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Abstract  29 

Autism spectrum disorder (ASD) is a broad and heterogeneous group of neurological 30 

developmental disorders characterized by impaired social interaction and communication, 31 

restricted and repetitive behavioural patterns and altered sensory processing. Currently, no 32 

reliable ASD molecular biomarkers are available. Since immune dysregulation has been 33 

supposed to be related with ASD onset and dyslipidaemia has been recognised as an early 34 

symptom of biological perturbation, lipid extracts from peripheral blood mononuclear cells 35 

(PBMC), consisting primarily of lymphocytes (T cells, B cells and NK cells) and monocytes, of 36 

38 children with ASD and their non-autistic siblings were investigated by hydrophilic 37 

interaction liquid chromatography (HILIC) coupled with electrospray ionization and Fourier-38 

transform mass spectrometry (ESI-FTMS). Performances of two freeware software for data 39 

extraction and processing were compared to acquire reliable data regardless the used 40 

informatics. A reduction of variables from 1460 by the untargeted XCMS to 324 by the semi-41 

untargeted Alex123 software was attained. All ion fragmentation (AIF) MS/MS scans along with 42 

Alex123 software were successfully applied to reveal the fatty acyl chains of 43 

glycerophospholipids occurring in PBMC. Principal component analysis (PCA) and partial least 44 

squares discriminant analysis (PLS-DA) were explored to verify the occurrence of significant 45 

differences in the lipid pool composition of ASD children compared with 36 healthy siblings. 46 

After rigorous statistical validation we conclude that phospholipids extracted from PBMC of 47 

children affected by ASD do not exhibit diagnostic biomarkers. Yet interindividual variability 48 

comes forth from this study as the dominant effect in keeping with the existing phenotypic 49 

and etiological heterogeneity among ASD individuals. 50 

51 
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1. INTRODUCTION 52 

The American Psychiatric Association in their 5th edition of “Diagnostic and Statistical Manual 53 

of Mental Disorders” (DSM-5) [1] defined that autism spectrum disorder (ASD) as a broad and 54 

heterogeneous group of neurological developmental disorders characterized by several 55 

primary symptoms across several areas, such as difficulty with social abilities, stereotypical 56 

repetitive behaviors and interests, flawed language and conversation. Incidence rates of ASD 57 

are argued and dependent on diagnostic criteria. The Centers for Disease Control and 58 

Prevention has evaluated that the overall prevalence of ASD in children aged 8 years in the 59 

USA equaled 1 out of 68 children [2]. Despite thorough neurological, genetic and biochemical 60 

studies, the ASD aetiology is still largely mysterious. To add further complexity, environmental 61 

factors are also likely involved. 62 

Due to lack of information regarding molecular mechanisms of the disorder, specific 63 

treatment and reliable diagnostic biomarkers are not available. Hence, diagnosis is currently 64 

made based on information gathered through children’s interviews performed by specialized 65 

physicians and psychologists in which behaviour impairments are assessed along with 66 

psychiatric and developmental disorders [1]. DSM-5 diagnostic criteria include three 67 

functional raising levels defined on the base of needed support that a subject requires to 68 

relationship in the general community. At least 24 – 36 months of age are needed to diagnose 69 

ASD in children [3]. Clinically, individuals with ASD can differ substantially from each other in 70 

terms of the quality and severity of core symptoms, level of intellectual ability, co-occurring 71 

psychiatric symptoms, and developmental trajectories. Multiple neurocognitive and 72 

neurobiological abnormalities have been reported, but none seem to be shared by all 73 

individuals with ASD [4]. Yet, since the effect of early behavioral intervention is significant, the 74 

identification of diagnostic markers has gained considerable attention also due to the 75 
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increasing prevalence of ASD [5]. Interestingly, several lines of evidence indicate that diverse 76 

genetic as well as environmental risk factors may converge on a smaller number of interacting 77 

molecular pathways, including (Ca2+) homeostasis [6,7], mitochondrial function [8,9] and 78 

immune response [10,11], which in turn impact brain circuit development and function [12]. 79 

