
Light-field imaging from position-momentum
correlations

Davide Giannellaa,b, Gianlorenzo Massaroa,b, Bohumil Stoklasac,
Milena D’Angeloa,b,∗, Francesco V. Pepea,b

aDipartimento Interuniversitario di Fisica, Università degli studi di Bari, I-70126 Bari,
Italy

bINFN, Sezione di Bari, I-70126 Bari, Italy
cDepartment of Optics, Palacký University, 77146 Olomouc, Czech Republic

Abstract

Correlation plenoptic imaging (CPI) is a light-field imaging technique em-
ploying intensity correlation measurements to simultaneously detect the spa-
tial distribution and the propagation direction of light. Compared to stan-
dard methods, in which light-field images are directly encoded in intensity,
CPI provides a significant enhancement of the volumetric reconstruction per-
formance in terms of both achievable depth of field and 3D resolution. In
this article, we present a novel CPI configuration where light-field information
is encoded in correlations between position and momentum measurements,
namely, points on a given object plane and points of the Fourier plane of the
imaging lens. Besides the fundamental interest in retrieving the properties
of position-momentum correlation, the proposed scheme overcomes practical
limitations of previously proposed setups, providing higher axial homogeneity
and robustness with respect to the identification of reference planes.

1. Introduction

In the rapidly-developing field of 3D imaging techniques, light-field (or
plenoptic) imaging is one of the most promising and used. Light-field devices
can measure simultaneously, without the need for moving parts, both the
light distribution from the scene of interest and the propagation direction of
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light rays [1, 2, 3]. The availability of directional information makes single-
shot volumetric reconstruction possible, whereas a standard imaging system
would require multiple acquisitions on a series of independent axial planes to
obtain a similar amount of information.

One of the main reasons behind the success of light-field imaging is the
structural simplicity of the devices, essentially consisting of standard cam-
eras integrated with an array of microlenses between the main lens and the
sensor. Such a structure ensures contained costs and high acquisition speed,
which makes light-field imaging popular in the most diverse fields, ranging
from photography to microscopy [4, 5, 6], for cutting-edge application such
as imaging of neuronal activity [7] and wavefront sensing [8]. Nonetheless,
traditional light-field devices such as those described above suffer from a lim-
itation in the best resolution that can be achieved, due to the fact that a
single sensor captures a composite information, in which both the spatial
distribution and the direction of light are encoded [9, 10].

An alternative method to light-field imaging capable of addressing the
resolution loss has recently emerged in the context of correlation imaging
[11, 12, 13, 14, 15, 16, 17]. In this approach, called correlation plenoptic
imaging (CPI), the plenoptic information is spit over two separate sensors,
both endowed with spatial resolution [18, 19, 20]. While a simple intensity
measurement on each detector does not contain volumetric information, the
latter is encoded in the correlation between intensity fluctuations registered
at each pair of pixels of the disjoint sensors. Besides recovering Rayleigh-
limited resolution of focused images, CPI has further advantages deriving
from an unparalleled extension of the longitudinal depth along which the
sample can be correctly reconstructed starting from a single plenoptic image
[21, 22, 23]. Since its introduction, great improvement to the performance of
the device have been carried over, both in terms of its optical performance
[22, 23] and signal-to-noise ratio optimization [24, 25], to obtain remarkable
performance in microscopy applications [26] and in acquisition speed [27].

In this article, we present a novel CPI configuration, based on measur-
ing correlations between position and momentum measurements: the first
one being measured in points on a given object plane, close to the imaged
sample, and the second one in points of the Fourier plane of the imaging
lens [28]. Previous CPI setups were based on the fact that intensity correla-
tions encode images of the same scene, as if it were illuminated by different
point sources. Compared to microlens-based light-field techniques (even us-
ing correlation measurements in so-called ghost imaging, see Ref. [29]), CPI
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potentially provides a much wider variety of independent viewpoints on a
3D sample. However, such an interesting property has practical drawbacks,
such as the sensitivity to the axial distances of planes that are difficult to
identify and the dependence of image magnification on the axial position
(see Ref. [21]). Here, we will show how using position-momentum correlation
measurement, besides its fundamental interest, also helps to overcome even
such technical problems of CPI.

