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Abstract 
Background The utilization of beneficial (Rhizo) 
bacteria, as an alternative to traditional fertilizers, has 
emerged as an eco-friendly strategy for ameliorating 
sustainable agricultural production. This approach 
aims to reduce the use of agrochemicals and mini-
mize environmental pollution.
Scope This review provides an updated insight into 
the ecological impact of plant growth-promoting 
rhizobacteria (PGPR), focusing on the resident micro-
biome and its potential transferability to the next gen-
eration of plants.
Conclusion In this context, PGPR are assumed to 
alter the rhizosphere microbiome by outcompeting 
the existing taxa through nutrient deprivation, acidi-
fication of the environment, metabolites production, 
and consequently, increasing the copiotrophic taxa. 
Such modifications can maximize the beneficial 
interactions of plant-PGPR by increasing the bio-
availability of nutrients and handling diverse signal-
ing pathways. The effects of interactions within the 
PGPR-root system can adjust the composition of root 
exudates and influence the release of bioactive mol-
ecules by the root, especially under stress conditions, 

which can act as signals to reactivate and recruit the 
beneficial microbes in the rhizosphere and endo-
sphere in favor of the plants. Such changes in micro-
biome structure can occur gradually over time, even 
if the survival rate of PGPR in soil and their re-colo-
nization efficiency inside plant tissue are limited. The 
aforementioned modifications in the rhizosphere and 
plant microbiome have the potential to increase the 
survival chances of the progeny plants growing under 
the same stress conditions. Establishing a comprehen-
sive and robust knowledge framework that addresses 
all of these issues is critical for significantly advanc-
ing the field of microbe-plant interactions and for 
developing reliable applications of PGPR.

Keywords Inheritability of PGPR effects · Plant 
growth-promoting rhizobacteria · Plants/rhizosphere 
microbiomes · Survival rate of PGPR

Introduction

Nowadays, the demand for agricultural products has 
surged to meet the needs of the growing human popu-
lation. Meeting this demand requires either expanding 
the area under cultivation or increasing production 
per unit area. The first strategy, involving land-use 
change and intensive management practices, has not 
been effective. The conversion of natural landforms 
into agricultural land has turned out to be a gamble 
and has led to land degradation (Cerdà et  al. 2010; 
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Yaghoubi et  al. 2019a, 2020). The second solution 
led to the widespread use of synthetic inputs (e.g., 
fertilizers, pesticides, and herbicides) to improve crop 
yields. As a result, chemicals have become the domi-
nant source of pollution in agriculture (Meena et  al. 
2017; Yaghoubi et al. 2018). In addition, the increased 
global demand for agrochemicals has driven up their 
prices, causing economic issues (Nishimoto 2019). 
These issues call for a rethink of technologies aimed 
at increasing crop production and emphasize the need 
for alternative strategies such as the use of beneficial 
natural processes and bio-based products. One of the 
most advanced alternatives is the use of rhizobacteria 
as Plant Growth-Promoting Rhizobacteria (PGPR). 
These free-living and root-colonizing bacteria are 
classified according to their mode of action, namely: 
(i) biofertilization (increasing the availability of nutri-
ents to plants); (ii) hormonal stimulants or phytostim-
ulators (stimulating plant growth through the secretion 
or production of certain hormones); (iii) bioreme-
diation (biodegrading toxic organic compounds and 
chemical contaminants in soils and having the poten-
tial to enhance phytoremediation); and (iv) biological 
pesticides and herbicides (controlling weeds, insects 
and plant pathogens by producing certain antibiotics 
or metabolic antiviral compounds) (Joutey et al. 2013; 
Yaghoubi et  al. 2019b; Bakhshandeh et  al. 2020; 
Manoj et  al. 2020). Recent examples of identified 
PGPR and their function as agents of biofertilization, 
phytostimulation, bioremediation and bioprotection, 
are summarized in Table 1.

While numerous studies have investigated the 
effects of PGPR, several questions remain unan-
swered. These relate to PGPR-induced changes in the 
plant microbiome and their potential heritability to 
the next generation of plants, as well as their effects 
on agro-ecosystems functions beyond the host plants 
and the legacies left in the host communities. Despite 
their importance, these issues have often been 
ignored. In this regard, a keyword search of “biostim-
ulant AND bacteria” in Web of Science (webofsci-
ence.com) revealed 254 papers on the PGPR-based 
biostimulants in the last decade (2014–2023). Among 
them, only 10 articles discussed the microbiome 
alterations in plants and/or rhizosphere, followed by 
4 articles showing the effects of biostimulants on eco-
systems, with only one addressing the legacy effect of 
biostimulants. Therefore, the present article aims to 
review and discuss the most relevant findings on the 

ecological and genetic impacts of PGPR. The focus 
was on impacts at the level of the host plants/rhizos-
phere microbiomes, the next generation of stimulated 
plants and agro-ecosystems.