Growing attention is being paid to immune dysregulation that may lead to impairments 80 

in neurodevelopment as numerous findings of altered immune system function in ASD 81 

children have been described [13]. An extensive search has shown that a subgroup of 82 

individuals with ASD show immune dysregulation that may represent a comorbidity of ASD or 83 

it may play a straight role in the development of ASD via impairment of neurodevelopmental 84 

processes. Nonetheless, results of these studies appear confusing due to design issues or small 85 

sample sizes [14]. Starting in 1986, numerous investigations on immune cells from peripheral 86 

blood of ASD children have been carried out [15] and recently reviewed [13], demonstrating 87 

imbalanced ratios of helper/suppressor cell and abnormalities in the number of total 88 

lymphocytes. Human peripheral blood mononuclear cells (PBMC), consisting primarily of 89 

lymphocytes (T cells, B cells and NK cells) and monocytes, are extensively used for research of 90 

immune cell functions, identification of biomarkers and development of diagnostics and 91 

therapeutics for human diseases. Alterations of mRNA expressions in PBMC obtained from 92 

ASD subjects have been shown [16]. Furthermore, in a preliminary case-control study, 93 

proteomics has recently led to the identification of 41 differentially expressed proteins in ASD 94 

children as potential biomarkers for early diagnosis [17]. 95 

In the present work, the contents of phospholipids extracted from PBMC of ASD 96 

children and their healthy siblings were evaluated to identify putative biomarkers through a 97 

metabolomic approach based on liquid chromatography with electrospray ionization coupled 98 

with Fourier-transform mass spectrometry (LC-ESI-FTMS). Hydrophilic interaction liquid 99 
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chromatography (HILIC) was employed due to its good ability to separate complex 100 

phospholipid mixtures on the basis of their polar head [18,19]; by this approach lipid species 101 

from different classes with the same nominal mass, almost co-eluent in reverse phase 102 

chromatography (RPC) due to their side chains structural similarity, can be separated and 103 

without ambiguity identified by MS. Untargeted LC-ESI-FTMS-based metabolomics generates 104 

huge amounts of data and their processing is challenging [20]. Here, two well-known freely 105 

available software packages often used for untargeted and semi-untargeted analysis, XCMS 106 

[21] and Alex123 [22,23], respectively, were evaluated and used to obtain data matrix. To 107 

ensure reliable results, quality control (QC) samples along with randomization of data 108 

extraction and analysis was applied. These lipidomics data were examined by principal 109 

component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA). 110 

 111 

2. MATERIALS AND METHODS 112 

2.1 Chemicals. LC–MS grade water, acetonitrile (ACN), methanol (MeOH) and HPLC grade 113 

chloroform, formic acid, and ammonium acetate were obtained from Sigma-Aldrich (Milan, 114 

Italy). Standard solutions for negative calibrations were purchased from Thermo Scientific 115 

(Waltham, MA, USA). 116 

 117 

2.2 Lipid nomenclature. Lipids were named according to the comprehensive classification 118 

system for lipids [24,25], e.g. 1-tetradecanoyl-2-hexadecanoyl-sn-glycerophosphocholine is 119 

designated PC (14:0/16:0). When fatty acid chain composition could not be determined, the 120 

total number of carbons and double bonds of all fatty acyl chains are given, e.g. PC (30:0). 121 

 122 

2.3 PBMC Samples. Lipidomic analyses have been performed on PBMC samples obtained 123 
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from 38 patients affected by ASD with a disease severity degree from 1 to 3 according to DSM-124 

5 and from their unaffected brothers or sisters; autistic children did not carry out any 125 

pharmacological treatment. The use of PBMC isolated from fresh whole blood in this study 126 

was approved by the Local Committee at the Azienda Ospedaliera Universitaria (Bari, IT) 127 

(n.164, November 11, 2016). Parents and participants provided written informed consent and 128 

all experiments were performed in agreement with guidelines and regulations. About 10 mL 129 

of blood have been treated on a Ficol gradient to separate blood mononucleates (lymphocytes 130 

and monocytes predominantly) from plasma; obtained samples were stored at −80 °C un�l 131 

sample preparation for metabolomics analysis. Data concerning all donors under investigation 132 

are summarized in Table 1. 133 

 134 

2.4 Sample Preparation. Lipids were extracted from PBMC following the Bligh & Dyer 135 

protocol [26]. Briefly, approximately 2 × 106 lymphocyte cells were dissolved in 400 µL of LC-136 

