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Making sense of chemical space 
network shows signs of criticality
Nicola Amoroso 1,2*, Nicola Gambacorta 1,3, Fabrizio Mastrolorito 1, Maria Vittoria Togo 1, 
Daniela Trisciuzzi 1, Alfonso Monaco 2,4, Ester Pantaleo 2,4, Cosimo Damiano Altomare 1, 
Fulvio Ciriaco 5* & Orazio Nicolotti 1

Chemical space modelling has great importance in unveiling and visualising latent information, 
which is critical in predictive toxicology related to drug discovery process. While the use of traditional 
molecular descriptors and fingerprints may suffer from the so-called curse of dimensionality, complex 
networks are devoid of the typical drawbacks of coordinate-based representations. Herein, we use 
chemical space networks (CSNs) to analyse the case of the developmental toxicity (Dev Tox), which 
remains a challenging endpoint for the difficulty of gathering enough reliable data despite very 
important for the protection of the maternal and child health. Our study proved that the Dev Tox CSN 
has a complex non-random organisation and can thus provide a wealth of meaningful information 
also for predictive purposes. At a phase transition, chemical similarities highlight well-established 
toxicophores, such as aryl derivatives, mostly neurotoxic hydantoins, barbiturates and amino 
alcohols, steroids, and volatile organic compounds ether-like chemicals, which are strongly suspected 
of the Dev Tox onset and can thus be employed as effective alerts for prioritising chemicals before 
testing.

The canonical representation of chemical spaces based on a coordinate system with multiple dimensions suffers 
from several issues. It is not invariant to the chosen representation: changing the adopted features can dramati-
cally affect the boundaries of the chemical space and its properties. It cannot deal naturally with features that 
are both discrete and continuous1,2. In this regard, metric spaces can make things even harder while complex 
networks, which are intrinsically non-metric, can promptly offer a solution.

In recent years, the opportunities given by the adoption of complex networks to model the chemical spaces, 
the so-called chemical space networks (CSNs), have been widely investigated. Several fields have been studied, 
such as medicinal chemistry, physicochemical properties, and de novo drug design, just to mention a few3–8. 
An additional advantage provided by CSNs is the smart mathematical framework behind them that is the graph 
theory. Centrality metrics such as degree, betweenness and eigenvector centrality can suitably characterise the 
behaviour of the chemicals within a network, while their distribution can deepen our understanding of the 
network organisation and, therefore, of the resulting chemical space9. Topological properties allow for the char-
acterization of a network organisation, for example the presence of hubs or communities. Features, such as scale-
freeness or small-worldness, can signal the presence of patterns and dynamics within a network as extensively 
reported elsewhere10,11; by contrast, random graph models, such as the Erdos–Renyi (ER) model, can be used 
for benchmarking or to assess the meaningfulness of specific structures and architectures12.

Previous studies have investigated CSNs as threshold networks, i.e., networks whose structures depend and 
vary according to specific cut-off values set on the network connections. The constituent elements of these 
networks, usually called nodes, are chemicals while connections are pairwise molecular similarities: these stud-
ies were aimed at comparing different datasets13–15. This approach has shown how different similarity metrics 
generate different CSNs, how different choices of the similarity cut-off affect nodal properties like degree or 
assortativity, among the others, and the presence of molecular communities16–18. Defining an optimal cut-off is 
far from being a simple fine-tuning matter and varying the similarity threshold adopted to construct a network 
deeply shapes the network topology and its meaningfulness14,19,20. Moreover, the task is complicated by the huge 
heterogeneity of the chemical space. To mitigate this issue, this work will be focused on a reduced yet extremely 
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interesting class of chemicals, consisting of small molecules experimentally labelled as toxic with respect to 
developmental toxicity (Dev Tox).

Herein, we investigate the possibility of choosing an optimal threshold based on statistical mechanics prop-
erties. We identify a first-order phase transition, a signal of emergent behaviours within a complex system, as a 
flag that an optimal cut-off has been reached. Although this perspective has been thoroughly reported in several 
case studies and has demonstrated its effectiveness by providing fundamental advances in our understanding 
of collective phenomena21–26, an application to the CSNs is still missing. More broadly, our goal is to provide 
interpretable insights on CSNs.

