridiales, Lactobacillales,
and Bacillales compared
to other groups.

K.E. Gregory
et al., 2016 [13] Comparative study 30 PI

born ≤ 32 weeks.

The PI were divided into
three groups, and they were
fed three types of nutrition.
The GM of the groups
was evaluated.

The GM is influenced by
postnatal time, birth
weight, gestational age,
and nutrition. PI feeding
with breast milk had a
protective effect against
gut immaturity.

Karina Corona-
Cervantes et al.,
2020 [51]

Descriptive cross-
sectional study

67 mother-
neonate pairs

age between 37 and
41 weeks

To assess the effect of
human milk microbiota on
the bacterial composition of
the neonate’s gut in the
early days,
high-throughput
sequencing of DNA
was used.

Breast milk provides
67.7% of the bacteria in
newborns within six days
of birth, with significant
diversity and abundance
of Proteobacteria and
Firmicutes. The mode of
delivery influences
neonatal intestinal
microbiota, but not that
of breast milk.

Elvira Estorninos
et al., 2022 [52]

Randomized
controlled trial 230 infants 21–26 days

postpartum,

Both an intact
cow-milk-based F and one
with 7.2 g MOS/L
(bovine-milk-derived
oligosaccharides/L) were
effective until 6 months,
with gut health and
immune response assessed
through fecal samples.

Bovine-milk-derived
oligosaccharides shift the
GM and metabolic
signature closer to
those of human-milk-
fed infants.

Yapeng Li
et al. [17]

Comparative
observational study

23 healthy
newborns first month of age

Samples of newborn
stool and breast milk
were collected.
Samples collected on the
day of birth (0 days) and
30 days after birth.
Second-generation 16S
rRNA sequencing and
SCFA detection.

Construction and
colonization of the
intestinal microbiota
in newborns.
Relationship between
breast milk microbiota
and intestinal microbiota
of newborns.
Determination of
short-chain fatty acids.
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Table 2. Cont.

Authors Study Design Number of
Patients

Average
Age/Gender Materials and Methods Outcomes

Embleton N.
et al., 2023 [53]

Randomized
clinical trial 126 PI 72 h of age

Infants were recruited from
UK neonatal intensive care
units and randomized to
either a standard (control)
or exclusive human milk
diet. The control group
received MOM and preterm
F milk, while the
intervention group received
a ready-to-feed pasteurized
human milk product. Data
on weight gain and
morbidities were collected
until hospital discharge.

No impact on gut
bacterial diversity in PI
was found using human
milk-derived F or fortifier,
suggesting clinical impact
is not influenced by
microbiomic
mechanisms.

Manman Liu
et al. [34] Retrospective study 31 infants 32 weeks

Information on duration of
full enteral feeding, weight
gain and postnatal
infections in
premature infants.
Comparison of two clinical
feeding methods, namely
breastfeeding and F.
Use of Pearson’s correlation
coefficient to determine the
correlation between
intestinal flora and
clinical outcomes.

No significant differences
were found between the
two feeding methods in
terms of clinical
indicators (duration of
complete enteral feeding,
weight gain and
postnatal infections).
Both feeding methods
had no significant effect
on clinical indicators in
premature infants.

Kumbhare
et al. [54]

Randomized
clinical trial 30 PI 14 days

Comparison between
two types of human
milk fortifiers:
Bovine-derived fortifier.
Fortifier derived from
human milk.
Sequencing of the GM
to determine
microbial composition.
Measurement of urinary
F2-isoprostanes as a marker
of oxidative stress.
Measurement of fecal
calprotectin as a marker of
intestinal inflammation.

The source of human
milk (mother vs. donor)
appears to have a
greater impact on the
composition of the GM in
PI than the type of milk
fortifier (human
vs. bovine).

Yang R. et al. [55] Longitudinal
observational study 60 PI 37 weeks

Basic general characteristics
of premature newborns,
recording of daily breast
milk intake, use of
probiotics and antibiotics.
Collection of fecal samples
at the 1st, 2nd, 3rd and 4th
weeks after birth.
Bioinformatic methods to
analyze longitudinal
intra-group variations in
the structure and diversity
of the intestinal microbiota,
and cross-sectional
differences between groups
with breast milk intake
>70% and ≤70%.

The development and
evolution of the intestinal
microbiota in premature
infants during the
hospital stay are
continuous and
non-random processes.