The article is organized as follows. In Section 2, we illustrate the plenop-
tic capability of the proposed correlation measurement protocol, offering a
theoretical demonstration of its working principle. In Section 3, we charac-
terize the refocusing capability of the protocol by using Gaussian test objects
and a numerical simulation applied to a planar target. The capability of the
proposed CPI scheme to overcome the mentioned drawbacks of previous CPI
protocols is discussed in Section 4, together with a summary of the main
results.

2. Plenoptic properties of intensity correlations

A simple setup for measuring correlations between the near-field and the
far-field of a sample is schematically represented in Fig. 1. Light emitted from
an object S propagates through a two-lens system made of a first converging
lens L1 with focal length f1 and a second converging lens L2 with focal
length f2 and is collected by a detector DA placed in the second focal plane
of the second lens. This detector, endowed with spatial resolution, collects
the image of the intensity distribution on the first focal plane of L1, reversed
and magnified by a factor M = f2/f1. A second detector DB is placed
directly in the second focal plane of L1 (i.e., in the Fourier plane), giving
access to far-field information; light is then deflected towards DB by means
of a beam splitter (BS) placed between the two lenses, so that part of the
intensity coming from the first lens in DB is moved in an orthogonal path.
Let us call IA(ρA) and IB(ρB) the intensity distributions collected by DA and
DB, respectively, where ρA and ρB are two-dimensional transverse spatial
coordinates defined on the photo-sensitive planes of the two detectors. It is
worth noticing that the main lens Fourier plane, in cases when it is physically
inaccessible such as in most microscope objectives, can be imaged on a farther
plane by using a relay imaging system.

By correlating, pixel by pixel, the signal at the two detectors, a position-
momentum correlation is measured. If the object emits (or transmits or
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Figure 1: A schematic representation of the setup: the object, represented as a flat triple
slit S and treated as a chaotic light emitter, is placed at a distance z = f1 + δ from the
first lens L1 of a two-lenses system, in a f-f configuration, composed of L1 with focal length
f1 and L2 with focal length f2; the two lenses are separated by a distance f1 + f2. The
detector DA is in the second focal plane of the second lens, which is, in the conjugate
plane of the first focal plane of L1. In the space between the two lenses, a beam splitter
BS deviates half of the intensity in the second arm of the setup toward the detector DB ,
which is placed in the Fourier plane of the first lens.
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reflects) thermal light [30], this correlation contains plenoptic information
[18]. In general, the relevant information is contained in the second order
correlation function Γ(2), the four dimensional function representing the cor-
relations between the intensity fluctuations defined as

Γ(2)(ρA,ρB) = ⟨IA(ρA)IB(ρB)⟩ − ⟨IA(ρA)⟩⟨IB(ρB)⟩ (1)

where the ⟨. . . ⟩ denotes the ensemble average over the different statistical
realizations of the intensity distributions. To better visualize the plenoptic
capabilities contained in Γ(2) and how these can lead to refocusing out-of-
focus objects, we consider a two-dimensional object with emission profile
A(ρs), shining quasi-monochromatic thermal light on the optical apparatus,
placed at a distance z from the first lens L1. By using the paraxial optics
transfer functions to propagate the fields [28], and assuming negligible coher-
ence area [31] at the object plane (i.e., the object is considered as a source
of incoherent light), the second order correlation function can be calculated
and reads, up to irrelevant constant factors:

Γ(2)(ρa,ρb) ∼

∣∣∣∣∣
∫ +∞

−∞
d2ρs|A(ρs)|2

∫ +∞

−∞
d2ρ1PL1(ρ1)

×
∫ +∞

−∞
d2ρ′

1PL1(ρ
′
1)e

iϕ(ρs,ρ1,ρ′
1,ρA,ρB)

∣∣∣∣∣
2

(2)

where we have considered the aperture of the lens L1, as described by the
pupil function PL1(ρ1) (namely, a real function representing the geometrical
shape of the lens), to be the relevant aperture of the system, thus neglecting
the one of the second lens, treated as infinite. The term ϕ calculated in the
coordinates of the sample, the first lens and the detectors, is characteristic
of the specific protocol and reads