The data investigated deal with Dev Tox. This concerns offspring abnormal development due to the exposure 
to harmful agents or to hazard conditions27. It is a complex human health endpoint, of utmost importance espe-
cially for the care of the maternal and child health. Predicting the Dev Tox onset remains extremely challeng-
ing and far from reaching satisfactory levels of accuracy28,29. In the last decade, several predictive approaches, 
especially based on machine learning, have been proposed30–33.

The knowledge gap in understanding Dev Tox depends on two intimately related aspects: on one side the 
limited amount of Dev Tox measured data as well as their uncertainty and on the other the structural complexity 
of the chemicals reflecting the  space heterogeneity. Hence, we propose to employ the CSN perspective to model 
such heterogeneity and gain fundamental insights about which toxic chemicals share common molecular patterns 
and, eventually, deepen our rational understanding of the latent toxicological mechanisms behind Dev Tox. In 
this respect, our study also falls in the broad cutting-edge domain of eXplainable Artificial Intelligence (XAI)34–37.

Results
Criticality signals optimal thresholding
To study the CSN of Dev Tox, a database of small molecules, whose toxic effects are well established, was col-
lected. To the best of our knowledge, the data used here represent the largest publicly available base of knowledge 
for Dev Tox. Two main sources were taken into account for modelling Dev Tox. The CAESAR30 and the Procter 
& Gamble (P&G) datasets38, including 201 and 621 experimentally toxic chemicals, respectively. The Food and 
Drug Administration (FDA) classifies as toxic the chemicals belonging to one of the three following categories39,40: 
class C that reports chemicals tested positive for Dev Tox in animal studies; class D that reports chemicals tested 
positive for Dev Tox only in human studies; class X that reports chemical tested positive in both animal and 
human studies and/or had evidence of foetal risk based on human experience.

Preliminary examinations were carried out to select the most reliable chemicals for Dev Tox modelling and, 
after removing duplicates, a number N of 684 toxic chemicals were included in this study. List of all chemicals 
with their structures and Dev Tox annotations is available in the Table S1 of the Supporting Information. The 
Table S1 also includes a list of 135 non-toxic chemicals available from the previously mentioned data reposi-
tory which were used for classification purposes.

N(N-1)/2 pairwise Small Molecule Subgraph Detector (SMSD)41 Tanimoto42 similarity measures were calcu-
lated and connections between nodes with similarity greater than the cut-off value, set to 0.3, were established 
based on the assumption that a very low similarity does not reflect any meaningful information. Such a choice 
allowed a remarkable computational burden reduction. The resulting similarity distribution along with the CSN 
is presented in Fig. 1.

This study aims at analysing the CSN topology, thus network weights are neglected as topological features 
are generally weight-independent43,44; nevertheless, weights become crucial when considering different cut-off 
values and this can dramatically affect topology. Hence, by thresholding Tanimoto similarities at different cut-off 
values, we investigated the variations occurring within the CSN in terms of three main centrality metrics: degree 
(d), betweenness (b) and eigenvector centrality (e). Moreover, a paired analysis on an ensemble of ER graphs 
comparable with the CSN was carried out.

Figure 1.   Similarity distribution of Tanimoto values (a). Chemical space network (b).



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21335  | https://doi.org/10.1038/s41598-023-48107-3

www.nature.com/scientificreports/

For each threshold value, the number of CSN edges E was computed with the maximum possible value being:

with N, the number of chemicals, being the CSN order.
Thus, the connection probability

was calculated and an ER model G
(

N , p
)

 was simulated (for statistical robustness, 20 different simulations were 
performed). The results are shown in Fig. 2.