The ecological impact of PGPR on the resident 
community

Plant endosphere and rhizosphere microbiome 
assembly

PGPR, like other invasive species, may have unex-
pected significance for the ecosystem and legacy 
impacts via niche construction, where the effects of 
PGPR can extend beyond the host plants toward eco-
system functions and even outlast the persistence of 
the PGPR (Callahan et al. 2014; Moore et al. 2022). 
One of these effects can be the modification of the 
resident microbiome (Table  2). Plants possess a so-
called microbiome, which comprises the collective of 
microorganisms living on and within the plant, includ-
ing those associated with flowers (anthosphere), fruits 
(carposphere), stems (caulosphere), leaves (phyllo-
plane), root surface (rhizoplane), and within plant tis-
sues (endosphere), as well in the soil under the direct 
influence of the root system (rhizosphere), and ger-
minating seeds (spermosphere) (Shade et  al. 2017). 
Microbiomes composition can be affected by different 
environmental and plant growth conditions (Chouhan 
et al. 2021; Mukherjee et  al. 2022), but can, in turn, 
affect plant production and tolerance to environmental 
stress (Lau and Lennon 2012; Sugiyama et al. 2013). 
Nevertheless, much uncertainty still exists about the 
activation and recruitment of the microbiome in bio-
stimulated plants, especially under biotic and abiotic 
stress conditions. Although the effect of PGPR in 
modifying the rhizosphere and plant microbial com-
munities has been shown to be one of the main modes 
of action of PGPR to benefit plants under field con-
ditions (Kusstatscher et  al. 2020), the emergence or 
increase in the relative abundance of some micro-
organisms can also pose a threat to plant and human 
health. Understanding the specific drivers in plant 
microbiome assembly in response to biostimulants, 
and whether the responses are host- or environment-
mediated, is crucial for developing the reliable appli-
cation of beneficial bacteria in sustainable agriculture 
(Yaghoubi et al. 2022; Bandopadhyay et al. 2023).
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Table 1  Beneficial effects of PGPR in improving plant-based agro-ecosystem functions

PGPR species Experiment condition Summary of results Reference

- Acinetobacter beijerinckii
- Pseudomonas fluorescens

Field Improving the utilization of carbon 
sources for alfalfa plant growth.

Tang et al. 2023

- Pantoea agglomerans
- Rahnella aquatilis
- Pseudomonas orientalis

Field Increasing the grain yield, K use 
efficiency and K uptake in straw and 
grain in rice plants, as well as reduc-
ing the use of K chemical fertilizers.

Yaghoubi et al. 2018a, 2019b

- Herbaspirillum sp.
- Burkholderia sp.
- Pseudacidovorax sp.
- Azospirillum sp.

Field Significantly increasing plant growth, 
NPK uptake and grain yield in rice 
plants, as well as reducing the use of 
nitrogen fertilizers.

de Souza et al. 2013

- Bacillus sp. Field Enhancing number of bolls per plant 
and boll weight, P availability and 
yield in cotton plants.

Qureshi et al. 2012

- Pseudomonas fluorescens Field Inoculation showed a significant 
increase in number of tillers per wheat 
plant, grain yield, and straw yield, 
compared to un-inoculated plants.

Shaharoona et al. 2008

-Bacillus megaterium
-Enterobacter sp.
-Arthrobacter chlorophenolicus

Field and pot Significantly increasing plant height, 
grain yield and straw yield of wheat 
plants under pot and field conditions.

Kumar et al. 2014

- Bacillus sp.
- Enterobacter gergoviae

Field and pot Increasing rice grain yield in pot and 
field experiments.

Rajapaksha et al. 2011

- Actinobacterium sp. Pot Boosting the level of antioxidant 
molecules and rapeseed plant biomass 
under elevated  CO2 conditions.

Hagagy and AbdElgawad 2023

- Saccharomonospora sp. Pot Improving biomass production and plant 
tolerance to chromium toxicity.

Albqmi et al. 2023

-Nocardiopsis sp. Pot Boosting the antioxidants content and 
health-promoting activities of cab-
bage sprouts.

AbdElgawad et al. 2023

- Bacillus velezensis Pot Alleviating the inhibitory effect of salt 
on lettuce growth through improv-
ing reactive oxygen scavenging and 
osmotic adjustment.

Bai et al. 2023

- Actinobacterium sp. Pot Improving soybean plant toleration 
and adaptation against galaxolide 
contamination.

Halawani and Aloufi 2023

- Acinetobacter pittii
- Acinetobacter oleivorans
- Acinetobacter calcoaceticus
- Comamonas testosteroni

Pot Improving the metabolic and nutrient 
status of durum wheat grains under 
non-stress, drought and salinity condi-
tions.

Yaghoubi et al. 2022

- Achromobacter xylosoxidans Pot Improving maize growth and productiv-
ity under drought stress.

Danish et al. 2020

- Bacillus sp. Pot Ameliorating salt stress and enhanc-
ing plant growth under salt stress by 
inducing maize plant responses such 
as activation of defense enzymes and 
regulation of chlorophyll, proline, and 
soluble sugar contents.

Misra and Chauhan 2020

- Pseudomonas libanensis Pot Enhancing phytoremediation of metal-
polluted saline soils and decreasing 
the metal uptake by sunflower plants.