MS grade water and 1.5 mL of methanol/chloroform (2:1, v/v) added to the solution and left 137 

for 1 h at room temperature. Then, 0.5 mL of chloroform was added, and the mixture was 138 

vortexed for 30 s. Finally, 0.5 mL of water was added, and the solution was shaken before 139 

being centrifuged for 10 min at 3000 xg. The lower phase containing lipids was dried under 140 

nitrogen; the residue was dissolved in 100 L of methanol and then analysed by LC–MS in two 141 

different analytical batches. 142 

 143 

2.5 Instrumentation and operating conditions. Quality control (QC) samples were 144 

prepared for each batch following protocols in [27] by pooling equal volumes of reconstituted 145 

samples and divided them in three aliquots. Samples were transferred into 2 mL glass vials 146 
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containing 100 μL glass inserts with polymer feet (Supelco). Vials were covered with preslit 147 

polytetrafluoroethylene (PTFE)/silicone screw caps.  148 

Samples were analysed in a randomized fashion by using an Ultimate 3000 UHPLC 149 

system (Thermo Scientific, Waltham, MA, USA) coupled to a Q-Exactive mass spectrometer 150 

(Thermo Scientific, Waltham, MA, USA), including a quadrupole connected to an Orbitrap 151 

analyser. The column effluent was transferred into the Q-Exactive spectrometer through a 152 

heated electrospray ionization (HESI) interface. The main electrospray and ion optics 153 

parameters were the following: sheath gas flow rate, 35 arbitrary units (a.u.); auxiliary gas 154 

flow rate, 15 a.u.; spray voltage, ±3.5 kV (positive/negative polarity); capillary temperature, 155 

320◦C; S-Lens RF Level, 100 a.u. MS spectra were acquired in the m/z range 200–2000, at a 156 

mass resolving power of 140000 (measured at m/z 200). The Orbitrap fill-time was set to 200 157 

ms and the automatic gain control (AGC) level was set to 2.5 × 106.  158 

To retrieve information on the separated phospholipids (PL), additional AIF-MS2 159 

acquisitions were performed during each chromatographic run using a resolving power of 160 

70,000 (at m/z 200), an Orbitrap fill-time of 100 ms and an AGC value of 5 × 105. All ions 161 

fragmentation (AIF) with multiple dissociation techniques, i.e. in source collision induced 162 

dissociation (sid) and HCD, providing MS and MS/MS data were also employed to increase the 163 

amount of retrievable information. AIF spectra were acquired using an NCE value of 35% and 164 

the same resolving power, trap-fill time and AGC value adopted for MS acquisitions. The mass 165 

accuracy, after calibration using a solution containing caffeine, the MRFA peptide and 166 

Ultramark, provided by Thermo Scientific, ranged between 0.43 and 0.49 ppm in negative 167 

polarity. 168 

Silica phase Ascentis Express HILIC column (150 × 2.1 mm id, 2.7 µm particle size) 169 

equipped with an Ascentis Express HILIC (5 × 2.1 mm id) security guard cartridge (Supelco, 170 
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Bellefonte, PA, USA) operating at a flow rate of 0.3 mL/min was used to perform 171 

chromatographic separations; sample injection (5 µL) was performed by a RS Autosampler 172 

(Thermo Scientific, Waltham, MA, USA). The following binary elution program, based on water 173 

and 2.5 mmol/L ammonium acetate (solvent A) and ACN (solvent B), both containing 0.1% 174 