FERM: bioactive compounds, GM: gut microbiome, HM: human milk, HMF: human milk fortifier, lcFOS: long-
chain fructo-oligosaccharides, LOS: late-onset sepsis, MOM: mother’s breastmilk, NEC: necrotizing enterocolitis,
PI: preterm infants, scGOS: short-chain galactooligosaccharides, SIgA: stool secretory IgA, TI: term infants, TPN:
total parenteral nutrition.
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Quality Assessment and Risk of Bias of Included Articles

The risk of bias in the studies included is reported in Figure 4. Regarding the bias due
to confounding, most studies have a high risk. The bias arising from measurement is a
parameter with a low risk of bias. Many studies have a low risk of bias due to bias in the
selection of participants. Bias due to post-exposure interventions cannot be calculated due
to high heterogeneity. The bias due to missing data is low in many studies. Bias arising
from the measurement of the outcome is low. Bias in the selection of the reported results is
high in most studies. The final results show that three studies have a low risk of bias, three
have a very high risk of bias, and five have a high risk of bias.
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The items evaluated are as follows:

- Bias due to confounding;
- Bias arising from the measurement of exposure;
- Bias in the selection of participants into the study;
- Bias due to post-exposure intervention;
- Bias due to missing data;
- Bias arising from the measurement of the outcome;
- Bias in the selection of the reported results.

4. Discussion
4.1. Gut Microbiota of Breastfed Infants

The GM, which is essential to the health of the host, undergoes substantial alterations
in infancy as a result of delivery mode, nutrition, and genetics. Breastfeeding influences the
formation of an infant’s GM by supplying vital nutrients and bioactive chemicals [56,57].
Our understanding has been improved by high-throughput sequencing, which has shown
that breastfed infants have unique microbial profiles with increased variety and beneficial
bacteria levels. However, concerns regarding the dynamics of colonization, the role of moth-
ers, and long-term health effects still exist [58–60]. The development of high-throughput
sequencing tools has fundamentally changed our comprehension of the makeup and roles
of the GM [61–63]. Research has shown that compared to their F-fed peers, breastfed infants
have different microbial profiles that are marked by a higher abundance of advantageous
commensal bacteria like Bifidobacterium and Lactobacillus, as well as a greater microbial
variety [64–68].

The “Gut–Lactation Pathway” suggests that maternal gut bacteria migrate into MOM
and then into the infant’s intestinal system, influencing their health. A recent study
examined the microbiota of MOM and neonatal intestinal milk, highlighting variations
over time and correlations between the two [69–73]. MOM appears to influence the infant’s
GM, promoting intestinal health and reducing pathogenic bacteria. It is hypothesized
that short-chain fatty acids, present in MOM, may indirectly influence the neonatal GM.
Breastfeeding is considered the best way to nourish newborns, providing not only essential
nutrients but also a wide range of beneficial microbes that contribute to gut health [17].

Karina Corona-Cervantes et al., in their study in 2020, explored the composition of
the HM microbiota in healthy Mexican mothers and the GM of their newborns [74,75].
MOM provides a significant number of bacteria, contributing 67.7% within the first six
days after giving birth. The research shows significant bacterial diversity in HM, with high
abundances of Proteobacteria and Firmicutes, but with substantial differences in other taxa.
It is highlighted that some bacteria in MOM can directly influence the development of the
neonatal intestinal microbiota. Although the mode of delivery appears to influence the
composition of the neonatal GM, a significant association between the mode of delivery
and MOM microbiota has not been identified [51].

4.2. Gut Microbiota in F-Fed Infants

MOM is the ideal nourishment for all newborns, especially PI, as it promotes their
optimal growth and development. It offers several benefits, including improved food toler-
ance, gut maturation, a healthy M, and enhanced immunity, reducing the risk of neonatal
disease and improving neurodevelopmental outcomes. MOM contains not only essential
nutrients but also bioactive components such as oligosaccharides that provide several
physiological benefits, including modulation of GM and support for brain development,
and infant F does not contain the oligosaccharides found in MOM, which could affect
health outcomes [76]. During early childhood, the development of the GM occurs, and
MOM plays a key role in supporting the colonization of GM and in the maturation of the
immune system, thus influencing the future well-being of the newborn [53].