Ma et al. 2019
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In this regard, some recent studies have reported 
significant changes in the microbial community struc-
ture of the rhizosphere and endosphere in response to 
the PGPR inoculation under both controlled environ-
ments and real field conditions (Table  2). Although 
the mechanisms underlying these effects are not well 
understood yet, three hypotheses have been defined, 
including resource competition, direct antagonism 
and synergism (Mawarda et  al. 2020). Once intro-
duced, PGPR inoculants may become stable in the 
soil and potentially outcompete certain taxa by using 
existing resources, by acidifying the environment 
(Zhang et al. 2009), or by producing siderophores and 
having greater access to the soil iron reservoir (Wan-
dersman and Delepelaire 2004; Mawarda et al. 2020). 
In addition, Castro-Sowinski et  al. (2007) proposed 
the secretion of antibiotic compounds by PGPR (e.g., 
2,4-diacetyl phloroglucinol, trifolitoxin and phena-
zine) as one of the main strategies of PGPR to influ-
ence rhizobacterial communities.

The genetic diversity of microbial communities 
may also be affected by microbial inoculums through 
interactions and horizontal gene transfer (HGT) 
(Mawarda et al. 2020). In this regard, Van Elsas et al. 
(1998) described the transfer of a mobilizable plas-
mid from Pseudomonas fluorescens to Gram-negative 
bacteria, mainly Enterobacter spp., in the rhizos-
phere of field-grown wheat. According to Xiong et al. 
2017; the inoculation of Bacillus amyloliquefaciens 
increased the abundance of taxa with a potentially 

antagonistic effect on plant pathogens. The occur-
rence of genetic transformations within communities 
may be traced to areas of high microbial density (e.g., 
the rhizosphere) that support quick and pervasive 
horizontal gene transfer (Kent et al. 2020). This pro-
cess provides further opportunities for bidirectional 
transfer with unforeseen consequences that may per-
sist long after the original inoculant has disappeared 
(Moore et  al. 2022). It is also important to consider 
the potential acquisition of DNA from the host com-
munities by PGPR, as this can potentially affect 
PGPR traits, especially their function and persistence 
in an agro-ecosystem (Munck et al. 2020).

The recent interpretations overlook many indirect 
effects of PGPR on soil microbial communities, 
including implications for soil properties (e.g. 
nutrient availability, cation exchange capacity, pH) 
(Kusstatscher et  al. 2020; Lopes et  al. 2021), root 
morphology (Gomes et  al. 2001), and plant root 
secretions (Yuan et  al. 2015), which are themselves 
affected in some way by rhizobacteria and could 
stimulate microbial growth in the rhizosphere (see 
the following sub-section for a deep discussion 
of this topic). Furthermore, potential biases in 
rhizobacterial community structure could results 
from other factors such as plant age (Castro-Sowinski 
et  al. 2007), developmental stage (Herschkovitz 
et  al. 2005; Piromyou et  al. 2011), and agricultural 
practices including tillage (Yaghoubi et  al. 2020), 
crop rotation (Alvey et  al. 2003), and wastewater 

Table 1  (continued)

PGPR species Experiment condition Summary of results Reference

- Artherobacter woluwensis
- Microbacter iumoxydans
- Artherobacter aurescen,
- Bacillus megaterium
- Bacillus aryabhattai

Pot Maintaining osmotic balance and regu-
lating salt tolerance in soybean plants.

Khan et al. 2019

- Bacillus amyloliquefaciens Hydroponic system PGPR reprograms rice plant metabo-
lism for deficiency-induced stress 
amelioration, by inducing metabolic 
and physiological parameters.

Bisht et al. 2019

- Aneurinibacillus aneurinilyticus
- Paenibacillus sp.

Pot Alleviating the negative effects of 
salinity stress by activation of ACC 
deaminase in French bean seedlings. 
Increasing root and shoot length, root 
and shoot fresh weight, root and shoot 
biomass, and total chlorophyll content 
in seedlings subjected to salinity 
stress.

Gupta and Pandey 2019
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Table 2  The impacts of PGPR application on the composition of rhizosphere and plant endosphere microbial communities

PGPR Host Experimental condition Summary of results Reference

- Acinetobacter beijerinckii
- Pseudomonas fluorescens

Alfalfa Field Improving the diversity and 
richness of the rhizosphere 
bacterial communities.

Tang et al. 2023

-Azospirillum brasilense
- Pseudomonas fluorescens

Maize Field Modifying the physiology of 
the rhizosphere microbi-
omes in the reproductive 
stage.

Di Salvo et al. 2018a

- Azospirillum brasilense Wheat Field Regulating the physiology 
and genetic structure of 
rhizosphere microbial 
communities

Di Salvo et al. 2018b

- Pseudomonas brassi-
cacearum

- Burkholderia sordidicola 

Rapeseed Field and pot Reporting a correlation 
between the diversity of 
the seed microbiome and 
the colonization of benefi-
cial bacteria.

Rybakova et al. 2017

- Azospirillum brasilense Rice Field Increasing the genetic 
diversity of rhizosphere 
bacterial communities.

García de Salamone et al. 
2010

- Azospirillum lipoferum Maize Field Shifting in the composition 
of the indigenous rhizo-
bacterial community.

Baudoin et al. 2009

- Bacillus velezensis Lettuce Pot Regulating the rhizosphere 
bacterial community com-
position under salt stress.

Bai et al. 2023

- Pseudomonas sivasensis Canola Pot Significant alterations in 
the diversity of the native 
rhizosphere microbiome 
by raising the abundance 
of beneficial bacteria.