ϕ(ρs,ρ1,ρ
′
1,ρA,ρB) = k

[(1
z
− 1

f1

)ρ2
1

2
−ρ1·

(ρs

z
+
ρA

f2

)
−
ρ′2

1

2z
+ρ′

1·
(ρs

z
+
ρB

f1

)]
(3)

where k = 2π
λ

is the wavenumber and λ the central wavelength of the quasi-
monochromatic emission. The integral in Eq. (2) can be solved in the ge-
ometrical optics limit using a stationary phase approximation [32]. Calling
ρj = (xj, yj), with j = A,B, we can further simplify the result writing the
Γ(2) as a two-variable function factorized in a geometrical part Γ(2)

geom(xA, xB)
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involving the object-related information leading to refocusing and a factor
involving apertures Γ

(2)
pupils(xA, xB) = |PL1(xA, xB)|4 [33]. The first term can

be written as

Γ(2)
geom(xA, xB) =

∣∣∣∣A(
−xA

M
+

(
1− z

f1

)
xB

)∣∣∣∣4 . (4)

The geometrical meaning of the correspondence between an object point xs

and the two detector coordinates, as contained in this function, becomes
evident by inserting a real parameter z = f1 + δ, with δ the defocusing
parameter, defining the out-of-focus distance at which the object is placed;
with this substitution, Eq. (4) becomes

Γ(2)
geom(xA, xB) =

∣∣∣∣A(
− xA

M
− δ

xB

f1

)∣∣∣∣4 .
In this expression, we can recognize the quantity xB/f1, given by the ratio
between the position of a point in the Fourier plane and the focal length of the
first lens L1, as representing the angle of propagation from the object plane
to the lens. By fixing this coordinate, all rays propagating at this angle from
all the object points can be reconstructed. Concurrently, the term −xA/M
represents a point in the first focal plane of L1. Fixing the coordinates xB and
xA uniquely selects, among the rays propagating at the angle xB/f1, the one
passing through −xA/M . The knowledge of the parameter δ completes the
identification of a single point xs on the object. Formally, this correspondence
represents a line (γs(xs) : −xA

M
− δ

f1
xB = xs) in the (xA, xB) space, along which

it is convenient to integrate the Γ(2)(xA, xB) to reconstruct the refocused
image [34, 33]. In the geometrical approximation in which we are working,
this general integration can be written

Σ(xs) =

∫
γs(xs)

Γ(2)(xA, xB)dℓ =

∫
γs(xs)

Γ(2)
geom(xA, xB)Γ

(2)
pupils(xA, xB)dℓ

=

∫
γs(xs)

∣∣∣∣A(
− xA

M
− δ

f1
xB

)∣∣∣∣4 |PL1(xA, xB)|4 dℓ ∼ |A(xs)|4 , (5)

considering that the artifacts to the object reconstruction created by the
presence of the Γ

(2)
pupils(xA, xB) term can easily be corrected [33].

It is worth noticing that the magnification of all the object sub-images,
obtained for each xB and concurring to the formation of the refocused image,
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is independent of the object axial position and coincides with the native
magnification M of focused images. Such a feature, unique in the context
of CPI, ensures an increased homogeneity of the image properties of axially
extended samples.

3. Imaging performance of CPI based on position-momentum mea-
surements

The adoption of the geometrical approximation is convenient to explicitly
retrieve both the correspondence between detector and object coordinates
encoded in Γ(2) and the lines along which to integrate to obtain refocusing.
However, this approach does not give evidence of the wave-optics effects of
propagation and diffraction resulting in the definition of resolution and depth
of field. To quantitatively show how CPI refocusing translates into an en-
hancement of the depth of field with respect to standard imaging, we consider
a Gaussian object with intensity profile |A(xs)|2 = exp

(
− x2

s

2σ2
s

)
and standard

deviation σs defined by its linear size, and place it at a distance δ from the
first focal plane of L1; we then calculate both its refocused image for the spe-
cific δ (as given by the proposed CPI protocol, but without the application
of the stationary phase approximations) and its standard image, as acquired
directly by the detector DA. The spreading in transverse dimension of both
these images is finally evaluated for varying δ and σs.