F-fed newborns have a different GM composition that is marked by fewer beneficial
bacteria and less diversity due to the lack of bioactive substances in breast milk, which
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inhibit the growth and establishment of microorganisms [77]. Microbial profiles change
because of F feeding, favoring species such as Clostridium difficile and Enterobacteriaceae, and
these changes may affect long-term health consequences and metabolic pathways. The com-
position of the GM is also influenced by various factors and delivery mechanisms [38,78–80].
Prebiotics and probiotics used in F exhibit promise in modifying the composition of mi-
croorganisms and reducing related health hazards. Subsequent investigations endeavor to
elucidate these interplays and formulate focused therapies to foster child well-being [81].

The American Academy of Pediatrics Section on Breastfeeding recommends six
months of exclusive breastfeeding for all infants and the use of donor HM for PI when
the MOM is unavailable. PI have higher nutritional requirements than TI because they
miss out on the mother-to-fetus nutrient transfer that occurs later in pregnancy. The MOM
of premature mothers, although richer in proteins, fats and minerals, fails to meet the
nutritional requirements of the PI [82]. Embleton ND et al. showed that fortification of HM
with multicomponent fortifiers increases growth and minimizes mineral deficiencies in PI,
demonstrating short-term improvements in weight, length, and head circumference growth.
Traditional cow’s milk fortifiers can expose the infant to cow’s milk proteins, mitigating
some of the beneficial effects of HM. Recently, HM-derived fortifiers have gained popularity,
with studies reporting improvements in the outcomes of PI fed fortified HM, with lower
complication rates. One study compared feeding tolerance and other short-term outcomes
between PI fed exclusively fortified HM and those fed MOM fortified with bovine milk
fortifier or F. The results showed that infants in the exclusive HM group had greater feeding
tolerance and a shorter time to achieve full enteral feeding. There were no significant
differences in short-term neonatal outcomes between the groups. An exclusive HM diet
is associated with improved feeding tolerance and shorter time to achieve full enteral
feeding in PI [83]. Further research is needed to explore long-term effects on growth and
neurodevelopmental outcomes [53].

Manman Liu et al.’s study involves 31 PI in a neonatal intensive care unit, evaluating
the effects of nutrition on clinical outcomes and the correlation between intestinal micro-
biota and outcome. There are no significant differences in outcomes between breastfeeding
and F, but there are correlations between GM and indicators such as thrombocytopenia and
bilirubin. Breastfeeding appears to reduce infections and shorter hospital stays, but the com-
position of the GM may further influence outcomes. Breastfeeding promotes the growth of
the GM, reducing the incidence of pneumonia and necrotizing enterocolitis, while F-fed PI
may have a greater risk of infections and necrotizing enterocolitis. In the cohort, breastfeed-
ing reduces the incidence of late lung infections and sepsis and accelerates the initiation of
enteral feeding and discharge [84]. The correlation between GM and blood tests suggests
a role of Actinobacteria and Proteobacteria in neonatal immune development [67,85,86].
Further studies are needed to confirm these findings and understand the mechanisms
involved. In summary, breastfeeding reduces the risk of lung infections and late sepsis in
PI, with significant implications of the gut flora in immune development [34]. The risk of
necrotizing enterocolitis was lowered when human milk-based fortifier was used instead
of cow’s milk-based fortifier (risk ratio 0.47, 95% CI 0.22 to 0.98) [87].

Kumbhare et al.’s study explores the impact of the type of own mother’s breastmilk
fortifier and the source of HM on the composition of the GM, oxidative stress and in-
testinal inflammation in very-low-birthweight PI. Although the type of fortifier had little
impact on GM, the source of MOM was strongly associated with its composition. Despite
the differences between the fortifiers, no clear clinical impact of the human-derived for-
tifier was observed. A notable rise in fecal calprotectin levels was observed in infants
fed this fortifier [16,88]. A significant association was also found between MOM intake
and microbiota composition, along with greater weight gain and lower intestinal inflam-
mation. The limitations of the study include the relatively small sample size and short
follow-up period [66,89,90]. However, the findings emphasize the importance of maternal
breastfeeding in this population of PI [54,91].
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Own mother’s breastmilk contains bioactive molecules such as HM oligosaccharides
that affect how the GM and peripheral nerve system grow in PI. This prospective cohort
study involves 60 PI, examining changes in their GM about partial breastfeeding. Between
the groups, there were no appreciable variations in several distinctive areas. Analysis of
bacterial DNA showed significant differences in GM diversity between groups and over
time, with a trend towards lower diversity in PI with higher MOM intake. The intake
of MOM appears to positively influence the development of the intestinal microbiota,
with a greater abundance of bifidobacteria. However, the study has limitations such as
sample size and lack of data on maternal breast milk intake. To better comprehend the
impact of breastfeeding on the GM and neurological development of PI, further research is
required [90,92,93]. In conclusion, timing and breastfeeding are crucial for the development
of GM during the early hospitalization of PI [55].

