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Abstract
Although different architectures of quantum perceptrons have been recently
put forward, the capabilities of such quantum devices versus their classical
counterparts remain debated. Here, we consider random patterns and targets
independently distributed with biased probabilities and investigate the storage
capacity of a continuous quantum perceptron model that admits a classical
limit, thus facilitating the comparison of performances. Such a more general
context extends a previous study of the quantum storage capacity where using
statistical mechanics techniques in the limit of a large number of inputs, it was
proved that no quantum advantages are to be expected concerning the storage
properties. This outcome is due to the fuzziness inevitably introduced by the
intrinsic stochasticity of quantum devices. We strengthen such an indication by
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showing that the possibility of indefinitely enhancing the storage capacity for
highly correlated patterns, as it occurs in a classical setting, is instead prevented
at the quantum level.

Keywords: quantum perceptron, storage capacity, quantum neural networks

1. Introduction

Machine learning aims at buildingmethods that are able to make predictions or decisions based
on sample data, without being explicitly programmed to do so. Quantum information theory
studies the storage and transmission of information encoded in quantum states. Nowadays
these two disciplines are becoming intertwined giving rise to the field of quantum machine
learning.

The flow of ideas runs both ways: on the one hand applications of machine learning tech-
niques are envisaged to analyze quantum systems [1, 2], on the other hand, the implementation
of machine learning concepts on quantum hardware is also actively investigated [3–5]. Along
this latter avenue quantum advantages are expected in terms of higher storage capabilities and
an increased information processing power [6–9].

The task of precisely comparing the power of quantum and classical neural networks as
probabilistic models for information processing and storage is thus becoming pressing. In
particular, the issue of determining precisely the storage capacity of the most elementary
constituent of a neural network, namely the perceptron [10], has been addressed in the clas-
sical scenario without referring to any specific learning rule using several approaches, ranging
from combinatorics [11, 12] to statistical mechanics methods [13–16]. The latter has been
used recently to generalize the calculation to some models of quantum perceptrons [17–19].
However, the results depend on the specific model used (see e.g. [18, 19], based respectively
on the models [5, 20]).

Here, by referring to the continuous variable quantum perceptron model introduced in [20],
we study the storage capacity of random classical binary patterns. The components of the
patterns and their assigned output classification are taken to be independent and identically
distributed (i.i.d.) according to a probability with a bias −1⩽ min ⩽ 1 for the patterns and
−1⩽ mout ⩽ 1 for their classification. Such a model admits the classical perceptron as a clas-
sical limit, thus enabling a direct comparison of the storage performances in the two cases.
For classical perceptrons, simultaneously large biases for patterns and output classification
allow to greatly enhance the storage capacity, which diverges when min = mout = m→ 1 [13,
21–23]. We show that this possibility is prevented at the quantum level. Moreover, we also
find that, when the biases min and mout are varied separately, the quantum storage capacity
depends on both of them, unlike in the classical case, where the storage capacity is a function
only of the output bias. However, also in the quantum setting, when the output correlations
are maximal, that is when mout → 1, the asymptotic behavior is no more dependent on min,
exactly as in the classical case. The dependence of the quantum storage capacity on min in
such a case is through the velocity with which the limit behavior is reached. Overall, the per-
formances of the continuous quantum model remain below the classical ones. These results
thus corroborate those found in [19] with unbiased patterns. They confirm that, at the level
of a simple, that is one-layer, quantum perceptron, the uncertainties brought about by pattern
encoding via Gaussian states and homodyne measurements cannot be counteracted by linear
super-positions of pattern states.
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2. A continuous quantum perceptron model

The continuous variable model of a quantum perceptron proposed in [20] is characterized by
N bosonic input modes and one bosonic output mode. We summarize here the main features of
this model, for more details on the circuit implementation of such a perceptron the interested
reader can refer to [20]. The components xj of an input pattern x ∈ RN are encoded by states
of the form

|ψ (xj)〉=
1(

2πσ2
j

)1/4 ˆ +∞

−∞
dqj exp

(
−
(qj− xj)

2

4σ2
j

)
|qj〉, (1)

which are Gaussian weighted normalized super-positions of pseudo-eigenstates |qj〉 of
position-like operators qj, centered around the pattern components xj with widths σj. As a
result, a pattern x is encoded into

|Ψ(x)〉=
N⊗
j=1

|ψ (xj)〉. (2)

Such a state is then given as input to a quantum circuit which first operates with a series of
independent squeezing operators

Sj (rj) = ei rj (qjpj+pjqj) , rj ∈ R , e−2rj = wj , (3)

where pj is a momentum-like operator conjugated to qj ([qj,pj] = i) and rj is the squeezing
parameter implementing the weight wj.9 Notice that

Sj (rj) |qj〉=
√
wj |wjqj〉 . (4)

Then, the circuit consists of entangling controlled addition gates CX on pairs of consecutive
modes:

CXj,j+1 := exp(−iqj⊗ pj+1) , CXj,j+1 |qj,qj+1〉= |qj,qj+ qj+1〉 . (5)

Their combined action on the attenuated multi-mode position eigenstates gives

|w1q1,w2q2, . . . ,wNqN〉 → |w1q1,w1q1 +w2q2, . . . ,wNqN〉 → . . .

. . .→ |w1q1,w1q1 +w2q2, . . . ,
N∑
j=1

wjqj〉 .
(6)

The sequence of operations described by equations (3)–(6) implements a parameterized unitary
U(w) on the initial state (2). Finally, we focus on the last mode, which is described by the
density matrix

ρN (w,x) = Tr1,...,N−1
(
U(w) |Ψ(x)〉〈Ψ(x)|U† (w)

)
, (7)

and perform homodyne detection of the position-like quadrature, which yields a value s with
probability density [20]

Pw,x,σ (s) = 〈s|ρN (w,x) |s〉=
1√

2π‖w‖σ
exp

(
− (s−w · x)2

2‖w‖2σ2

)
, (8)

9 In order to implement negative weights, a phase shift gate ei
π
2
(q2j +p2j ) is operated after the squeezing.
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where, for sake of simplicity, we have set σ2
j = σ2 for all j and thus encoded the input patterns

by Gaussian states of the same width.

Remark 1. With a slight modification of the above protocol, it is possible to obtain a descrip-
tion of such a continuous variable quantum perceptron as controlled unitary acting on the tensor
product H = Hin ⊗Hout where Hin is the Hilbert space of the N bosonic modes encoding
the input, while Hout is the Hilbert space of the additional ancilla mode storing the output.
Then, the present model can be connected with other models investigated in the literature, in
particular [24], where it was pointed out that a perceptron acting as a controlled unitary has as
particular cases also the models considered in [25, 26]. Actually, the action of the continuous
variable quantum perceptron here investigated can be described with the unitary

U(w) :=
N∏
j=1

CXj,outSj (rj) , (9)

with Sj(r) as in equation (3), while CXj,out = exp(−iqj⊗ pout) is the controlled addition gate
involving the jth bosonic mode of the input and the output mode.

During the training phase of a single perceptron, a set of p pairs {(xµ, ξµ)}µ=1,...,p is
provided, where xµ ∈ {−1,1}N is the µth input pattern and ξµ ∈ {−1,1} is its correspond-
ing classification, assumed to be known for all the elements in the training set. The storage
of the p patterns in the training set by a single perceptron requires that a suitable choice of
weights w exists for which the association xµ 7→ ξµ can be realized for each µ= 1, . . . ,p.
Classically, the classification of a pattern xµ as±1 by a weight vector w is obtained by check-
ing the sign of w · xµ. Then, a correct classification relative to a prescribed target ξµ =±1 is
obtained when ξµw · xµ ⩾ κ‖w‖where κ is a stabilizing threshold. It renders the classification
more robust against noise affecting the weights that, when κ= 0, might make ξµw · xµ jump
from positive to negative values and vice versa. In the case of the quantum perceptron model
outlined above, a pattern xµ is classified as ξµ =+1 (resp. ξµ =−1) if the measurement out-
come is above the threshold κ‖w‖ (resp. below −κ‖w‖), while the pattern is not classified
when the measurement outcome is in between (−κ‖w‖,κ‖w‖). Therefore, even when classic-
ally sign(w · xµ −κ‖w‖) = +1, quantumly, the pattern is classified as −1 if s<−κ‖w‖ and
such errors occur with probability density Pw,xµ,σ(s).