Świątczak et al. 2023

- Acinetobacter pittii
- Acinetobacter oleivorans
- Acinetobacter calcoace-

ticus
- Comamonas testosteroni

Durum wheat Pot Significant changes in the 
rhizosphere and root 
endophytic bacterial com-
munities.

Yaghoubi et al. 2021

- Bacillus amyloliquefaciens Cucumber Pot Reducing the rhizosphere 
bacterial diversity, despite 
not having a direct effect 
on the inhibited taxa in the 
rhizosphere.

Wang et al. 2021

- Enterobacter sp.
- Pseudomonas sp. 

Tomato Pot Modulating the rhizosphere 
microbiome functioning 
and improving microbial 
diversity.

Zuluaga et al. 2021

- Paracoccus versutus
- Aeromonas caviae

Maidenhair fern Pot Sustaining microbial diver-
sity in the rhizosphere 
under heavy metal stress

Marwa et al. 2020

- Pseudomonas sp.
- Burkholderia sp. 

Mustard greens Pot Bacterial communities in 
the rhizosphere had more 
complex and compact 
associations in the pres-
ence of PGPR.

Kong et al. 2019
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irrigation (Oved et  al. 2001). Wei et  al. (2019) 
considered some plant-associated changes in bacterial 
communities as a result of recruitment of specific 
bacteria via characteristic root exudates. This may 
also explain why the plant-dependent impact on 
bacterial community structure is more pronounced 
in the rhizosphere compared to the root endosphere 
(Edwards et al. 2015).

How does the interaction between root exudates 
and PGPR lead to distinct changes in the resident 
bacterial community?

Elucidating the chemical mechanisms by which 
plant-PGPR interactions result in the release of ben-
eficial exudates may be critical to our understanding 
of how plant-microbes associations influence plant 
biological pathways and lead to proper responses 
to environmental challenges. One of the beneficial 
effects of PGPR can be attributed to the regulation 
of the release of root exudates, which are known for 
their strong impacts on biological processes in the 
rhizosphere (Castro-Sowinski et al. 2007). Root exu-
dates are composed of diverse metabolites and easily 
degradable organic carbon and nitrogen compounds 
such as sugars, amino acids, organic acids, fatty acids, 
phytohormones, volatile organic compounds, hydro-
lytic enzymes, vitamins, phenolic and flavonoid com-
pounds (Wang et al. 2022; Lopes et al. 2023). Recent 
findings on the assembly of bacterial communities 

in the rhizosphere by niche-based (deterministic) 
processes, as opposed to the neutral (stochastic) pro-
cesses in bulk soil (Wang et  al. 2022), have height-
ened the necessity for revealing the role of these exu-
dates in building the network of plant roots and their 
surrounding rhizosphere microorganisms.

It has been documented that PGPR can affect posi-
tively root-microbe interactions in the rhizosphere, 
either by providing nutritional support or by activat-
ing behavioral and physiological responses to the 
microorganisms (Canarini et  al. 2019). One known 
potential of PGPR to exert these beneficial effects is 
chemotaxis, a key motility trait that allows PGPR to 
move towards the root surface, as the first phase of 
bacterial colonization (Yuan et al. 2015). Such chem-
otactic ability of PGPR, together with the potential to 
exude a variety of chemical compounds, can modify 
the release of carbon and nitrogen substrates into 
the rhizosphere that are qualitatively/quantitatively 
different and also differently metabolized by micro-
organisms (Baetz and Martinoia 2014; Sasse et  al. 
2018). It is well documented that PGPR can affect 
plant molecular and biochemical processes through 
the synthesis and exudation of many metabolites and 
organic compounds, including phytohormones (e.g., 
3-indol acetic acid, gibberellins, cytokinins, etc.), 
enzymes (e.g., chitinases, cellulases, proteases, chi-
tinase, and glucanases), volatile organic compounds, 
vitamins (e.g., pantothenic acid, thiamine, riboflavin, 
pyrroloquinoline quinone, and biotin), antibiotics, 

Table 2  (continued)

PGPR Host Experimental condition Summary of results Reference

- Bacillus amyloliquefaciens Cucumber Pot Suppressing disease by 
altering the structure and 
function of rhizosphere 
microbiome.

Han et al. 2019

- Burkholderia phytofirmans Maize Pot Reporting minor changes 
in the rhizosphere and 
plant-associated microbial 
communities.

Touceda-González et al. 
2015

- Bacillus aryabhattai
- Bacillus megaterium

Mustard greens Pot Significant shifts in the 
rhizosphere microbial 
community of eight-week 
inoculated soil.

Jeong et al. 2013

- Bacillus subtilis Tomato Pot Changes in rhizosphere 
microbial communities 
resulted in root-architec-
tural alterations.

Felici et al. 2008
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1-aminocyclopropane-1-carboxylate deaminase, 
enzymatic and non-enzymatic antioxidants (e.g., 
hydratases, hydrolases, dioxygenases, dehydroge-
nases and aldolases) (Yaghoubi et al. 2024).