C. Cai et al. investigated how feeding choices influence both GM development and
oxidative stress in very-low-birthweight (VLBW) PI. Using advanced sequencing tech-
niques, fecal samples from 20 VLBW preemies were analyzed during both early and late
feeding stages. The results highlighted that late stage feeding practices notably impacted
both GM composition and oxidative stress levels [94]. Specifically, infants given fortified
human milk or only F experienced higher oxidative stress compared to those receiving a
mix of human milk (HM) and F. Diets influenced microbial diversity, and infants fed with
F had fewer diverse microbes and increased levels of bacteria associated with oxidative
stress. Moreover, correlation analysis uncovered links between specific bacterial types
and oxidative stress markers. Notably, fortified breast milk exhibited reduced levels of
bacteria associated with antioxidant defense, potentially exacerbating oxidative stress in
infants [46,95–97].

Elvira Estorninos et al. discussed the evolution of HM-based infant F, focusing on
adding bovine-milk-derived oligosaccharides to improve the F profile. Previous studies
have highlighted the benefits of oligosaccharides on growth, intestinal microbiota composi-
tion and the immune response. This study examined the effects of adding oligosaccharides
at a lower dose on the GM composition and intestinal immune response of F-fed versus
breastfed infants. Infants fed the oligosaccharide-enriched F showed a significant increase
in Bifidobacteria, higher levels of fecal IgA, and a better response to oral vaccines. Further-
more, they had improved gut function, suggesting that the addition of oligosaccharides to
F may promote GM composition and immunity and make these more similar to those of
breastfed infants [52,98].

Beneficial substances, created by specific microorganisms during fermentation, along
with prebiotics, impacted the infant M. Changes in GM are specifically caused by a novel
combination of bioactive substances generated by Streptococcus thermophilus ST065 and
Bifidobacterium breve C50. L. Béghin et al. investigated, in their controlled, double-blind
study, the comparison of F containing these substances and prebiotics to standard F and
breastfed infants [99]. Over six months, various parameters were monitored, including
stool secretory IgA (SIgA) concentration. The F with the blend and prebiotics notably
increased SIgA levels, resembling those found in breastfed infants. Moreover, it influenced
M composition, making it closer to that of breastfed infants by 4 months. Prebiotics
positively impacted SIgA levels and showed normal growth and tolerance [47,100–102].

Ü Parm et al. aimed to explore the link between feeding methods and gut colonization
in preterm infants (PI), as well as their susceptibility to late-onset sepsis (LOS) and necrotiz-
ing enterocolitis (NEC) [103,104]. Neonates receiving early enteral feeding, whether breast
milk-based or F, showed increased colonization by various microorganisms compared to
those on total parenteral nutrition (TPN) [105]. While enteral feeding led to higher colo-
nization by potential pathogens, it also correlated with lower odds of LOS and mortality
compared to TPN. Breast-milk-based feeding seemed to prevent colonization by certain
harmful bacteria better than F or TPN. Ultimately, the study emphasizes the benefits of
early enteral feeding, particularly breast milk, in reducing the risk of LOS and mortality
in PI [48,106–108].
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The composition of gut bacteria in PI evolved during the infants’ first month of life
in a study conducted at the neonatal intensive care unit (NICU). The microbial DNA of
stool samples was analyzed daily in stool samples from 29 PI. Certain types of bacteria,
like Clostridium and Bacteroides, increased over time, while others, like Staphylococcus and
Haemophilus, decreased [109,110]. This study examined changes in gut microbiome trends
over time in preterm newborns. Clostridium and Bacteroides levels increased, while those
of Staphylococcus and Haemophilus decreased. Daily increases in alpha diversity were
noted, with significant correlations between alpha diversity and gender, feeding type, and
postnatal age (p < 0.05–0.01). Female infants showed higher diversity and more Clostridiates
but fewer enterobacteria than males. Infants fed mother’s own breastmilk (MBM) had
higher Lactobacillales and Clostridiales levels and greater gut microbiome diversity than
those fed non-MBM. The gut microbiome development in preterm infants is significantly
influenced by feeding type, gender, and age [49,111–113].