(v/v) of formic acid, was adopted: 0–5 min, linear gradient from 97 to 88% solvent B; 5–10 175 

min, isocratic at 88% solvent B; 10–11 min, linear gradient from 88 to 81% solvent B; 11–20 176 

min, linear gradient from 81 to 70% solvent B; 20–22 min, linear gradient from 70 to 50% 177 

solvent B; 22–28 isocratic at 50% solvent B; 28–30 min, return to the initial composition, 178 

followed by a 5 min equilibration time.  179 

Following 3 blank injections (solvent blanks), 5 QC sample injections were carried out 180 

at the beginning of each batch for column conditioning and every five samples throughout the 181 

analytical run to assess analytical reproducibility; two QC injections were performed at the 182 

end of the experiment to eliminate the impact on signal correction if one sample-injection or 183 

instrument failure accidently occurs; the absence of a QC sample at the end of the experiment 184 

significantly impacts on the QC-RLSC algorithm applied [27,28]. The analysis order is described 185 

in Table S1. LC–MS instrumentation control and first processing of data were performed by 186 

the Xcalibur software 2.2 SP1.48 (Thermo Scientific). 187 

 188 

2.6 Data processing. Raw files were converted to mzXML format with MSconvert (a tool 189 

provided by ProteoWizard: http://proteowizard.sourceforge.net/tools.shtml). Two software 190 

packages, XCMS and Alex123, were used to obtain the data matrix containing the list of all 191 

detected features, including information such as accurate measured masses and areas of 192 

chromatographic peaks. The list of the parameters used for XCMS software is available as 193 

Supplementary Material (see Table S2); full-MS and AIF-MS/MS spectra over each HILIC 194 
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chromatographic band were manually averaged and resulting txt files were used as input for 195 

Alex123; only attributions with accuracy lower than 5 ppm and intensities higher than 5000 196 

counts were further analysed. 197 

 198 

3. RESULTS AND DISCUSSION 199 

3.1. Data processing of XCMS results.  200 

Hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution Fourier-201 

transform mass spectrometry (FTMS) is recognized as a powerful platform for lipid 202 

identification [29,30]. HILIC separations, wherein lipid elution order is decreed by the nature 203 

of the polar head, coupled with fast and sensitive MS detection systems enable quantitative 204 

measurements of hundreds of lipid species even within complex clinical specimens, such as 205 

human blood plasma [31] or cells [32,33]. In this study high-resolution, accurate-mass 206 

(HR/AM) ESI-Orbitrap MS analysis performed in negative-ion mode by source-induced 207 

dissociation (sid) was employed to investigate lipid extracts from lymphocytes samples. The 208 

resulting data were subsequently processed by two freely available software tools, XCMS and 209 

Alex123 for peak detection and integration. Both these software packages generated 2D data 210 

matrices, including variable indices, sample names and peak areas. Figure 1 shows the 211 

adopted strategy of lipidextraction, acquisition, data extraction, pre-processing and 212 

chemometrics analysis combined into a single data analysis workflow. XCMS Online [21,34] is 213 

a well-known LC-MS data analysis freely available platform, developed by the Scripps Center 214 

for untargeted metabolomics data (www.xcmsonline.xcripps.edu). This software incorporates 215 

nonlinear retention time alignment, matched filtration, peak detection and peak matching; no 216 

preliminary information on the investigated analytes are required and, since a completely 217 

untargeted approach is used, the risk of introduction of artefacts is very low. However, the 218 
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outcome of data processing strongly depends on setting parameters, such as tolerated m/z 219 

deviation in consecutive scans and maximum or minimum chromatographic peak width; if 220 

those factors are not carefully chosen, biased results may be expected. The software package 221 

called Isotopologue Parameter Optimization (IPO) [35] optimizes XCMS peak picking 222 

parameters by using natural, stable 13C isotopic peaks to calculate a peak picking score [36]. 223 

Retention time correction was optimized by minimizing relative retention time differences 224 

within peak groups, while grouping ones were optimized by maximizing the number of peak 225 

groups that show one peak from each injection of a pooled sample. The different parameter 226 

settings were achieved by design of experiments and the resulting scores were evaluated 227 

using response surface models. So, IPO was applied to QC samples and results were 228 

implemented in XCMS to increase the reliability of metabolomics data (see Table S1). 229 

Figure 2 shows the superimposition of all the total ion current (TIC) chromatographic 230 

profiles along with retention time deviation between runs obtained after the XCMS alignment 231 

procedure. HILIC-ESI-FTMS was applied for the lipid separation of 38 samples of autism 232 

spectrum disorder affected children, 36 control samples (unaffected siblings of studied 233 

subjects) and 21 pooled quality control samples (QC). CAMERA (Collection of Algorithms for 234 