In contrast, the positive effects of root exudates, 
mainly phenolic compounds, on the coloniza-
tion of roots by beneficial microorganisms and the 
increased abundance of certain PGPR have already 
been proved, as such bioactive molecules are consid-
ered the first line of roots-PGPR communications in 
the rhizosphere (Badri et al. 2009; Yuan et al. 2015). 
Table  3 summarizes some recent findings on the 
effects of root exudates on plant-bacteria associations. 
Passive transport is the main mechanism for secret-
ing most low molecular weight organic compounds 
and non-polar molecules across membranes without 
requiring energy, which depends on concentration 
gradients between the extracellular and intracellu-
lar environments (Chaparro et al. 2014). In contrast, 
ATP-binding cassette (ABC) transporters, as a large 
superfamily of membrane proteins, have been pro-
posed to play a major role in transporting diverse 
complex compounds and polar molecules across the 
cellular membrane, either extracellularly over the 
plasma membrane or intracellularly into the vacuoles 
(Zhou et al. 2016). The functions of ABC transporters 
can be closely related to the transfer of secreted sub-
strates in PGPR-root relationships in the rhizosphere 
(Badri et  al. 2009; Zhou et  al. 2016). It has been 
reported that the changes in exopolysaccharides and 
lipid-packing in the cell surface of some PGPR (e.g., 
Bacillus cereus) in response to the shifts in the com-
position of root exudates, resulted in higher efficiency 
of bacterial colonization (Dutta et al. 2013).

Moreover, the signaling function of these exu-
dates can be a possible explanation for the recruit-
ment of beneficial microbes in the rhizosphere in 
favor of plants, especially under stress conditions 
(Rolfe et  al. 2019; Arif et  al. 2020; Bandopadhyay 
et al. 2023). A well-known example of PGPR recruit-
ment by the roots was observed when low molecular 
weight organic acids (e.g., malic acid, citric acid, and 
fumaric acid) secreted by roots served as source of 
carbon substrate and signaling molecules (Yuan et al. 
2015; Zhou et al. 2022; Zhang et al. 2023). Increased 
recruitment of some PGPR into the rhizosphere in 
response to specific exudate compounds is consistent 
with the previous finding of higher activity of auxin-
producing PGPR (e.g., Pseudomonas fluorescens) 

when plants secreted L-tryptophan, a precursor of 
auxin synthesis, into the rhizosphere (Kamilova 
et al. 2006b). However, these findings must be inter-
preted with caution, as changes in the structure of the 
existing rhizosphere microbial communities due to 
interactions between root exudates and soil proper-
ties (e.g., pH, water potential, and nutrient availabil-
ity) (Peiffer et  al. 2013), plant species and genotype 
(Chen and Liu 2024) and plant developmental stage 
(Yuan et al. 2015) should not be overlooked.

In PGPR-inoculated soils, the increased persis-
tence and accumulation of organic matter have been 
linked to the release of biosynthesized metabolites 
and phytohormones (e.g., auxins, cytokinins, gib-
berellins) caused by the interactions of PGPR with 
the resident microbiome (Hellequin et  al. 2019) and 
root exudates (Grover et al. 2021). This, in turn, can 
lead to high relative abundances of copiotrophic taxa 
in the soil, as the main decomposers of soil organic 
matter, and consequently, can maximize the microbial 
carbon use efficiency (Yaghoubi et al. 2019a, 2020). 
In addition to released metabolites, endophytes have 
also been found in the rhizosphere of rice (Hardoim 
et al. 2012) and maize (Johnston-Monje and Raizada 
2011) under field and pot experiments, indicating the 
colonization of specific functional endophytes (e.g., 
Burkholderia gladioli) in the rhizosphere under stress 
(e.g., nutrient deficiency) (Shao et al. 2021). Figure 1 
provides an overview of the interactions between 
PGPR and root exudates.

Which area experiences more changes, endosphere or 
rhizosphere?

Research on biostimulation of wheat plants with 
beneficial bacteria has shown that structural modi-
fications in bacterial communities are more pro-
nounced in the endosphere than in the rhizosphere. 
This suggests that the endosphere is more influ-
enced by biofertilization (Yaghoubi et  al. 2021). 
It has been speculated that rhizosphere bacterial 
communities are less susceptible to perturbations 
induced by non-indigenous microorganisms. This 
is because they are exposed to soil fluctuations and 
diverse environmental conditions, and consequently 
may have acquired innate abilities to maintain their 
microbiome composition against changes in the sur-
rounding environment. This resilience is likely to be 
greater than that of endophytes (Björklöf et al. 2003; 
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Orozco-Mosqueda et  al. 2020; Lopes et  al. 2021; 
Yaghoubi et al. 2021). Although the modifications in 
soil properties (e.g. soil pH, porosity, water holding 
capacity, etc.) are mediated by beneficial microbes 
(Moore et  al. 2022), the efficiency and customiza-
tion of microbiome engineering are primarily affected 
by soil and environmental conditions, as well as by 
plant species, genotype, growth stage, and growth 
conditions (Arif et  al. 2020). Accordingly, a previ-
ous field experiment has shown that changes in the 
rhizosphere microbiome are deeply associated with 
the plant nitrogen uptake (Bell et al. 2015), with the 
latter serving as a tool to modify the composition and 
function of the rhizosphere microbiome and improve 
the plant fitness. While previous studies have dem-
onstrated that higher levels of readily metabolizable 
root exudates result in greater changes and diversity 
in the rhizosphere bacterial communities compared to 
those in the bulk soils (Castro-Sowinski et al. 2007), 
it is noteworthy that rhizobacterial communities 
exhibit a lower responsiveness to change compared 
to those residing in the endosphere. It can be con-
cluded that major changes in bacterial communities 
in response to the PGPR inoculation are in the order 
of endosphere > rhizosphere > bulk soil. A possible 
explanation can be related to the limited niche over-
lap between PGPR and resident bacteria in the soil as 
compared to the endosphere, where spatial partition-
ing and nutrient versatility are definitely important 