Consequently, the inherent randomness due to the quantum encoding of the patterns is such
that the correct classification of pattern µ becomes a binary stochastic variable with probability
distribution given by

Rκ,σ (w,xµ, ξµ) =
ˆ +∞

−∞
ds Pw,xµ,σ (s) Θ

(
ξµ

s
‖w‖

−κ

)
, (10)

where Θ(·) denotes the Heaviside function. Finally, an ancilla mode is appended to the ini-
tialized N ones and its state changed according to the actual outcome of a suitable homodyne
measurement. The result of the measurement can then be used, to implement the non-linear
activation function, that is, in the case of binary classification we are interested in, a sign
function.

One of the advantages of the continuous quantum model just presented is that it allows
to recover the functioning of the classical perceptron when σ→ 0, i.e. by encoding a pattern
xµ into the position-like pseudo-autokets |xµ1 ,x

µ
2 , . . . ,x

µ
N〉. Indeed, in this limit the Gaussian

probability density in equation (10) becomes a Dirac delta centered around w · xµ. Another
advantage of using continuous variable architectures is that they are easily implementable
experimentally, for example using photonic quantum computers. A recent proposal with a
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focus on the experimental implementation is given for example in [27], while extensive reviews
on this topic can also be found in [1, 28].

3. Statistical mechanics derivation of the storage capacity

3.1. Gardner’s approach

According to Gardner’s statistical approach [13], the optimal storage capacity of a simple
perceptron can be obtained from the fraction of weights which correctly reproduces the desired
input–output relations normalized to the total volume of allowed vectorsw. Indeed, the storage
capacity is defined as the critical value αc of the ratio

α≡ p
N
, (11)

of the number of patterns p to the dimension of the input spaceN such that the storage condition

ξµ
w · xµ

‖w‖
⩾ κ (12)

cannot be satisfied anymore.
In fact, by increasing the number of patterns, the volume of vectors w realizing the condi-

tion (12) typically shrinks, and the relative volume of such weights vanishes. Then, it is exactly
the limit of vanishing relative volume that leads to the storage capacity of the perceptron.

We shall consider weights for which ‖w‖2 = N so that their components are typically of
order 1. Then, the fraction of weights w of length

√
N in RN that classify p binary patterns

xµ ∈ {+1,−1}N, up to an error ϵ, is given by:

VQ
N (xµ, ξµ,κ,σ,ϵ) :=

1
ZN

ˆ
RN

dNw δ
(
||w||2 −N

) p∏
µ=1

Θ(Rκ,σ (w,xµ, ξµ)− 1+ ϵ) . (13)

where the total volume of the space of the weights is

ZN =

ˆ
RN

dNw δ
(
||w||2 −N

) N≫1'

√
(2π e)N

4πN
, (14)

namely the volume of the sphere of radius
√
N in RN. The relation to the classification of

the pattern xµ is due to the fact that equation (8) represents the probability distribution of the
measurement outcomes of the quantum perceptron encoding the patterns xµ into Gaussian
states of variance σ.

It should be noted also that even if the volume defined by (13) contains the quantity Rκ,σ

defined in equation (10) as some sort of ‘average’ over the possible results obtained from
the quantum measurement, this should not be interpreted operationally as performing many
measurements and then inferring the classification based on many shots. Rather, we are only
requiring that the probability of success in the single-shot classification is at least 1− ϵ for
each pattern we want to store.

Remark 2. The probability Rκ,σ(w,xµ, ξµ) depends on the pattern xµ, on the target classi-
fication ξµ, on the weights w, on the threshold parameter κ and on the Gaussian width σ.
Therefore, the fraction of volume VQN depends on patterns, targets, threshold, width and also
on the allowed statistical error ϵ: when the width σ vanishes, from the distributional limit

lim
σ→0

Pw,xµ,σ (s) = δ (s−w · xµ) , (15)

5
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one recovers the expression of the fraction of weights of the classical perceptron

VCN (x
µ, ξµ,κ) =

1
ZN

ˆ
RN

dNw δ
(
‖w‖2 −N

) p∏
µ=1

Θ

(
ξµ
w · xµ

‖w‖
−κ

)
. (16)

Notice that this expression does not depend on the statistical error ϵ that needs to be introduced
in the quantum setting. Indeed, in this latter case, the measured parameter s is statistically
distributed around the classical scalar product w · xµ/‖w‖. Therefore, Rκ,σ(w,xµ, ξµ) cannot
be equal to 1 unless the Gaussian distribution becomes a Dirac delta peaked around it. Note
that the statistical error ϵ is an upper bound to the perceptron allowed errors. The value ϵ= 1/2
for the bound to the errors is a particular one: in such a case, as far as the storage capacity is
concerned, the quantum perceptron is expected to behave classically, in spite of the quantum
pattern encoding. To see this, one can simply note that the condition Rκ,σ(w,xµ, ξµ)> 1/2
implemented by (13) is equivalent to

ˆ ∞

κ∥w∥
dsPw,xµ,ξµ (s)<

1
2
if ξµ = 1,

ˆ −κ∥w∥

−∞
dsPw,xµ,ξµ (s)<

1
2
if ξµ =−1. (17)

Then, using the fact that w · xµ is the median point of (8), i.e.

ˆ ∞

w·xµ
dsPw,xµ,ξµ (s) =

ˆ w·xµ

−∞
dsPw,xµ,ξµ (s) =

1
2
, (18)

condition (17) is satisfied if and only if ξµxµ ·w> κ‖w‖, which is the condition implemented
in (16).

In analogy with the partition function of statistical mechanics, we take
logVQ

N (x
µ, ξµ,κ,σ,ϵ) as the relevant quantity, since it has the important property of being

self-averaging, i.e. its average 〈logVQ
N (x

µ, ξµ,κ,σ,ϵ)〉 is a good representative of its typical
behavior for random choices of input patterns and targets [14–16]. In particular, this average
will be computed considering the components of the input patterns as well as targets, to be
binary stochastic variables distributed according to

Pr
(
xµj =±1

)
=

1±min

2
, Pr(ξµ =±1) =

1±mout

2
. (19)

The parameters −1⩽ min,mout ⩽ 1 measure the bias between the binary values of patterns
and targets, respectively, and thus of their correlations. The smaller the bias is, the greater the
independence of their two possible values. In many of the previous works where a biased dis-
tribution was considered, it was assumed that input patterns and corresponding classifications
in the training set have the same bias m. To the best of our knowledge, the first distinction
between input bias and classification bias was considered in [23], but an extensive investiga-
tion of the dependence of the storage capacity on min and mout when κ> 0 is missing in the
literature. Since this regime will be important for the quantum perceptron model we consider,
we are going to investigate it.