To obtain the refocused image analitically, we assume a Gaussian approx-
imation for the pupil function (|PL1(x1)|2 = exp

(
− x2

1

2σ2
1

)
) and calculate Γ(2)

by means of Eq. (2); we then apply the refocusing integration of Eq. (5)
and obtain again a Gaussian function with standard deviation σCPI(σs, δ)
dependent on both the size and the position of the object. Using the parax-
ial propagators of the electric field, we calculate the standard image acquired
by the detector DA and we call σSI(σs, δ) its transverse dimension also de-
pendent on σs and δ. To perform a comparison, we conventionally consider,
for each defocusing δ and width σs, the regions in which σCPI(σs, δ) and
σSI(σs, δ) are smaller than 1.2 σs (i.e. the image spread is smaller than 20%
of the original object size). The results are presented in Fig. 2, where the
vertical and horizontal axes report, respectively, the transverse dimensions of
the object σs and the defocusing parameter δ at which the object is placed:
the green and red solid contour lines represent the threshold on which the
transverse dimension of the image is broadened by 20% due to loss of res-
olution (namely, when the image size becomes 1.2 times the dimension of
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the object), for CPI and standard imaging respectively; the green and red
tilted lines fill the regions in which the dimension of the images is below this
threshold.

This plot can be interpreted as an indication of the different behavior of
resolution as the object is moved from the focal plane, in the two imaging
technques. Similar trends can be observed in the visibility-based resolution
limits described in Refs. [20, 22]. Notice, however, that curves in Fig. 2 do not
directly carry information about the visibility of the image of two separated
object points: σs can be viewed as the detail size on the object side and the
colored regions indicate, for each distance from the focal plane, the detail size
that can be imaged by the two protocols with a spreading below a certain
threshold, which is set to 20% as an arbitrary reference. The trends in Fig. 2
provide a qualitative indication of the loss of resolution with distance from
the focal plane.

The comparison between the two protocols, in particular, shows how,
outside of the natural depth of field of the system, while for standard imaging
the degradation of resolution scales approximately linearly with the distance
from the focal plane, exploiting correlations between position and momentum
allows this trend to become a square root of the same distance, leading to a
slower loss of details, typical of CPI protocols [20, 22, 23].

It is finally worth pointing out the difference in behavior of the two pro-
tocols in the focal plane of L1 for δ = 0: the lower spreading (hence, better
resolution) associated to CPI is due to the second order correlation measure-
ment in the process of image formation and should not be interpreted as a
characteristic of the optical system. The correlation-based imaging process,
as can be clearly understood by the third integral of Eq. (5), involves the
integration over the second power of the intensity of the object whose size,
for a Gaussian object, is 1/

√
2 the size of the object itself. This means that,

for Gaussian objects, the variance of the produced image is the sum of the
squares of a diffractive term, which depends on the numerical aperture of
the system and on the wavelength λ, and the original object size divided by
a factor

√
2; for standard imaging, the diffractive term is the same, but the

second term in the sum is the object size σs itself.
To show an example of the refocusing properties of the position-momentum

based CPI protocol, we simulate the measurement of a correlation function
in the experimental situation discussed above and apply the refocusing pro-
cedure reported in Eq. (5) to obtain refocusing. In particular, we consider
a two-dimensional object placed at a distance δ = +1 mm away from the
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Figure 2: An analitycal resolution against depth of field comparison between the CPI
protocol discussed in the text and standard imaging, performed calculating how should
vary the size of a Gaussian intensity object of width σs and its distance from the focal plane
δ, to be imaged with a width below a certain threshold. In particular, the region filled with
tilted green lines indicates the values of σs and the positions δ producing refocused images
with a linear size σCPI that is less than 20% of the original object size while the region
filled with red tilted lines the values of σs and δ producing standard images of size σSI less
than the 20% of the object width. The green and red solid lines represent the boundaries
of these regions on which the image size is exactly 1.2 times σs, for CPI and standard
imaging, respectively. The presented curves are calculated for M = 1, f1 = f2 = 30 mm,
σ1 = 0.635 mm, λ = 532 nm and sample characterized by full transversely incoherent
emission.
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first focal plane of the first lens L1 (plane at focus). The object is a mask
composed by three perfectly transmissive rectangular slits, having center-to-
center distance of 50 µm.
The incoherent emission from the target is simulated by computing a se-
ries of speckle patterns [35] following pseudo-random thermal statistics and
propagating them along the two arms of the setup to reach the two detec-
tors (with no modifications to the statistics of the incoming light due to the
presence of the beam splitter), and then obtaining the two intensity distri-
butions IA(ρA) and IB(ρB) by collecting N statistically independent frames.
By using Eq. (1) and an ergodic hypothesis, we are now able to calculate the
correlation function; the simulated second order correlation function shall be
indicated as Γ

(2)
sim.