factors contributing to this specified overlap, even if 
the resident bacteria and the applied PGPR are phylo-
genetically close (Castro-Sowinski et al. 2007). Plant 
endophytic colonization is limited to specific bacte-
rial species, and even a minor change in the rhizos-
phere bacterial community can significantly shift the 
endosphere microbiome, with general perspectives 
stating that the soil-root interface acts as a selective 
barrier to assemble the endosphere community com-
position (Zhang et  al. 2020). Furthermore, stronger 
changes in endosphere microbial communities may 
reveal a major plant-mediated strategy: plant phe-
notypic and genotypic responses to PGPR provide a 
modified habitat via regulated root architecture under 
field conditions (Chen et al. 2019).

Survival of PGPR and the durability of their effects 
in the environment

Regardless of the mechanisms involved in shifting 
the soil microbiome, it remains unclear whether the 
impact of PGPR inoculants are long-lasting or rap-
idly disappearing (Mawarda et  al. 2020). However, 
understanding such tripartite PGPR-plant-rhizosphere 
interactions and their effects over time on PGPR sur-
vival may be beneficial as knowledge becomes avail-
able. For example, a field experiment by Yin et  al. 
(2013) and a pot study by Wang et al. (2018) reported 
resilience of several months after inoculation. In a 

Fig. 1  Scheme of the 
interactions between PGPR 
and root exudates, signals 
that reactivate and recruit 
beneficial microbes in the 
rhizosphere and endosphere
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field trial, Johansen and Olsson (2005) found that the 
effect of Pseudomonas fluorescens inoculation on the 
structure of the resident microbiome lasted up to six 
days after inoculation. Similarly, inoculation of soils 
with Escherichia coli in a laboratory-scale experiment 
showed the persistence of bacteria in soil for less than 
28 days (Mallon et al. 2018). The period of persistence 
of PGPR in the soil has been related to the ability of 
these beneficial bacteria in niche construction, such as 
the efficiency of root colonization or biofilm forma-
tion, as well as sporulation ability under abiotic stress 
(Moore et al. 2022). Interestingly, it has been proved 
that even if the survival rate of PGPR in soil and re-
colonization efficiency inside plant tissue is limited, 
the bacterial community structures in the rhizosphere 
and endosphere will gradually be influenced by PGPR 
inoculation (Yaghoubi et al. 2021). A possible expla-
nation could be that diverse bacterial taxa engage in 
symbiotic interactions (Faust and Raes 2012), mainly 
in competition with others for resources (Gralka et al. 
2020) and by targeting the inoculant necromass as a 
nutrient source (Płociniczak et al. 2020). The evidence 
for such mechanisms could be the higher abundance 
of some specific taxa in microbial communities, espe-
cially those bacterial genera belonging to Arthrobac-
ter, Actinoplanes, and Pseudomonas. These genera are 
known for their nutritional versatility, using a variety 
of substrates (e.g. as nucleic acids) for their oxidative 
metabolism (Comi and Cantoni 2011; Płociniczak 
et al. 2020; Yaghoubi et al. 2021). Furthermore, roots 
are able to use associated microbes as a source of 
nutritive compounds, especially organic phosphorus 
in the form of bacterial DNA (Paungfoo-Lonhienne 
et  al. 2010) and leave an indirect impact on associ-
ated microbial communities. However, it is not clear 
whether plants prefer specific microbes as nutrient 
sources (Arif et al. 2020).

Despite the short survival/durability of PGPR in 
soil, the improvement of plant growth and production 
by PGPR-treatment supports the idea that there are 
two diverse possible mechanisms induced by PGPR, 
including the high-density cell-dependent type and 
the regulation of microbial community-dependent 
type (Kang et  al. 2013; Yaghoubi et  al. 2021). The 
first strategy is a well-known classical standpoint 
concerning the necessity of establishing and support-
ing a necessary population density of PGPR in the 
soil to maintain their effectiveness in stimulating the 
plant at a satisfactory level (Kang et  al. 2013). The 

second strategy is the regulation of soil microbial 
community structures, which may result from com-
petition for space, resources, and other biotic and 
abiotic limiting factors (Georgiou et al. 2017).