The number of CSN connections occurring in the model ranges from 0 (when the Tanimoto threshold is 1) to 
41,807 (when the Tanimoto threshold is 0.3) while the resulting connection probability p ranges approximately 
within 0÷ 10−1 which includes the ER critical probability, which is pcrit ∼ 1/N = 10−3 . As expected, centrality 
metrics intrinsically related to edge counting, such as degree and eigenvector centrality, showed monotonically 
decreasing trends. This can easily be explained as a direct consequence of the edge removal. Apart from statisti-
cal fluctuations, the degree is equal for both models. In fact, by construction, the ER model is simulated with 
the connection probability retrieved by the CSN. Eigenvector centrality has higher values in the ER ensemble, 
while for higher probability values the two trends are substantially similar. An analogous consideration holds for 
eigenvector centrality and betweenness (see Fig. S1 of the Supporting Information for a detailed comparison). 
For both CSN and ER models, betweenness increases with connection probability until a maximum is reached, 
then betweenness abruptly decreases. Interestingly, while this phase transition occurs as expected with p ∼ pcrit 
in the ER model, for the CSN model this phase transition occurs at a slightly higher value pCSNcrit ∼ 5 · 10−3 which 
corresponds to a Tanimoto similarity of ~ 0.7. Overall, these results highlight the presence of an optimal cut-off 
signalled by the behaviour of betweenness and a problematic similarity between the constructed CSN and a 
random graph.

The CSN is not random
The CSN being a random graph would be not only far from intuition, as chemicals showing similar behaviours 
should be close in the chemical space, but it would also pose fundamental issues as a random network by defini-
tion does not include meaningful structures.

It can be easily shown that the phase transition signalled by the peak in betweenness corresponds to the first-
order phase-transition of the giant component in a random graph, although it does not occur at p1/N , see Fig. 3. 
The fraction of nodes within the giant component becomes non-null at the same critical probability pcrit at which 
betweenness abruptly increases (as previously shown in Fig. 2). However, the studied CSN cannot be a random 
graph and the definitive proof is provided by assortativity. In fact, Fig. 3 shows that assortativity increases with 
the connection probability until it reaches a maximum at pcrit.

This behaviour is a consequence of the transitivity of Tanimoto similarity. Low probabilities correspond to 
high similarity; therefore, if two chemicals are connected to a third one then they will probably be connected. 
This is a typical assortative behaviour, and it is not consistent with a random graph whose assortativity should 
be close to zero. In fact, the CSN assortativity dramatically drops, when more and more edges are added, tend-
ing to the behaviour of a random graph. Thus, despite thresholding the CSN at criticality yielded the emergence 
of a giant component, the meaningfulness of CSN inner structures, based on molecular similarity, is preserved.

Emax = N(N − 1)/2

p = E/Emax

Figure 2.   Centrality metrics as a function of the Tanimoto similarity for both (a) CSN and (b) ER networks. 
Betweenness is represented in black diamonds, degree with blue crosses and eigenvector centrality with red 
triangles. Centrality measures are scaled in the [0,1] interval for ease of comparison.
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The Dev Tox archetypes
At criticality, the CSN experiences the giant component formation while satellite groups of few chemicals are 
also present. A community detection analysis was performed along with a modularity analysis to highlight the 
inner CSN organisation; moreover, the community cardinality was examined, see Fig. 4.

At criticality, almost 25% of network nodes are grouped within the top three populated communities, con-
sisting of 46, 45 and 42 elements. The overall modularity and the percentage of connected nodes exceeded 80%. 
These findings suggest the existence of specific communities, based on molecular patterns, that we will call Dev 
Tox “archetypes”. It should be noted that these archetypes should not be strictly intended as toxicological classes; 
in fact, by construction, they are based only on structural similarities of toxicophores evaluated by means of the 
Tanimoto metric. To gain further insights into the chemical meaning of these communities, we computed hun-
dreds of molecular descriptors (from physicochemical to auto-correlation properties) for each toxicophore and 
investigated their statistical association within the archetypes. After Bonferroni correction, we found 145 descrip-
tors whose distributions can be significantly distinguished, at 1% significance, within the three communities.

This analysis highlighted the presence of descriptors capturing basic and easy-to-interpret features such 
as molecular weight, number of valence electrons and molecular refractivity. Interestingly, such descriptors 
are of particular interest when evaluating properties of fundamental importance such as drug-likeness45,46. 
Other descriptors significantly related to communities were well-known topochemical indices such as BCUT 
descriptors, BertzCT and molecular connectivity chi indexes47. Finally, an extremely relevant role was played 
by Moreau-Broto autocorrelation descriptors48. Topological autocorrelation is frequently used in Quantitative 
Structure–Activity Relationship (QSAR) models49 to assess how specific physicochemical properties are spatially 
distributed along molecules. Here, almost 50% of significant descriptors consisted of autocorrelation patterns, 

Figure 3.   Giant component phase transition. The percentage of nodes within the giant component (black 
crosses) and the normalised assortativity (blue points) are shown as functions of connection probability.