In the left panel of Fig. 3, we report the calculated standard image as ac-
quired by the detector DA: the triple slit appears completely blurred since the
mask is placed far beyond the natural depth of field of the two-lens system.
The image is obtained by simply averaging all the IA(ρA) distributions ac-
quired over the N frames. In the right panel, we report the perfectly resolved
refocusing of the object performed by taking advantage of the plenoptic con-
tent of the correlation function, as obtained by applying directly the first
integral of Eq. (5) to Γ

(2)
sim. In the numerical simulation, the magnification

of the two-lens system is set to M = 1, the lens L1 acts as a thin lens with
numerical aperture NA = 0.05 and focal length f1 = 30mm and the chosen
number of frames is N = 15000.

4. Summary and discussion

We have presented a novel protocol to perform correlation plenoptic imag-
ing based on the measurement of correlations between intensity fluctuations
occurring in the object plane and in the Fourier plane of a two-lens system,
i.e. exploiting position-momentum correlations. Starting with a geometrical
approximation, we have demonstrated the plenoptic capability of the pro-
tocol and derived the so-called refocusing algorithm, namely, the coordinate
transformation to be applied to the measured correlation function Γ(2); such
transformation is just the path over which performing the linear integration
of Γ(2) to recover the image of the out-of-focus object. The trend of the
resolution as a function of the depth of field of the proposed CPI protocol
has highlighted the square-root scaling responsible for the wide depth of field
enhancement of CPI (compared to the linear scaling of standard imaging).

10



Figure 3: Left: simulation of the intensity acquired by the detector DA over the collected
N frames, representing the completely blurred image of the mask placed at δ = 1 mm
from the L1 lens first focal plane, outside the depth of field of the two-lenses system.
Right: refocused image of the same mask placed in the same position, reconstructed by
exploiting the plenoptic information contained in Γ

(2)
sim, the correlation function calculated

from the simulated frames collected by the two detectors DA and DB , as retrieved after
the application of the first integral of Eq. (5). The scale bar indicates approximately
70 µm. Notice that the parameters of the main lens used in the simulation are matched
with those of the Gaussian lens used for Fig. 2, by requiring that the two lenses yield the
same visibility when imaging two separated point sources on the focus plane.
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The presented numerical simulation has also shown the result obtained by
refocusing the image of 50µm slit, placed 1mm out of focus, outside the
region of resolvable details for standard imaging. This completes the demon-
stration of the functionality of the proposed correlation plenoptic imaging
scheme, confirming the flexibility of CPI protocols in the choice of planes
over which measuring correlations.

An outstanding feature of the proposed protocol is the fact that the sub-
images obtained by selecting different illumination direction are characterized
by the same magnification, regardless of the axial distance from the main lens.
Such a feature, bearing an interesting parallelism with telecentric imaging
systems, ensures a much larger homogeneity of the refocused images along
the axial direction, which was not incorporated in the previous CPI schemes,
where points of illumination, instead of directions, can be naturally selected
from correlations of intensity fluctuations.

Moreover, it is worth noticing that the optical performance of the pro-
posed implementation is similar to the one characterizing the microscopy-
oriented CPI setup discussed in Ref. [26]), where correlations are measured
between the near-field of the object, imaged through a conventional micro-
scope, and the light intensity on the first lens surface. Although theoretically
well-defined in the thin-lens approximation, the latter configuration is not as
simple to reproduce experimentally when thick lenses are involved. In these
cases, the imaged plane is either chosen between the lens principal planes,
or any other plane within the optical component. However, these planes are
typically not easily accessible experimentally, do not always show distinctive
optical features, and can only be determined with a certain degree of uncer-
tainty. For these reasons, the refocusing procedure needs accurate calibration
in order to determine the appropriate coefficients. Imaging the Fourier plane
as we propose here, instead, removes all the uncertainties in this regard, since
the second focal plane is always well-defined even for real optical components
and is easily recognized experimentally due to its distinctive optical features.
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