Despite the aforementioned information, there 
is currently no reliable evidence to speculate that 
the legacy effects of PGPR on the host plants and 
agro-ecosystems can be manifested in the neighbor-
ing ecosystems. Moore et al. (2022) suggested that 
the horizontal transfer of PGPR genes to resident 
taxa, together with changes and temporal dynam-
ics of resident microbiomes, can significantly affect 
resident functional groups and biotic and abiotic 
interaction networks, even in herbivore and polli-
nator communities. For instance, PGPR have been 
shown to enhance the release of volatile organic 
compounds (VOC), and to improve the quality and 
quantity of nectar and pollen (Moore et  al. 2022). 
Additionally, PGPR have been observed to extend 
the length of the growing season of crops (Panke-
Buisse et  al. 2015). These benefits can be the rea-
sons to attract pollinators (Liu and Brettell et  al. 
2019) and bird populations that feed on pollinator 
insects and crop seeds/fruits (Moore et  al. 2022). 
Indeed, it has been proved that the low molecular 
weight (< 300 Dalton), high vapor pressure, and 
low boiling point allow some VOCs synthesized 
by PGPR to volatilize and act as signaling mol-
ecules over short and long distances (Santoro et al. 
2015; Fincheira and Quiroz 2018), thus interact-
ing with plants and other living (micro) organisms 
in the environment (Tahir et  al. 2017). Moreover, 
Mohanty et al. (2021) reported a decline in herbivo-
rous activity by invertebrates in response to VOCs 
released by PGPR, which could be correlated with 
greater activation of the jasmonic acid immune 
signaling pathway in PGPR-treated plants, confirm-
ing the induced systemic plant defenses against her-
bivores (Hol et al. 2013).

Heritability to the next generation of plants

Microbiome transmission pathways to the progeny of 
plants

Since the microbial element of the mother plants can 
be inherited by the next generation of plants through 
the healthful seeds, the interactions between PGPR 
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and plant (seed) microbiome can be critical to affect 
the seed germination process as well as plant produc-
tion and survival, especially in the field-grown plants 
under biotic and abiotic stress (Mitter et  al. 2017; 
Arif et al. 2020). The seed microbiome, as the initial 
inoculum for the plant microbiome, guides the plant 
to establish resistance to stress and can be a powerful 
biomarker for breeding and microbiome engineering 
approaches (Rybakova et al. 2017). Despite this, little 
progress has been made to clarify whether the bacte-
ria that colonize the PGPR-treated (inoculated) seed 
during its development are those that will be estab-
lished in the next generation of plants. Therefore, it 
seems necessary to provide additional information on 
the effects of the seed microbiome on seedling emer-
gence and plant tolerance in order to develop micro-
bial-based solutions for improving seed vigor and 
plant tolerance to stress. The following basic ques-
tions are raised here, especially in relation to stressed 
plants: will the plant (seed) microbiome of the next 
generation be acquired by horizontal transfer from the 
surrounding habitat and/or by vertical transfer from 
the PGPR-treated parent? Will the stress conditions 
alter the microbial communities in the plants, result-
ing in altered microbiome structure of the next gen-
eration of plants? If so, will this enhance the ability of 
the next generation to respond to stress with greater 
resilience? Will exposure to stress in one generation 
adversely affect subsequent generations of the plant if 
not exposed to the same stress?

Until recently, three major pathways of micro-
biome transfer to the next generation of plants have 
been suggested, the first being the internal pathway 
through the xylem or non-vascular tissue of the parent 
plant, as a means of vertical transmission. The second 
pathway is known as the floral pathway through the 
stigma of the parent plant, which can be both horizon-
tal and vertical transmissions depending on the selec-
tion exerted by the plant. The third one is the external 
pathway through seed inoculation/contamination with 
microbial inoculum, which is associated with hori-
zontal transmission (Maude 1996; Shade et al. 2017). 
Verifying the effect of PGPR on the mode of micro-
biome transmission to the progeny plants and defin-
ing the transmission rates is technically problem-
atic because many taxa of the progeny microbiome 
overlap with those in the rhizosphere, endosphere, 
and bulk soil (Hardoim et  al. 2015; Muller et  al. 
2016). Investigating the plant microbiota through the 

application of green fluorescent protein (GFP) label-
ling offers a promising avenue for elucidating the 
vertical transmission of microbiomes across succes-
sive plant generations (Ma et al. 2011). However, this 
method has important limitations, such as the need 
for genetic manipulation of microbial strains and the 
inaccessibility of tools for yet uncultivable and non-
model microbes (Shade et al. 2017).

Ecological effects of PGPR on the progeny of plants

While there is no reliable evidence confirming the 
inheritance of the microbiome of PGPR-treated plants 
to the progeny, some beneficial effects of PGPR have 
been found in the next-generation plants, especially 
those grown under stress (Tiwari et  al. 2022a, b). 
To assess the potential of PGPR-mediated intergen-
erational defense, Devi et al. (2023) found improved 
defense against a pathogen (Bipolaris sorokiniana) in 
the progeny of PGPR-treated wheat plants compared 
to the progeny of untreated plants. This confirms that 
the beneficial effects of PGPR are not restricted to the 
parent and can be inherited by subsequent genera-
tions. One possible explanation is that the customized 
seed microbiome establishes early contact with plant 
tissues, thus evading competition with pathogens and 
soil microorganisms (Mitter et  al. 2017). Another 
plausible explanation is that stressed plants redirect 
nutrient allocation toward healthier seed develop-
ment, rather than using it solely for growth and bio-
mass production, resulting in seeds with increased 
nutritional compounds and inherent resistance to 
adverse conditions (Tiwari et  al. 2022b). Moreover, 
the altered composition of the seed microbiome can 
also have a direct impact on seed features, affect-
ing the seed dormancy through cytokinin synthesis 
under field conditions, and promoting a homogene-
ous germination rate in progeny (Goggin et al. 2015). 
The ability to influence seed dormancy is significant, 
because the dormant state can reduce the impact of 
the seed-associated microbiome on the assembly of 
the progeny microbiome (Lennon and Jones 2011). In 
fact, the beneficial microorganisms in seeds may not 
be able to survive for extended periods with limited 
resources (including water) and space prior to seed 
germination, which can prevent benefits to the next 
generation (Shade et al. 2017).