MEtabolite pRofile Annotation) software package was employed to interpret and evaluate LC-235 

MS data, including algorithms for annotation of isotope peaks and adducts [37] in order to 236 

obtain a data matrix of 95 samples x 2821 variables; only M+1 and M+3 isotopologue peaks 237 

were removed, because of the well-known problem of overlapping between the third 238 

isotopologue of a species with X carbon atoms and Y unsaturations and the first isotopologue 239 

peak of the species having X carbon atoms and Y-1 unsaturations [38]. Critical issues faced 240 

over time while performing metabolome profiling analysis [27,39–41] are related to 241 

instrumental sensitivity changes along with degradation of sample extracts, ion source 242 
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contamination and retention-time shifts. To this aim, quality control (QC) samples, obtained 243 

by pooling together small aliquots of each biological sample, were run every five biological 244 

samples to monitor signal intensity drift over the analysis time (in this study there was very 245 

little drift as discussed below) and to allow its correction considering that the relative standard 246 

deviation (RSD) of each variable was generally set to a maximum of 20% [40]. Upon removal 247 

of (i) signal intensity with RSD >20% in QC, (ii) peak signals with m/z lower than 400 and (iii) 248 

M+1 and M+3 isotopologues, the number of features decreased to 1460. Considering the 249 

significant amount of lipid species in a biological sample and the possibility of many potential 250 

adducts for each one (i.e. principally deprotonate, demethylate, formate, acetate or 251 

chlorinate adducts) along with the plausible presence of species not related to lipids (i.e. 252 

contaminants, but also different metabolites that could be extracted using Bligh & Dyer 253 

protocol) this number is not surprising. As described by Dunn et al. [27], to compensate 254 

difference in extraction yields, QC correction and normalization to the sum of all the signals 255 

found in the spectra were performed and multivariate analysis was applied to obtained data 256 

matrix. Since pre-treatment methods represent a crucial step to revealing hidden information 257 

in metabolomic analysis [42], four different data transformation were examined. As can be 258 

seen in Figure 3, QC samples (red circles) were always well clustered in the PCA score plots 259 

showing excellent analytical repeatability. This was irrespective of the data pre-processing 260 

used: viz., mean centering (plot A), autoscaling (plot B), level scaling (plot C) and log10-261 

transformation (plot D), even reporting in the score plot principal components (PCs) of major 262 

order (data not shown). In the PCA plots samples belonging to different classes (i.e. healthy vs 263 

ASD children) were labelled by different colours and symbols: blue diamonds for patients and 264 

green squares for healthy siblings. Despite diverse pre-processing methods such as 265 

autoscaling of data, needed to ensure that less abundant but, perhaps, important lipid species 266 
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contribute to a separation of data, no clear trends or clustering were observed: in all graphs, 267 

ASD patient samples are spread in the whole principal component space even taking into 268 

account subsequent PCs or different pre-treatment data. Although some ASD children (i.e., PT 269 

6, 7, 8, 9, 27, 28 and 32) appear to be more separated from control group for example in score 270 

plot of Figure 3 A, it does not seem to be a consistent reason linking their disease, and so we 271 

do not design this significant. Notably, they have not so much in common because ASD’s 272 

severity, ranging from 1 to 3, age between 3 to 17, gender and cognitive delay are different 273 

(see Table 1). Thus, PCA score plots reporting sex and age do not bring to a clustering according 274 

to gender, and cluster or trends are not observed in age (Figure S1). Absence of obvious 275 

groups or clusters was also obtained when the plots were labelled according to ASD degree 276 

and cognitive delay (Figure S2).  277 

Subject group 42 is a triad composed by three siblings: one healthy 9-year-old boy, his 278 

ASD affected sister, with the maximum ASD severity, and her monozygotic twin sister, both 8 279 

years old. As the concordance rate in monozygotic twins is estimated to be approximately 90% 280 

[43], this combination is really interesting because it represents an example of two 281 

monozygotic twins where just one of them is affected by ASD. Regardless of differences in sex, 282 

age (only 1 year difference between siblings) and ASD severity, these three siblings (see Figure 283 