Following the classical approach by Gardner we will derive a critical value αQc such that
for α < αQc we obtain a finite value (potentially vanishing) for the limit

lim
N,p→∞
p/N=α

〈logVQ
N (x

µ, ξµ,κ,σ,ϵ))〉
N

, (20)

6



J. Phys. A: Math. Theor. 57 (2024) 025301 F Benatti et al

while for α > αQc :

lim
N,p→∞
p/N=α

〈logVQ
N (xµ, ξµ,κ,σ,ϵ)〉

N
=−∞ . (21)

3.2. Replica method and saddle point equations

The quenched average appearing in the limit (20) can be computed by means of the replica-
trick [13, 29, 30]:

⟨logVQ
N (x

µ, ξµ,κ,σ,ϵ)⟩= lim
n→0

⟨[VQ
N (x

µ, ξµ,κ,σ,ϵ)]
n⟩− 1

n
= lim

n→0

log⟨[VQ
N (x

µ, ξµ,κ,σ,ϵ)]
n⟩

n
. (22)

The relevant quantity 〈[VQ
N (x

µ, ξµ,κ,σ,ϵ)]
n
〉 involves n replicas indexed by the subscript γ:

〈[VQ
N (xµ, ξµ,κ,σ,ϵ)]

n
〉= 1

ZnN

ˆ
RnN

dnNW δ
(n)
N

(
‖W‖2

) 〈 n∏
γ=1

p∏
µ=1

Θ
(
Rµ
γ − 1+ ϵ

)〉
x,ξ

, (23)

where, for the sake of compactness, we introduced the symbolsW= (w1, . . . ,wn) ∈ RnN and

dnNW≡
n∏

γ=1

dNwγ , δ
(n)
N

(
‖w‖2

)
≡

n∏
γ=1

δ
(
‖wγ‖2 −N

)
. (24)

Moreover, in equation (23), it is made explicit that the mean value is computed with respect
to the patterns xµ and targets ξµ, µ= 1, . . . ,p.

The lengthy calculations of the mean value in equation (23) by means of the replica-
symmetric ansatz and of the saddle point approximation are reported in appendix A. The
main difference with respect to the classical calculation performed by Gardner consists in
the dependence on the random variables {xµ, ξµ} over which the average is taken in (23).

The replica method introduces several order parameters, the most important one being the
average overlap of two randomly chosen weights wγ and wδ in different replicas:

qγδ =
1
N

N∑
j=1

wγ
j w

δ
j . (25)

In the replica symmetric (RS) ansatz it is assumed that, for the solution of the saddle point
equations, the average overlap is the same for each pair of replicas, i.e. qγδ = q for all γ 6= δ.
The RS ansatz is expected to be valid when the space of solutions for the problem is connec-
ted [16, 29]. This is not true, for example, for the case of the ‘negative perceptron’, correspond-
ing to κ< 0, or for the binary perceptron (i.e. with binary weights, wj ∈ {−1,1}) where the
solution space can become disconnected [31] and replica symmetry breaking is required to get
the correct solution. However, we obtain (see below) that the quantum perceptron considered
behaves essentially in the same way as a classical perceptron with a shifted stability κ→ κ̃,
at least from the point of view of the storage capacity. Since in the meaningful range of the
parameters (0⩽ ϵ⩽ 1/2) we get κ̃⩾ κ⩾ 0, the RS solution is sufficient for our purposes.

Notice that by increasing the ratio p/N, the number of weights satisfying (12) diminishes,
hence their average overlap increases. The critical value of αc both in the classical and the
quantum scenario is then obtained in the limit of maximal overlap q→ 1.

7
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Eventually, one arrives at the following equation that must be satisfied by the critical ratio
αQc of number of patterns to weight dimension, which according to (11) defines the quantum
storage capacity:

αQc

[
1+mout

2

ˆ +∞

a−(M)

Dx (x− a− (M))
2
+

1−mout

2

ˆ +∞

a+(M)

Dx (x− a+ (M))
2

]
= 1. (26)

In the above expression,

a± (M)≡− κ̃±minM√
1−m2

in

, Dx≡ dx√
2π

e−x2/2 , (27)

where

κ̃ := κ+σΦ−1 (1− ϵ) , (28)

and Φ−1 is the inverse function of

Φ(x)≡
ˆ x

−∞
Du=

1+ erf
(
x/
√
2
)

2
with erf(x) :=

2√
π

ˆ x

0
due−u2 , (29)

while the quantity M satisfies

(1+mout)

ˆ +∞

a−(M)

Dx (x− a− (M)) = (1−mout)

ˆ +∞

a+(M)

Dx (x− a+ (M)) . (30)

Thus, in order to compute αQc from (26), one has to first solve (30) in terms of M.

Remark 3. Notice that whenmin = 0, that is when the patterns are unbiased, we have a+(M) =
a−(M) so that equation (30) can be satisfied only formout = 0, and the storage capacity is fixed
by (26) only, which coincides with the expression found in [19]. This is due to the fact that
a perceptron cannot match unbiased patterns with biased classifications. In fact, considering
the mapping realized by a perceptron with weights w, one finds that for a random input x ∈
RN, with independent components distributed according to Pr(xj =±1) = 1/2 for each j =
1, . . . ,N, the distribution of the output σ is given by:

Pr(σ =+1) = Pr(w · x⩾ 0) = Pr(w · x⩽ 0) = Pr(σ =−1) , (31)

which implies Pr(σ =±1) = 1/2 (note that Pr(w · x= 0) = 0 for all w ∈ RN except for those
belonging to a set with zero Lebesgue measure on the sphere with radius

√
N). However, this

holds true only ifmin = 0 exactly. If we considermin > 0 and take the limitmin → 0 one can see
that equation (26) can be solved without asking mout → 0, since in such a case equation (30)
can also be satisfied by choosingM∼ C

min
. This is clearly shown in the middle panel of figure 1,

where the storage capacity does not vanish in the limit min → 0 even for mout 6= 0.

In practice, the combined effects of quantum pattern encodings and measurements is to
replace the classical stabilizing threshold κ in κ̃ defined in (28). Then, the classical storage
capacity obtains not only by eliminating the errors due to quantum pattern encoding, that is by
letting σ→ 0, but also, confirming the argument in remark 2, when σ 6= 0, so that the pattern
encoding is not sharp and carries quantum fuzziness; however, ϵ= 1/2 so thatΦ−1(1− ϵ) = 0
and κ̃= κ.

Note that when κ̃= 0, equation (27) yields a±(M)∝M, with a prefactor dependent onmin.
Since only the value of a±(M) enters into equations (26) and (30), one can recognize that a
change in min will rescale the value of M which solves (30), but it will not affect the critical
storage capacity.

8
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Figure 1. Storage capacity αQc vs min, for κ= 0, and ϵ= 0.01. Only values 0< min < 1
are shown here, but the results are symmetric with respect tomin = 0. (Left) The bias on
the target classification is fixed to mout = 0.6, the shown curves corresponding to differ-
ent values of σ. In the classical case (σ= 0) αQc does not depend on min. In the quantum
case (σ > 0), increasing the value of |min| decreases αQc . Furthermore, increasing σ
always decreases the storage capacity. (Center) The value σ= 0.1 is fixed, the shown
curves corresponding to different values of mout. Increasing the value of |mout| always
increases the storage capacity (Right) As before, with σ= 0.3, showing the lowering of
the perceptron performance with increasing quantum fuzziness in the pattern encoding.

Figure 2. (Left) Storage capacity αQc vs mout for different values of min, κ= 0, σ= 1
and ϵ= 0.01. Increasing |mout| always increases αQc , while increments of |min| have the
opposite effect. There is a divergence for |mout| → 1 for each value of min, although
higher values of |mout| are required to observe the divergence if |min| is increased. (Right)
Storage capacity in the classical limit, obtained for σ= 0 (all the values of the other para-
meters are unchanged). All the curves corresponding to different values of min collapse
into each other since in this case there is no dependence on min (recall that here κ= 0.