It cannot be overlooked that the parental habitat 
under diverse environmental conditions plays a role in 
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inducing transgenerational plasticity (Yakovlev et al. 
2012) and may be helpful for the seedlings of progeny 
to pre-adapt to various stressors when exposed to the 
same environmental conditions (Galloway and Etter-
son 2007). Regardless of changes in the microbiome, 
recent studies have discussed the concept of inter-
generational transmission of stress tolerance ability 
in PGPR-treated plants. These studies have reported 
the formation of immunological memories in stressed 
plants that can provide an individual gene pool with 
long-term persistence in subsequent plant genera-
tions. Such a gene pool can stimulate faster practical 
responses to upcoming challenges (Mauch-Mani et al. 
2017; Tiwari et al. 2022a). This plant adaptation strat-
egy can also be independent of any DNA sequence 
alterations, known as a maternal effect or epigenetic 
effect, by forming transcriptional memory and inher-
itable changes in the phenotype of stressed plants 
(Tiwari et al. 2022b).

Although there are some doubts about whether 
the progenies will be fully protected from stress, at 
least not to the same extent as the parents, epigenetic 
manipulation has been much scrutinized as an excel-
lent evolutionary strategy in plants. This evolutionary 
approach enables the restoration of stress tolerance, 
potentially reducing reliance on agrochemicals, with-
out altering the genetic makeup of the plants (Mauch-
Mani et  al. 2017; Tiwari et  al. 2022b). All noted 
modifications in the mother plant phenotype, nutri-
ent composition, and seed microbiome can initiate a 
transgenerational establishment through epigenetic 
modifications such as DNA methylation, histone post-
translational transformations, histone variant creation, 
and chromatin structure remodeling (Shanker et  al. 
2020; Oberkofler et al. 2021). Such a creation of epi-
genetic marks in plants can be associated with post-
transcriptional gene-silencing processes in plant cells 
by small interfering RNAs, which in turn are linked 
to RNA-dependent DNA polymerases (Mauch-Mani 
et  al. 2017). This plant adaptation process has been 
reported in the progenies of parents exposed to abi-
otic (Shanker et al. 2020) and biotic stress (Kathiria 
et al. 2010). In addition to epigenetic events in plants, 
epigenetics can also occur in the microbiome, where 
DNA methylation in microorganisms not only pre-
serves their DNA from self-cleavage by activating 
certain enzymes, but also affects gene regulation 
and represents genetic variability (Gopal and Gupta 
2016). The findings in this field are subject to at least 

one limitation, as reported by Mauch-Mani et  al. 
(2017), which suggest that epigenetic modifications 
are naturally very rapidly reversible, and therefore 
transgenerational immunity may be extinguished after 
a few stress-free generations, mainly to terminate the 
unnecessary costs of adaptation.

Concluding remarks and future perspectives

This review attempts to provide a new insight into the 
ecological consequences of PGPR, mainly on the res-
ident microbiome and their possible heritability to the 
next generation of plants.

In this regard, PGPR can change the rhizosphere 
microbiome by outcompeting the existing taxa by 
consuming the resources, acidifying the environment, 
producing metabolites (e.g. siderophores and anti-
biotics) and organic compounds, and consequently 
increasing the copiotrophic taxa. The interaction 
effects of the PGPR-root system can adjust the com-
position of root exudates and influence the release 
of bioactive molecules and metabolites by the root, 
especially under stress conditions. These molecules 
can act as signals to attract/repulse the beneficial bac-
teria in the rhizosphere and endosphere in favor of the 
plants. It also appears that the most relevant shifts in 
bacterial community structures in response to PGPR 
treatments occur in the endosphere, followed by the 
rhizosphere, and bulk soil, respectively. Such changes 
in microbiome structure can occur gradually, even if 
the survival rate of PGPR in soil and re-colonization 
efficiency in plant tissues are limited. The discussed 
modifications in the rhizosphere and plant microbi-
ome can potentially boost the chances of survival of 
the progeny plants growing under the same stress con-
ditions. A better understanding of the diverse interac-
tions that occur at the systems level in the rhizosphere 
and endosphere, as a pool of plant-microbe signaling, 
can lead to biotechnological advances for potential 
applications of PGPR in sustainable agriculture under 
various environmental conditions.

Despite what has been discussed so far, more 
emphasis should be placed on employing emerging 
technologies to understand the persistence of applied 
PGPR over time, as well as their legacy effects on 
host plants and, at a larger scale, on agro-ecosystems 
and neighboring ecosystems. Thus, there is ample 
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room for further progress to guarantee the conjunc-
tion of the microbiome from parent to progeny. 
This can be achieved by targeting seed endophytes, 
root architecture, picking ‘microbe-friendly’ plants, 
and plant genome engineering to attract beneficial 
microorganisms.
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