Figure 4.   CSN at criticality: the largest 8 communities are outlined with different colours. The network nodes 
at criticality are basically scattered among several communities, the first 30 communities are shown here. The 
panel confirms that at criticality the fraction of isolated nodes is reasonable while the partition quality, in terms 
of modularity, reaches more than satisfactory levels.
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specifically involved with (i) atomic properties (number of valence or sigma electrons), mass, atomic numbers; 
(ii) electronegativity (Sanderson, Pauling and Allred-Rochow)50.

Besides statistical significance, the median value for each descriptor and its interquartile range were evaluated 
to highlight the different behaviour within each community along with its variability. For example, the molecular 
refractivity is shown in Fig. 5.

A comprehensive list of significant descriptors and their characteristic ranges for Dev Tox is provided in the 
Table S2 of the Supporting Information. These results confirm that the communities reflect structural similarities 
and therefore they include chemicals with different properties.

In particular, the first community includes heterogeneous toxicophores in terms of structural moieties, being 
this probably due to its large size. In general, it includes aryl derivatives mainly comprising barbiturates, hydan-
toins and amino alcohols, commonly used as anticonvulsant drugs, GABA modulators, excitatory amino acid 
antagonists, hypnotic and sedative drugs, see Fig. 6a. The second community cover toxicophores with well-known 
cyclopentanoperhydrophenanthrene cores typical of steroids, responsible of essential biological functions such 
as fluidity and permeability regulation also known for fertility impairment, see Fig. 6b. The third community 
is made by small Volatile Organic Compounds (VOCs) ether-like chemicals, which act as pollutants and food 
toxins, see Fig. 6c.

Finally, we explored whether the toxicophores within a community shared specific drug targets generally 
consisting of receptor and enzyme proteins. To this aim, we used the PLATO platform51, which is specifically 
aimed at pairing biological targets to small molecules on the basis of the calculated similarity with respect to 
known ligands annotated with experimental biological measures retrieved from the CHEMBL database. Based 
on highly occurring targets, we found that the first community engage mostly targets relevant for the central 
nervous system, normally engaged by hypnotic, sedative and anticonvulsant drugs. While the community of 

Figure 5.   The boxplot shows the variability range for the molecular refractivity within the top three populated 
communities.

Figure 6.   The most representative chemical structures of the three top communities: (a) aryl derivatives mainly 
comprising barbiturates and amino alcohols; (b) cyclopentanoperhydrophenanthrene cores typical of the steroid 
lipid family; (c) small Volatile Organic Compounds (VOCs) ether-like chemicals.
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steroids mainly interplayed with the hormonal system including mineralocorticoid and glucocorticoid recep-
tors, progesterone receptors and androgen-binding protein receptors. The third community, mostly composed 
of VOCs ethers-like chemicals, did not pair with any verified target and this could be due to their low similarity 
to known drugs.

The CSN predictive power
To evaluate the potential of CSN as a support for predictive investigations, a further analysis was carried out. We 
included in the CSN the nodes representing the non-toxic chemicals listed in Table S1 and designed a simple 
classification framework to assess to what extent the CSN is able to distinguish toxic from non-toxic chemicals. 
For each node/chemical to be classified, the connected nodes/chemicals were inspected along with their pairwise 
Tanimoto similarities; then, the classification score was computed with a weighted average. The adopted weights 
were the computed similarities so that the most similar chemicals were the most influential in classification. 
Classification results in terms of accuracy, sensitivity, specificity and f1 metrics are presented in Fig. 7.

For the sake of completeness, the classification results explored the whole range of possible Tanimoto similar-
ity thresholds. At the critical threshold (~ 0.7), the model was able to achieve a good overall accuracy (~ 80%) and 
f1 (~ 90%) an extremely high sensitivity (> 90%) while specificity was significantly lower (~ 25%). Performance 
uncertainties were obtained by means of an 80% hold-out cross-validation, iterated 100 times.