4. Results

The numerical results obtained by solving equations (26) and (30) for several values of min,
mout and κ̃ are shown in figures 1 and 2. Since the storage capacity depends solely on κ̃=
κ+σΦ−1(1− ϵ), we kept fixed the values ϵ= 0.01,κ= 0 and considered different values
of σ, which also allows us to recover the classical limit for σ= 0. A striking feature which
distinguishes the quantum perceptron from the classical one is the dependence of the storage
capacity on the bias min, which is not present in the classical case with zero stability κ= 0
(see the left panel of figure 1). More precisely, as soon as σ> 0, increasing the value of |min|
while keeping fixed the value of mout always decreases the storage capacity αQc . On the other
hand, a common feature with the classical case is the divergence of the storage capacity when
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Figure 3. Limit αc for mout → 1, showing that the convergence to the asymptotic beha-
vior (32), represented here by the line y= x+ q, holds for several values ofmin, although
the onset of the asymptotic behavior appears later for min close to one.

mout → 1, for each fixed value of min (see figure 2). The asymptotic behavior in this limit (see
appendix B for the analytic derivation) is given by (see also figure 3):

αQc '− 1
(1−mout) log(1−mout)

, (32)

confirming the result obtained for the classical scenario.

Remark 4. An interesting feature emerging by differentiating the bias of the patternsmin from
the bias of target classification mout is that even if the quantum storage capacity depends on
min for each fixed 0⩽ mout ⩽ 1, the asymptotic behavior when mout → 1− does not depend on
the pattern biases min.

Even if the asymptotic behavior (32) does not show a dependence on the patterns bias
min, one can see from figures 2 and 3 that as the input bias min increases, higher values of
mout are required to observe the asymptotic behavior for the quantum perceptron. This is in
contrast with the behavior of the classical perceptron, where there is no dependence at all on
min (see again figure 2). In other words, values of min closer to 1 slow down the attainment
of the asymptotic behavior in the quantum case, which motivates the investigation of the joint
limit min = mout = m→ 1. The results obtained (see figure 4) show another striking difference
between the classical and the quantum perceptron, that is, while classically the storage capacity
diverges when m→ 1, in the quantum case this divergence is suppressed. In particular, from
the analytic asymptotic expressions (see appendix C) we obtain that the asymptotic behavior
in the quantum scenario reads

αQc ∼ 1
κ̃2
, (33)

which is finite for all values of σ> 0, 0⩽ ϵ < 1/2, while we recover the classical divergence
(for κ= 0) in the classical limit σ= 0.

Remark 5. Figure 1 shows that for κ= 0 the separation between curves corresponding to
different values of mout is reduced in the quantum regime. This is in contrast to what happens
for curves corresponding to different values of min, as shown in figure 2.

10
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Figure 4. (Left) αQc plotted against m= min = mout. Increasing the value of the bias |m|
always increases the storage capacity. (Right) Limit αQc for mout = min = m→ 1, for
several values of κ̃. The case κ̃= 0 corresponds to the classical case with κ= 0, where
the storage capacity diverges in the limit. In the quantum scenario (κ̃ > 0) the divergence
is suppressed. The dashed lines correspond the asymptotic value αc ∼ 1/κ̃2.

5. Discussion and conclusion

Summarizing, we studied the storage capacity of the continuous variable model of quantum
perceptron presented in [20] in the presence of a bias in the distribution of the patterns and
their corresponding classifications. Besides the advantage of allowing an almost entirely ana-
lytical study, such a model admits the classical perceptron as a classical limit, thus allowing
for a direct comparison of the storage performances in the two cases. We found that the addi-
tional randomness introduced in the quantum model gives rise to an effective increment in the
stability parameter used in Gardner’s statistical approach, κ→ κ̃, which gives rise to several
peculiar features that are not observed in the classical case with zero stability.

For instance, the possibility of indefinitely enhancing the storage capacity by increasing
the bias of the patterns and their classifications is prevented at the quantum level. Moreover,
in contrast to the classical case, when the bias of the patterns and the bias in their correspond-
ing classifications are varied separately, a dependence of the storage capacity on the input
patterns’ bias appears even when the stability parameter reduces to zero. Overall, however,
the performance of the quantum perceptron model remains below that of the classical one.
This is likely due to the fact that the considered quantum model introduces two sources of
randomness: one due to the encoding of patterns by means of non-zero width Gaussian states
and another one due to the final measurement operation implementing the classical non-linear
activation function.

It should be noted that all the features characterizing the storage capacity of the quantum
perceptron are obtained exclusively as a consequence of an effective stability κ̃ > 0. In other
words, one would be able to find these same features from the investigation of the classical
perceptron in the regime of κ> 0, such as the different dependence on min, mout and the dif-
ferent asymptotics in the limit m= min = mout → 1. It is worth stressing that the modification
in the effective threshold κ̃−κ= σΦ−1(1− ϵ) contains both the contribution of randomness
coming from the width σ of the Gaussian encoding of the patterns, and the statistical error
due to the quantum measurement ϵ: as a consequence, the worsening of the quantum stor-
age capacity with respect to the classical one cannot be ascribed to only one of them. In this
regard, it should be noted also that even if the volume defined by (13) contains the quantity

11
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Rκ,σ defined in equation (10) as some sort of ‘average’ over the possible results obtained from
the quantum measurement, this should not be interpreted operationally as performing many
measurements and then inferring the classification based on many shots. Rather, we are only
requiring that the probability of success in the single-shot classification is at least 1− ϵ for
each pattern we want to store. Different approaches might be considered, such as for example
considering the regime α > αc and focusing on the average success probability involving the
classification of all the patterns to be stored. Another different venue would be to consider
multi-layer quantum perceptrons, where one could hope for quantum advantages of the sort
coming from linear superpositions and entanglement.
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Appendix A. Derivation of the main result

In order to extract the large N behavior of 〈[VQ
N (x

µ, ξµ,κ,σ,ϵ)]
n
〉 in equation (34), we recast it

as

〈
[
VQ
N (xµ, ξµ,κ,σ,ϵ)

]n
〉= 1

ZnN

ˆ
RnN

dnNW δ
(n)
N

(
‖W‖2

)
A(W) , (34)

with

A(W) :=

〈
p∏

µ=1

n∏
γ=1

Θ(Rκ,σ (wγ ,xµ, ξµ)− 1+ ϵ)

〉
x,ξ

. (35)

Using the distributional expression

Θ(x− u) =
ˆ +∞

u
dλ δ (λ− x) =

ˆ +∞

u
dλ
ˆ +∞

−∞

dy
2π

e iy(λ−x), (36)

we express the Heaviside function in (35) as

Θ(Rκ,σ (wγ ,xµ, ξµ)− 1+ ϵ) =

ˆ +∞

1−ϵ

dλµγ

ˆ +∞

−∞

dyµγ
2π

e iy
µ
γ(λ

µ
γ−Rκ,σ(wγ ,x

µ,ξµ)), (37)

so that

A(W) =
1

(2π)nP

ˆ
[1−ϵ,+∞)nP

dnPΛ
ˆ
RnP

dnPY e i
∑p

µ=1

∑n
γ=1 y

µ
γλ

µ
γ B(Y,W) , (38)

12
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where we introduced the symbols

dnPΛ≡
p∏

µ=1

n∏
γ=1

dλµγ , d
nPY≡

p∏
µ=1

n∏
γ=1

dyµγ , (39)

and the quantity

B(Y,W)≡

〈
n∏

γ=1

p∏
µ=1

e− iyµγRκ,σ(wγ ,x
µ,ξµ)

〉
x,ξ

. (40)

To proceed, it is convenient to use (see (29))

Φ(x)≡ 1√
2π

ˆ x

−∞
du e−u2/2

and rewrite (10) as

Rκ,σ (wγ ,xµ, ξµ) =
ˆ +∞

−∞
ds Pwγ ,xµ,σ (s) Θ

(
ξµ

s
||w||

−κ

)
=Φ

(
−κ
σ
+ ξµ

xµ ·wγ

||wγ ||σ

)
. (41)