PI were vulnerable to GM imbalances but feeding them their own mother’s breastmilk
(MOM) positively influenced their gut health. The effects of different feeding approaches
were monitored on PI in the NICU, and their feeding was categorized into six groups: own
mother’s breastmilk, human donated milk (HDM), F, and combinations of these.

Stool samples were collected daily and analyzed using DNA sequencing. PI fed
own mother’s breastmilk exhibited higher levels of beneficial bacteria like Clostridiales,
Lactobacillales, and Bacillales, whereas those fed HDM or F had more potentially harmful
Enterobacteriales. Even after considering factors like gender, age, weight, and gestational
age, PI fed own mother’s breastmilk consistently showed greater diversity in their GM
over time compared to other feeding methods (Figure 5) [50,114–116]. When compared to
infants in other feeding groups, preterm infants fed MOM (at least 70% of the entire diet)
had the largest abundance of Lactobacillales, Bacillales, and Clostridiales, while infants fed
solely HDM or formula had the highest abundance of Enterobacteriales. The diversity of the
gut microbiome grew over time and remained consistently higher in newborns fed MOM
compared to infants fed other feeding types, even after adjusting for gender, postnatal age,
weight, and birth gestational age. MOM promotes the development of preterm infants’
gut microbiomes, leading to a balanced pattern of microbial community structure and
enhanced microbial diversity in the early stages of life [117].
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Different nutritional exposures shape the GM in PI after birth [118–120]. Compared to
formula-fed infants, breast milk-fed newborns showed higher baseline bacterial diversity
and a progressive acquisition of variety. Moreover, breast-milk-fed infants maintained a
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more stable GM, unlike their F-fed counterparts [121–123]. Supplementation with HDM
helped align the GM closer to that of breast-milk-fed infants [124,125]. The crucial roles of
postnatal time, birth weight, gestational age, and nutrition in molding the GM in PI have
been highlighted, with breast milk offering protective benefits [126–129].

4.3. Inizio Modulo

This study underscores the importance of understanding how feeding choices shape
the GM and its implications for VLBW preemies’ health, advocating for tailored strategies to
address related health challenges. Further exploration is recommended to understand how
specific bacterial by-products impact oxidative stress-related disorders in this vulnerable
population [130–132].

5. Conclusions

The results of this comprehensive study show that infants given F milk and those
breastfed had significantly different compositions of the GM. Compared to F-fed infants,
breastfed newborns regularly have a larger microbial diversity and a higher quantity of
good bacteria, such as Lactobacillus and Bifidobacterium. The distinct bioactive constituents
found in human milk, including antibacterial proteins and oligosaccharides, are essential
in influencing the GM and fostering intestinal well-being [117,133,134].

Conversely, babies given F have a genetically modified profile (GM profile) that is
marked by a decrease in microbial diversity and an increase in the incidence of potentially
harmful bacteria, including Enterobacteriaceae and Clostridium difficile. The microbial makeup
of newborns given formula has changed, and this might lead to a higher risk of infections
and other health problems.

The analysis also highlights how important delivery methods, in addition to the use
of probiotics and prebiotics, are in influencing newborn GM. For newborns, breastfeeding
remains the greatest way to nurture them since milk gives them essential nutrients and
healthy bacteria. However, some of the benefits of human milk may be replicated in F
which has been supplemented with certain bioactive ingredients and prebiotics.

Future studies should concentrate on comprehending the long-term health effects of
these variations on GM composition and on devising methods to improve the microbial
profile of F-fed infants. Further research is also required to investigate the effects of various
feeding strategies on the general health and development of newborns, as well as to clarify
the processes through which components of human milk influence genetically modified
organisms. There are not any extensive, long-term studies that link the composition of the
early microbiome to other health consequences.

In conclusion, the way that infants are fed has a significant impact on how the GM
develops in their early years, with breastfeeding providing clear benefits for fostering a
diversified and well-nourished microbial environment. This emphasizes how important it
is for healthcare practices and policies to promote breastfeeding to maximize the health
of newborns.
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Abbreviations

BM breast milk
DNA deoxyribo nucleic acid
F formula
GM gut microbiome
HDM human donated milk
HM human milk
HMF human milk fortifier
M microbiome
LOS late-onset sepsis
MOM own mother’s breastmilk
NEC necrotizing enterocolitis
PI preterm infants
SIgA stool secretory IgA
TI term infants
TPN total parenteral nutrition
NICU neonatal intensive care unit
VLBW very low birthweight
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