Discussion
The study of the chemical space is fundamentally based on one basic assumption: the structure of chemicals yields 
information about its physicochemical and biological properties, including the pharmacological or toxicological 
behaviour52–56. Although this paradigm is generally accepted and it has been verified for several applications, 
some important issues still remain not completely solved56–61. A fundamental limitation to this perspective con-
cerns the extreme variability of physicochemical properties even when few or just one atomic variation occurs 
within a molecular structure. Hence, a potentially disrupting consideration arises: if even a subtle molecular 
change can turn a toxic chemical into a non-toxic chemical, then any conclusion drawn from molecular simi-
larity is uninformative, the chemical space network and its inner communities are meaningless. A corollary 
question, which would prevent any possible further consideration, concerns the possibility of uniquely defining 
a scale at which to investigate the chemical space, i.e., to identify a suitable threshold for molecular similarity 
measurements.

Here, we provide an answer to both questions and demonstrate how they are indissolubly related. In fact, our 
findings showed an outstanding overlap between the Dev Tox CSN and an ER model; this was observed at all the 
threshold values, thus dangerously suggesting the possibility that the CSN was actually random. Also, the Dev 
Tox CSN showed a giant component phase transition as expected from an ER model. However, by definition, a 
random network should not show any kind of assortative behaviour: the assortativity of the Dev Tox CSN incon-
trovertibly demonstrates that it is not a random network, at least in the connection probability range explored. 
Moreover, its behaviour is far from that of a random network as the cut-off values approaches criticality. Thus, 
thresholding becomes intrinsically related to meaningfulness.

Once established the meaningfulness of the Dev Tox CSN, we characterised its inner communities using both 
molecular descriptors, as similar chemicals in a physical, biological or toxicological sense tend to exhibit similar 
properties62–65, and biological functions. The proposed CSN is thus easily interpretable by domain experts34,66 
and could be profitably employed for drug repurposing and rational de novo design67, strategic assets to mitigate 
the well-known issues of drug discovery, such as huge costs and extremely time-consuming procedures68–70. In 

Figure 7.   Classification metrics for CSN predictive power as a function of the Tanimoto similarity. At the 
preferred Tanimoto similarity threshold of ~ 0.7, the model achieves a good overall accuracy (~ 80%) with great 
sensitivity (> 90%) but poor specificity (~ 25%).



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21335  | https://doi.org/10.1038/s41598-023-48107-3

www.nature.com/scientificreports/

fact, thanks to PLATO target profiling, the Dev Tox archetypes outlined within the CSN could be related (with 
different reliability) to multiple biological activities.

This work also investigates the predictive power of the proposed CSN. The model was able to reach a reliable 
accuracy in Dev Tox prediction, with extremely high sensitivity. On the contrary, specificity remained substan-
tially low. Two aspects deserve to be considered: (i) the informative content provided by structural similarity 
cannot reasonably provide a comprehensive description of toxicological patterns. It is easy to find examples 
of chemicals characterised by high structural similarity which show opposite toxicological behaviours, e.g., 
Dydrogesterone and Progesterone, non-toxic and toxic, respectively, differ by only a double bond56. (ii) While 
toxicants are expected to have common characteristics, the wide spectrum of chemicals which are non-toxic 
with respect to this specific endpoint include very heterogeneous chemotypes, which in principle can share few 
or even no structural similarities. Thus, for a classification model, the correct detection of non-toxic chemicals is 
extremely challenging, not to mention the fact that this class is poorly represented in the available databases. It is 
worth mentioning that this is not an unexpected behaviour, it has been already observed in literature, although 
by studies based on different descriptions31–33,71–73.

As a final remark, it is worth noting how complex network software suites and methodologies can manage 
systems with millions of nodes and therefore, thanks to its generality, the proposed approach can be straight-
forwardly adopted for broader chemical spaces, not necessarily limited to a single endpoint, and devoted to 
several applications. Our findings suggest that the characterization of the CSN could support in silico assessment 
of chemicals, specifically the so-called New Approach Methodologies (NAMs). The combined use of features 
derived from the CSN along with physicochemical descriptors and fingerprints could in principle enhance 
existing models.