Then, using the exponential representation of the Dirac delta and the statistical independence
of patterns and targets with different indices, one gets

B(Y,W) =

〈
p∏

µ=1

n∏
γ=1

e
− iyµγΦ

(
− κ

σ+ξµ
xµ·wγ
||wγ ||σ

)〉
xµ,ξµ

=

〈
p∏

µ=1

n∏
γ=1

ˆ
R
dηµγ δ

(
ηµγ +

κ

σ
− ξµ

xµ ·wγ

||wγ ||σ

)
e− iyµγΦ(η

µ
γ )

〉
x,ξ

=
1

(2π)nP

ˆ
R2nP

dnPΩ dnPH C(Ω,W)

×exp

−i p∑
µ=1

n∑
γ=1

(
ηµγ +

κ

σ

)
ωµ
γ − i

p∑
µ=1

n∑
γ=1

yµγΦ
(
ηµγ
) , (42)

with

C(Ω,W) :=

p∏
µ=1

〈
exp

 iξµ
n∑

γ=1

ωµ
γ

xµ ·wγ

σ
√
N

〉
x,ξ

, (43)

where Ω= {ωµ
γ }µ,γ , H= {ηµγ }µ,γ and

dnPΩ dnPH=
P∏

µ=1

n∏
γ=1

dωµ
γ dηµγ . (44)

Since the patterns have components xµj =±1 which are statistically independent and identic-
ally distributed, using (19), one computes the mean over the patterns in C(Ω,W) as
follows:

13
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C(Ω,W) =

p∏
µ=1

N∏
j=1

〈
exp

 iξµ
n∑

γ=1

ωµ
γ

wγ,jx
µ
j

σ
√
N

〉
xµj ,ξ

µ

=

p∏
µ=1

N∏
j=1

1
2

〈
exp

 iξµ
n∑

γ=1

wγ,jω
µ
γ

σ
√
N

+ exp

− iξµ
n∑

γ=1

wγ,jω
µ
γ

σ
√
N


+min

exp

 iξµ
n∑

γ=1

wγ,jω
µ
γ

σ
√
N

− exp

− iξµ
n∑

γ=1

wγ,jω
µ
γ

σ
√
N

〉
ξµ

=

p∏
µ=1

N∏
j=1

〈
cos

ξµ n∑
γ=1

wγ,jω
µ
γ

σ
√
N

+ imin sin

ξµ n∑
γ=1

wγ,jω
µ
γ

σ
√
N

〉
ξµ

=

p∏
µ=1

N∏
j=1

〈
exp

log

cos
ξµ n∑

γ=1

wγ,jω
µ
γ

σ
√
N

+ imin sin

ξµ n∑
γ=1

wγ,jω
µ
γ

σ
√
N

〉
ξµ

.

WhenN� 1, the leading order expansion in 1/N of each factor in the product over the µ index
reads

N∏
j=1

〈
exp

log

1+ imin

ξµ n∑
γ=1

wγ,jω
µ
γ

σ
√
N

− 1
2

ξµ n∑
γ=1

wγ,jω
µ
γ

σ
√
N

2

〉

ξµ

=
N∏
j=1

〈
exp

log

1+ imin

ξµ n∑
γ=1

wγ,jω
µ
γ

σ
√
N

− 1
2σ2N

n∑
β=1

wβ,jω
µ
β

n∑
γ=1

wγ,jω
µ
γ

〉
ξµ

=
N∏
j=1

〈
exp

 imin

ξµ n∑
γ=1

wγ,jω
µ
γ

σ
√
N

− 1−m2
in

2σ2N

n∑
β=1

wβ,jω
µ
β

n∑
γ=1

wγ,jω
µ
γ

〉
ξµ

=

〈
exp

 iminξ
µ

n∑
γ=1

N∑
j=1

wγ,jω
µ
γ

σ
√
N

− 1−m2
in

2σ2N

n∑
γ,β=1

ωµ
γω

µ
β

N∑
j=1

wγ,jwβ,j

〉
ξµ

, (45)

the remaining terms vanishing as O
(
1/
√
N
)
. Using ‖wγ‖2 = N and setting

Mγ ≡ 1√
N

N∑
j=1

wγ,j , qγβ ≡ 1
N

N∑
j=1

wγ,jwβ,j (46)

for γ,β = 1, . . . ,n, γ > β, we finally focus upon

C(Ω,W)≃
p∏

µ=1

〈
exp

 iminξ
µ

σ

n∑
γ=1

Mγω
µ
γ − 1−m2

in

2σ2

 n∑
γ=1

(
ωµ
γ

)2
+ 2

n∑
γ>β=1

ωµ
βω

µ
γ qγβ

〉
ξµ

,

(47)
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neglecting corrections of order O
(
1/
√
N
)
. Therefore, to leading order in 1/N, equation (42)

becomes

B(Y,W)≃ 1
(2π)nP

ˆ
R2np

dnPΩ dnPH exp

−i p∑
µ=1

n∑
γ=1

(
ηµ
γ +

κ

σ

)
ωµ
γ − i

p∑
µ=1

n∑
γ=1

yµγΦ(η
µ
γ )


×

p∏
µ=1

〈
exp

(
iminξ

µ

σ

n∑
γ=1

Mγω
µ
γ − 1−m2

in

2σ2

 n∑
γ=1

(ωµ
γ )

2 + 2
n∑

γ>β=1

ωµ
βω

µ
γ qγβ

)〉
ξµ

)
.

(48)

Since the integrals for different µ’s are the same and the targets ξµ are statistically inde-
pendent and equally distributed, equation (38) reduces to

A(W) =

(
1

(2π)2n

ˆ
[1−ϵ,+∞)n

dnλ,
ˆ
R3n

dny dnη dnω
〈
eKξ(η,λ,y,ω,Q,M)

〉
ξ

)p

, (49)

where η = {ηγ}, y= {yγ}, λ= {λγ}, ω = {ωγ}, Q= {qαβ}, M= {Mγ}, for α,β,γ =
1, . . . ,n,

dnλ≡
n∏

γ=1

dλγ , d
ny≡

n∏
γ=1

dyγ , d
nη ≡

n∏
γ=1

dηγ , d
nω ≡

n∏
γ=1

dωγ

and

Kξ (η,λ,y,ω,Q,M)≡ i
n∑

γ=1

[
yγλγ − yγΦ(ηγ)−

(
κ− ξminMγ

σ
+ ηγ

)
ωγ

]
(50)

− 1−m2
in

2σ2

 n∑
γ=1

(ωγ)
2
+ 2

n∑
γ ̸=β=1

ωβωγqγβ

 . (51)

Writing the various Dirac deltas appearing in (34) as

δ
(
||wγ ||2 −N

)
=

ˆ +∞

−∞

dEγ

4π
e− i

Eγ
2 N+ i

Eγ
2

∑N
j=1 w

2
γ,j , (52)

as well as those Dirac deltas whose integration over qγβ , respectively Mγ , implements the
constraints (46) within (49), as

δ

qγβ − 1
N

N∑
j=1

wγ,jwβ,j

= N
ˆ +∞

−∞

dFγβ

2π
exp

− iNqγβFαβ + iFγβ

N∑
j=1

wγ,jwβ,j

 ,

(53)

δ

Mγ −
1√
N

N∑
j=1

wγ,j

=
√
N
ˆ +∞

−∞

dLγ
2π

exp

− i
√
NLγMγ + iLγ

N∑
j=1

wγ,j

 , (54)

and inserting them into (34), one finally arrives at the following explicit integral expression
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⟨[VQ
N (x

µ, ξµ,κ,σ,ϵ)]
n⟩= (N)n

2/2

ZnN

ˆ
RnN+n2+2n

n∏
γ=1

N∏
j=1

n∏
γ<β=1

dwγ,j
dEγ

4π
dMγ dqγβ

dFγβ

2π
dLγ
2π

× exp

(
− i

Eγ

2
N+ i

Eγ

2

N∑
j=1

w2
γ,j

)
exp

(
− iNqγβFγβ + iFγβ

N∑
j=1

wγ,jwβ,j

)

× exp

(
− i

√
NMγLγ + iLγ

N∑
j=1

wγ,j

)

×

[ˆ +∞

1−ϵ

1
(2π)2n

ˆ
[1−ϵ,+∞)n

dnλ
ˆ
R3n

dny dnη dnω
〈
eKξ(η,λ,y,ω,Q,M)

〉
ξ

]p
.