Methods
Data curation
The chemicals were downloaded in SMILES format, with the associated binary Dev Tox label, from the freely 
accessible CAESAR and P&G databases. All SMILES data were cleaned of stereoisomeric assignments, were 
canonised and then the two databases were cross merged. 8 matches with opposite labels, derived mainly from 
P&G dataset, were discarded from the analysis; finally, 684 toxic molecules were collected. The selected chemicals 
were described by 2D molecular descriptors obtained from RDKit, and autocorrelators obtained from Mordred. 
Descriptors with a variability lower than 10% were removed from the analysis, thus resulting in a total of 774 
descriptors, see the Table S3 of the Supporting Information for a comprehensive list.

Network analyses
The SMSD computes the largest common subgraph between two chemicals, where the molecular graph is a natu-
ral representation of a molecule based on its bonds and its atoms, except for hydrogen atoms, which are treated 
as implicit. The SMSD Tanimoto measure is therefore the ratio of the size of the common subgraph between two 
molecule and the size of the union of in common and not in common subgraphs. We used the implementation 
based on current CDK available at https://​mvnre​posit​ory.​com/​artif​act/​gov.​nih.​ncats/​smsd-​core.

The CSN was compared with a uniform ER model, specifically an ER model G(N,E) whose E edges are uni-
formly sampled among the N(N-1)/2 possible connections. The advantage of such model is to provide a graph 
with the same number of connections as the thresholded CSN.

Comparisons were carried out by considering three centrality metrics, accounting for three different perspec-
tives: a local, a global and a dynamic one.

•	 Degree di of node i (local metric). di =
∑N

j=1aij with aij representing the elements of the adjacency matrix 
of the considered network having N nodes. The degree takes into account only the connections of a node, in 
this sense it is a local centrality metric.

•	 Eigenvector centrality ei of node i (global metric). ei =
(

1
�

)
∑N

j=1aijej so that ei satisfies an eigenvalue equa-
tion.

•	 Betweenness bi of node i (dynamic metric). bi =
∑N

s �=i �=t
p(i)st
pst

 , which measures the ratio between the number 
of paths p connecting a generic pair of nodes (s,t) passing through the node i and all the paths connecting 
them. Thus, this centrality metric evaluates the dynamical information flow within the network.

Moreover, to emphasise the difference between the defined CSN and a random network, assortativity was 
used.

•	 Assortativity measures the preference of nodes to be connected to other nodes according to a similarity cri-
terion, e.g., degree. For example, in assortative networks, high degree nodes tend to connect to nodes with 
high degree. On the other hand, if they prefer low-degree nodes, the network is anti-assortative. Random 
networks tend to have null assortativity as a consequence of connections’ randomness.

Studying these metrics allowed us to reveal the giant component phase transition. At criticality, community 
detection was performed by means of the Louvain algorithm74. All network analyses were carried out with a 
Python 3.8.13 distribution and the NetworkX 3.1 package.

https://mvnrepository.com/artifact/gov.nih.ncats/smsd-core
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Statistical significance
We evaluated the differences between the distributions of several molecular descriptors within the communities 
that arose at criticality. To this aim, to discard any a priori hypothesis about the descriptor distributions, the non-
parametric Mood’s test for medians was performed. Three tests were carried out for each descriptor to ensure 
that a significant difference had been found among all the three communities. The chosen significance level was 
0.01 but a Bonferroni correction was adopted to avoid the multiple comparison bias.

The PLATO platform for target profiling
The predictive web platform PLATO was used to predict relevant therapeutic drug targets of small molecules. 
PLATO matches query molecules with the most similar molecules in its database of experimental activity values 
based on Tanimoto similarity calculated on 13 different fingerprints. The predicted targets with their referenced 
organism are experimentally linked to the similar molecules identified by the algorithm. For each prediction, a 
score is calculated by summing the Tanimoto coefficients of each fingerprint. This implies that an exact match 
corresponds to a score equal to 13. Query reports can be easily provided in json format upon programmatic 
POST requests. PLATO is freely available at https://​prome​theus.​farma​cia.​uniba.​it/​plato/.

Data availability
Data used in this work are publicly available. The entire list of Dev Tox chemicals (in SMILES format) herein 
analysed is provided in the Table S1 of the Supporting Information.
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