Regrouping together the integrals over wγ,j with different j and same γ, one writes

⟨[VQ
N (x

µ, ξµ,κ,σ,ϵ)]
n⟩= Nn

2/2

ZnN

ˆ
Rn2+2n

n∏
γ=1

n∏
γ<β=1

dEγ

4π
dMγ dqγβ

dFγβ

2π
dLγ
2π

×

[
exp

(
− i
2

n∑
γ=1

Eγ − i
n∑

γ<β=1

Fγβqγ,β − i√
N

n∑
γ=1

LγMγ

)]N

×

[ˆ
Rn

n∏
γ=1

dwγ exp

(
i

n∑
γ<β=1

Fγβwγwβ+
i
2

n∑
γ=1

Eγ w
2
γ + i

n∑
γ=1

Lγ wγ

)]N

×

[
1

(2π)2n

ˆ
[1−ϵ,+∞)n

dnλ
ˆ
R3n

dny dnη dnω
〈
eKξ(η,λ,y,ω,Q,M)

〉
ξ

]p
.

In the large N limit, the contribution 1√
N

∑n
γ=1LγMγ can be neglected; using (13), at leading

order in N� 1, one gets

〈[VQ
N (xµ, ξµ,κ,σ,ϵ)]

n
〉= Nn

2/2

ZnN

ˆ
R3n

 n∏
γ=1

dEγ

4π
dMγ

dLγ
2π

ˆ
Rn2−n

 n∏
γ>β=1

dqγβ
dFγβ

2π


× exp(NG(E,F,L,M,Q)) , (55)

where E= {Eγ}nγ=1, F= {Fγβ}nγ>β=1, L= {Lγ}nγ=1, and

G(E,F,L,M,Q)≡ p
N
G1 (M,Q)+G2 (E,F,L)+G3 (E,F,Q) , (56)

with

G1(M,Q) = log

ˆ
[1−ϵ,+∞)n

 n∏
γ=1

dλγ
2π

ˆ  n∏
γ=1

dyγ dηγ dωγ

2π

〈eKξ(η,λ,y,ω,Q,M)
〉
ξ

 ,
(57)

G2 (E,F,L) = log

ˆ
Rn

n∏
γ=1

dwγ e i
∑

γ<β Fγβwγwβ+ i
∑n

γ=1
Eγ
2 w2

γ + i
∑n

γ=1 wγLγ

 , (58)

G3 (E,F,Q) =− i
2

n∑
γ=1

Eγ − i
∑
γ>β

Fγβqγ,β . (59)
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A.1. Saddle-point approximation

When N is large, the behavior of 〈[VQ
N (x

µ, ξµ,κ,σ,ϵ)]n〉 can be obtained using the saddle-point
approximation, as follows. Setting z≡ (E,F,L,M,Q) and considering it as a vector inCn2+2n,
one expands G(z)≡ G(E,F,L,M,Q) around the stationary point z0 = (E0,F0,L0,M0,Q0)

such that
∂G(z0)
∂zk

= 0:

G(z)' G
(
z0
)
+

1
2

n2+2n∑
j,k=1

∂2G
(
z0
)

∂zj∂zk

(
zj− z0j

) (
zk− z0k

)
.

Let G ′ ′(z0)≡
[
∂2G(z0)
∂zj∂zk

]
be the Hessian (n2 + 2n)× (n2 + 2n) matrix at the stationary point.

If such a matrix is negative semi-definite, by suitably deforming the integration paths into the
complex domain, one can perform n2 + 2n Gaussian integrations by rescaling with

√
N the

corresponding integration variables and approximate:

〈[VQ
N (xµ, ξµ,κ,σ,ϵ)]n〉' 1

ZnN

1
Nn

(√
2π

|detG ′ ′ (z0) |

)n2+2n

eNG(z
0) . (60)

From equations (22) and (20), one needs to control the behavior of the ratio
1
nN

log〈[(VQ
N (x

µ, ξµ,κ,σ,ϵ)]n〉 for n→ 0+ and N→+∞. From equation (60) and using

equation (14) one gets:

1
nN

log〈[VQ
N (xµ, ξµ,κ,σ,ϵ)]n〉= 1

n
G
(
z0
)
− 1

2
log(2π e)+O

(
logN
N

)
. (61)

A.2. RS ansatz

Making use of the replica-symmetric ansatz which states that the stationary point z0 is replica-
insensitive, one seeks it setting

qγβ = q, Fγβ = F, Eγ = E Mγ =M and Lγ = L, (62)

so that (50) becomes

Kξ (η,λ,y,ω,q,M) = i
n∑

γ=1

[
yγλγ − yγΦ(ηγ)−

(
κ− ξ pM

σ
+ ηγ

)
ωγ

]

−
(1− q)

(
1−m2

in

)
2σ2

n∑
γ=1

ω2
γ −

q
(
1−m2

in

)
2σ2

 n∑
γ=1

ωγ

2

. (63)
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Notice that the argument of the logarithm in (57) is the average of the following quantity

∆(n)≡
ˆ
[1−ϵ,+∞)n

(
n∏

γ=1

dλγ
2π

)ˆ
R2n

(
n∏

γ=1

dηγ dyγ
2π

)ˆ
Rn

n∏
γ=1

dωγ exp

(
i
ξminM
σ

n∑
γ=1

ωγ

)

× exp

[
i

n∑
γ=1

(
yγλγ − yγΦ(ηγ)

)
− i

n∑
γ=1

(κ
σ
+ ηγ

)
ωγ −

(1− q)(1−m2
in)

2σ2

n∑
γ=1

ω2
γ

− q(1−m2
in)

2σ2

(
n∑

γ=1

ωγ

)2]
. (64)

Such a quantity can then be manipulated as follows: using the Gaussian representation

exp

−
q
(
1−m2

in

)
2σ2

 n∑
γ=1

ωγ

2
=

ˆ
R
Dtexp

− t2

2
− i t

√
q
(
1−m2

in

)
σ

n∑
γ=1

ωγ

 , (65)

via straightforward Gaussian integration over the variables ωγ , one writes

∆(n) =
ˆ
[1−ϵ,+∞)2

(
n∏

γ=1

dλγ
2π

)ˆ
R2n

(∏
γ

dηγ dyγ
2π

)
n∏

γ=1

e i(yγλγ−yγΦ(ηγ))

×
ˆ
R
Dx

n∏
γ=1

√
2πσ2

(1− q)(1−m2
in)

exp

−

(
κ− ξminM+σηγ + x

√
q(1−m2

in)
)2

2(1− q)(1−m2
in)

 .

Notice that the argument of the logarithm in (57) amounts to 〈∆(n)〉ξ. Then, one sees that
∆(n) consists in n independent integrals with respect to dηγ , dλγ and dyγ :

∆(n) =
ˆ
R
Dx

ˆ
R

σ dη√
2π (1− q)

(
1−m2

in

) ˆ +∞

1−ϵ

dλ
ˆ
R

dy
2π

e− iy(λ−Φ(η/σ))

×exp

−

(
κ− ξminM+ση+ x

√
q
(
1−m2

in

))2
2(1− q)

(
1−m2

in

)


n

=

ˆ
R
Dx

ˆ
R

σ dη√
2π (1− q)

(
1−m2

in

)Θ[Φ( ησ)− 1+ ϵ
]

×exp

−

(
κ− ξminM+ση+ x

√
q
(
1−m2

in

))2
2(1− q)

(
1−m2

in

)


n

Due to the monotonicity of the error function, the function Φ(x) in (29) is invertible and one
has

Θ
[
Φ
( η
σ

)
− 1+ ϵ

]
=Θ

[
η−σΦ−1 (1− ϵ)

]
.
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Then, by changing the integration variable η into λ= ση+κ and using again (29), one gets

∆(n) =
ˆ
R
Dx

ˆ +∞

κ+σΦ−1(1−ϵ)

dλ√
2π (1− q)

(
1−m2

in

) exp
−

(
λ− ξminM+ x

√
q
(
1−m2

in

))2
2(1− q)

(
1−m2

in

)


n

=

ˆ
R
Dx

1−Φ

 κ̃− ξminM+
√
q
(
1−m2

in

)
x√

(1− q)
(
1−m2

in

)
n

where κ̃= κ+σΦ−1(1− ϵ). Since the replica trick lets n vanish as a continuous quantity, we
can use the first order approximation zn ≃ 1+ n logz, valid for n→ 0, and write:

∆(n) = 1+ n
ˆ
R
Dx log

1−Φ

 κ̃− ξminM+
√
q
(
1−m2

in

)
x√

(1− q)
(
1−m2

in

)
. (66)

Finally, we notice that the RS ansatz makes all matrix and vector entries equal. Then, aver-
aging over the target parameter ξ according to the distribution in (19) yields the following
leading behavior for the function G1(M,q) when n→ 0+:

G1 (M,q)≃ log(1+ ng(M,q))≃ ng(M,q) , (67)

where

g(M,q)≡ 1+mout

2

ˆ
R
Dx log

[
1−Φ

(
x
√
q− a− (M)
√
1− q

)]
+

1−mout

2

ˆ
R
Dx log

[
1−Φ

(
x
√
q− a+ (M)
√
1− q

)]
, (68)

with

a± (M)≡− κ̃± minM√
1−m2

in

. (69)

Because of the RS ansatz, G2(E,F,L) in (58) can be recast as

G2 (E,F,L) = log

ˆ
Rn

dnwexp

 i
n∑

γ<β=1

Fwγwβ+ i
E
2

n∑
γ=1

w2
γ + iL

n∑
γ=1

wγ

 , (70)

where now w= (w1, . . . ,wn). Then, rewriting

n∑
γ<β=1

wγwβ =
1
2


 n∑

γ=1

wγ

2

−
n∑

γ=1

w2
γ

 ,

one finds

iF
n∑

γ<β=1

wγ wβ+ i
E
2

n∑
γ=1

w2
γ = i

F
2

 n∑
γ=1

wγ

2

− i
F−E
2

n∑
γ=1

w2
γ ,
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and, using (65),

exp

 i
n∑

γ<β=1

Fwγwβ+ i
E
2

n∑
γ=1

w2
γ

=

ˆ
R

dx√
2π

e−x2/2−x
√

iF
∑

γ wγ e− i F−E
2

∑n
γ=1 w

2
γ . (71)

Then, after straightforward Gaussian manipulations and integration,

G2 (F,E,L) = log

(ˆ
R
Dx

(ˆ
R
dw exp

(
−x

√
iFw− i

F−E
2

w2 + iwL

))n)

=
n
2
log

2π
i(F−E) + log

ˆ
R
Dx exp

− in

(
x
√
iF− iL

)2
2(F−E)




=
n
2
log

2π
i(F−E) − 1

2
log

(
1− n

F
F−E

)
− i

FL2 n2

2(F−E)((n− 1)F+E)
+ i

nL2

2(F−E) .

At leading order in n→ 0+ one gets

G2 (F,E,L)≃
n
2

(
log

2π
i(F−E) +

F
F−E + i

L2

F−E

)
. (72)

Finally, the replica symmetry ansatz yields the following leading order behavior for (59),

G3 (E,F,q)≃− in
E
2
− iFq

n(n− 1)
2

≃− in
1
2
(E−Fq) . (73)

Using (67), (72) and (73) into (56), we get, at the leading order in n→ 0+:

G(E,F,L,M,q)≃ nαg(M,q) +
n
2

(
log

2π
i(F−E) +

F
F−E + i

L2

F−E + i(qF−E)
)

. (74)

The stationary point z0 is then found by asking that ∂G(z)
∂E = ∂G(z)

∂F = ∂G(z)
∂L = 0 yielding the sta-

tionary point components:

F 0 =− iq

(1− q)2
, E0 = i

1− 2q

(1− q)2
, L0 = 0 . (75)

Then, from (74) one obtains

G
(
E0,F 0,L0,M,q

)
n

= αg(M,q)+
1
2

(
log(2π (1− q)) +

1
(1− q)

)
. (76)

The sought after stationary point of G(z) is finally obtained by setting

∂qG
(
E0,F 0,L0,M,q

)
= ∂MG

(
E0,F 0,L0,M,q

)
= 0 . (77)

Using (68), one explicitly computes, with β = q,M,

∂β g(M,q) =−1+mout

2
√
2π

ˆ
R
Dx

exp

(
− (x

√
q−a−(M))2

2(1−q)

)
1−Φ

(
x
√
q−a−(M)√

1−q

) ∂β

x
√
q− a− (M)
√
1− q

− 1−mout

2
√
2π

ˆ
R
Dx

exp

(
− (x

√
q−a+(M))2

2(1−q)

)
1−Φ

(
x
√
q−a+(M)√

1−q

) ∂β

x
√
q− a+ (M)
√
1− q

. (78)
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As observed at the end of section 3, the optimal storage capacity is obtained when q in (46),
namely the average overlap of randomweights, tends to 1. The condition q→ 1 implies that the
arguments of the functions Φ in (68) tend to ±∞. Then, one can use the asymptotic behavior
of the error function,

erf(x)≃±1− e−x2

√
π

(
1
x
− 1

2x3

)
when x→±∞ , (79)

together with (29) to get that

1

1−Φ

(
x
√
q−a±(M)√

1−q

) ≃

exp

(
(x

√
q−a±(M))2

2(1−q)

)√
2π x

√
q−a±(M)√

1−q
. . . x

√
q− a± (M)> 0

1 . . . x
√
q− a± (M)⩽ 0

. (80)

Therefore, for q→ 1−, the vanishing Gaussian terms in (78) can only be compensated for
x
√
q⩾ a±(M), so that

∂β g(M,q)≃−1+mout

2

ˆ +∞

a−(M)/
√
q
Dx

x
√
q− a− (M)
√
1− q

∂β

x
√
q− a− (M)
√
1− q

− 1−mout

2

ˆ +∞

a+(M)/
√
q
Dx

x
√
q− a+ (M)
√
1− q

∂β

x
√
q− a+ (M)
√
1− q

. (81)

Furthermore, using (69),

∂M g(M,q)≃ min√
(1−m2

in)(1− q)

(
− 1+mout

2

ˆ +∞

a−(M)/
√
q
Dx(x

√
q− a−(M))

+
1−mout

2

ˆ +∞

a+(M)/
√
q
Dx(x

√
q− a+(M))

)
, (82)

which, together with (77) yields (30). On the other hand, (76) and (77) yields

α∂q g(M,q) =− q

2(1− q)2
. (83)

Thus, from

∂q
x
√
q− a± (M)
√
1− q

=
x

2
√
q(1− q)

−
x
√
q− a± (M)

2(1− q)3/2
,

and (81) one retrieves (26) as the leading term in (1− q)−1 in the limit q→ 1−.

Appendix B. Large output bias limit

In order to extract the leading order behavior of the quantum critical storage capacity when
the target bias mout → 1−, we distinguish two possibilities. Firstly, in this appendix, we keep
the input bias min fixed and let mout → 1−; then, in the next one we treat the case when min =

mout = m→ 1−. Consider the equation

(1+mout)

ˆ +∞

a−(M)

Dx (x− a− (M)) = (1−mout)

ˆ +∞

a+(M)

Dx (x− a+ (M)) ,
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with a±(M) as in (27). If mout → 1− and min is kept fixed,M must diverge to+∞. Otherwise, the
left-hand side cannot vanish, being the integral of a positive function. Then, in the following,
we shall consider mout close to 1 so that a+(M)< 0, a−(M)> 0 and

∓a± (M) =
minM√
1−m2

in

± κ̃√
1−m2

in

≫ 1 ,

yielding

M≫

√
1−m2

in

min
+

κ̃

min
. (84)

In the classical case κ̃= κ; moreover, the limit behavior of the critical classical storage capacity
for mout → 1+,

αCc ≃− 1
(1−mout) log(1−mout)

,

is obtained for κ= 0, namely for M≫

√
1−m2

in

min
.

We proceed by recasting the two storage capacity defining equations (26) and (30) in terms
of Gaussian and error functions:

αQc

[
1+mout

4

((
1+ a2− (M)

) (
1− erf

(
a− (M)√

2

))
− a− (M)

√
2
π
e−a2−(M)/2

)

+
1−mout

4

((
1+ a2+ (M)

) (
1− erf

(
a+ (M)√

2

))
− a+ (M)

√
2
π
e−a2+(M)/2

)]
= 1 , (85)

respectively

1−mout

1+mout
=

√
2
π
e−a2−(M)/2 − a− (M)

(
1− erf

(
a−(M)√

2

))
√

2
π
e−a2+(M)/2 − a+ (M)

(
1− erf

(
a+(M)√

2

)) . (86)

Equation (86) can be satisfied in the limit mout → 1− only if the right-hand side vanishes, which
can happen only for values ofM such that a±(M)→∓∞. For small but finite values of 1−mout,
the solution of (86) is obtained for ∓a±(M)≫ 1, which implies

M≫

√
1−m2

in

min
+

κ̃

min
. (87)

Using the asymptotic behavior in (79) with ∓a±(M)≫ 1, one gets

1− erf
(
a− (M)√

2

)
≃
√

2
π
e−a2−(M)/2

(
1

a− (M)
− 1
a3− (M)

)
, (88)

1− erf
(
a+ (M)√

2

)
≃ 2+

√
2
π
e−a2+(M)/2

(
1

a+ (M)
− 1
a3+ (M)

)
≃ 2 . (89)

Hence, for mout → 1−, at leading order, (86) and (85) read

1−mout ≃− e−a2−(M)/2√
π
2 a

2
− (M)a+ (M)

, 1≃ αQc
1−mout

2
a2+ (M) . (90)
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Since mout → 1− implies a−(M)≃−a+(M), the first asymptotic behavior in (90) yields

log(1−mout)≃−a2− (M)

2
− log

(√
π

2
a2− (M)(−a+ (M))

)
≃− a2− (M)

2
≃− a2+ (M)

2
. (91)

from which the limit of strongly correlated targets, mout → 1−, is as in (32), for all pattern
biases 0⩽ min ⩽ 1. However, it must be emphasized that, because of (84) the limit is reached
with possibly quite different slopes depending on both the quantum parameter σΦ−1(1− ϵ) and
on the degree of independence of the input patterns min.

Appendix C. Simultaneously large input and output bias

Setting min = mout = m, the quantity M has to be chosen such that

1−m
1+m

=

√
2
π
e−a2−(M)/2 − a− (M)

(
1− erf

(
a−(M)√

2

))
√

2
π
e−a2+(M)/2 − a+ (M)

(
1− erf

(
a+(M)√

2

)) =
I− (M)

I+ (M)
, (92)

where we set

I± (M) =

√
2
π
e−a2±(M)/2 − a± (M)

(
1− erf

(
a± (M)√

2

))
(93)

In the limit m→ 1−, the quantities a±(M) in (27) behave as

a± (M)≃− κ̃±M√
2(1−m)

(94)

and both diverge unless M= κ̃. Notice however, that inserting M= κ̃ into (92) and taking the
limit, the equality (92) cannot be satisfied. Indeed, a−(κ̃) = 0 and

a+ (κ̃)≃− 2κ̃√
2(1−m)

=⇒ I− (M)

I+ (M)
≃

√
1−m ,

whereas the right-hand side vanishes as 1−m. Therefore, we need first to consider the asymp-
totic behavior of the right-hand side of (92) when m→ 1− and then properly choose M which
will thus depend on m.

We distinguish the following cases

M> κ̃=⇒

a− (M)> 0⇒ I− (M)≃
√

2
π
e−a2−(M)/2 1

a2−(M)

a+ (M)< 0⇒ I+ (M)≃−2a+ (M)
, (95)

−κ̃ <M< κ̃=⇒

{
a− (M)< 0⇒ I− (M)≃−2a− (M)

a+ (M)< 0⇒ I+ (M)≃−2a+ (M)
, (96)

M<−κ̃=⇒

a− (M)< 0⇒ I− (M)≃−2a− (M)

a+ (M)> 0⇒ I+ (M)≃
√

2
π
e−a2+(M)/2 1

a2+(M)

, (97)

where wemade explicit the asymptotic behaviors (88) and (89) whenm→ 1−. Then, one finds

M> κ̃=⇒ I− (M)

I+ (M)
≃ 2√

π

(1−m)3/2

(κ̃−M)2 (κ̃+M)
exp

(
− (κ̃−M)2

4(1−m)

)
, (98)

−κ̃ <M< κ̃=⇒ I− (M)

I+ (M)
≃ κ̃−M

κ̃+M
, (99)
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M<−κ̃=⇒ I− (M)

I+ (M)
≃

√
π

2
(κ̃−M)2 (κ̃+M)

(1−m)3/2
exp

(
+
(κ̃−M)2

4(1−m)

)
. (100)

Since (92) asks for
I−(M)

I+(M)
≃ 1−m

2
, together with a−(M)→+∞ and a+(M)→−∞, the only

behavior compatible with these request is the one in (98). Indeed, the third one is clearly to be
excluded, while the second one asks for

M≃ κ̃m=⇒

a− (M)≃−κ̃
√

1−m
2

a+ (M)≃−κ̃
√

2
1−m

, (101)

which requires a−(M)→ 0 instead of a−(M)→+∞. Then, the only possible remaining beha-
vior yields

4√
π

(1−m)1/2

(κ̃−M)2 (κ̃+M)
exp

(
− (κ̃−M)2

4(1−m)

)
≃ 1 (102)

or, in terms of a±(M),√
2
π

1
a− (M)

exp

(
−a2− (M)

2

)
≃ a− (M)a+ (M)(1−m) . (103)

The functional dependence of M on m when m→ 1−, implicitly determined by (102), cannot
be given in terms of simple functions and can be obtained only numerically; however, (102)
implies that

lim
m→1−

M(m) = κ̃ . (104)

Finally, using (103) and (104), (88) and (89), together with (94), from (85), one gets

1

αQc
≃
[
− 1√

2π

1
a3− (M)

exp

(
−a2− (M)

2

)
+

1−m
2

a2+ (M)

]
=

1−m
2

a+ (M)

a− (M)
(a− (M)a+ (M)− 1)

≃ 1−m
2

κ̃+M
κ̃−M

κ̃2 −M2

2(1−m)
=

(κ̃+M)2

4
≃ κ̃2 . (105)
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