3, plots A-D) are not very close each other in the score plot: monozygotic twins, even having 284 

a most common genome and sharing age and gender, are not close in the space of variables, 285 

thus confirming the system complexity.  286 

Afterward, we attempted to generate ASD predictive models by applying partial least 287 

squares-discriminant analysis (PLS-DA) on XCMS data (Figure 4). The following plots were 288 

generated, centered (A), autoscaled (B), level scaled (C) and log10-transformed (D) also using 289 

the ASD status (yes or not) as the target variable: ASD was encoded in the Y-variable as ‘1’ and 290 
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absence of ASD as ‘0’. To test the validity of any modelling, 1000 bootstraps with replacement 291 

were performed and all assessments were made on the 1000 test sets (i.e., not the data used 292 

to construct the models). We also used permutation testing where the Y-variable was 293 

scrambled to generate 1000 null distributions, again for the test sets. As can be seen in Figure 294 

4, there was a large overlap of distributions and absence of statistically significant separation 295 

among all plots. According to the resulting confusion matrix (Table 2), the PLS-DA model 296 

showed predictions close to 0.5 and large p-values, again confirming the lack of discriminatory 297 

power in these PLS-DA models. In Figure S3 PLS-DA score plots are also displayed, together 298 

with Q2 and R2 metrics to outline that their use for inference of class differences often provides 299 

an over-optimistic understanding of the separation between classes [44]; although in this case 300 

the Q2 values are all insignificant. At first glance, it appears that a class separation was 301 

obtained, yet the metrics proved that the expected results were not achieved as already 302 

demonstrated by the distribution overlap of Figure 4. In addition, other variables were 303 

examined for discriminant analysis (i.e. histological types, cognitive delay, gender and age), 304 

using the above-mentioned transformation data. Modelling of the four histological types 305 

(healthy, n° 35; ASD severity 1, n° 13; ASD severity 2, n° 14; ASD severity 3, n° 6; Figure S4 plot 306 

A in Supplementary Material) also produced no discrimination power between the several 307 

examined pairs, since less than 2% of the data were correctly assigned for the highest ASD 308 

degree of severity while the major part of them appeared as belonging to control group. Next, 309 

we used the cognitive delay status to try to discrimination between ASD affected children with 310 

or without pathology (i.e., 13 cognitive delayed ASD affected children vs 23 ASD affected 311 

children without cognitive delay). Yet, no significant discriminant power was statistically 312 

obtained. The whole data set was later modelled by PLS-DA taking the gender as classifier to 313 

understand the importance of this variable. Note that a significant limitation is present in the 314 
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data set since there was a skew in the patient group with less than the 25% of female subjects 315 

and, among them, only five ASD children. The present results demonstrate that the metabolic 316 

differences between two genders were not significant (see level scaled data of Figure S4C). 317 

Being present a large difference in the age of investigated subjects, they were grouped in three 318 

ranges: A) 3-6, B) 7-12, C) 13-17. Apparently, PLS-DA models showed better predictive power, 319 

however it was still clearly not enough to discriminate among lipidomics data (see PLS-DA on 320 

log10-scaled data of Figure S4 D). Once again, age was not a dominating variability source in 321 

our data set; the lipidic profile of PBMC is seemingly less important than other uncontrolled 322 

sources of variation.  323 

 324 

3.2. Data processing of Alex123 results.  325 

It is possible that if only a few lipid classes are involved in disease the presence of 326 

uninformative variables results in increased noise and discrimination power is lost: for 327 

example, alterations only in amino-glycerophospholipids levels (e.g., 328 

phosphatidylethanolamine, PE and phosphatidylserine, PS) of children with autism have been 329 

reported in plasma samples [45]. Although XCMS shows great advantages for obtaining rapid 330 

elaborate data, the same is not true when there is the need to dismiss certain lipid classes. In 331 

addition, another issue with the XCMS workflow is that it is likely to embrace non-lipid related 332 

species, and these may also add noise into raw data.  333 

Alex123 [22,23] is a powerful and reliable high-throughput tool (freely available at 334 

www.mslipidomics.info) for semi-untargeted analysis of lipids that searches compounds in a 335 

customizable database containing, for each lipid: name, molecular formula and mass, 336 

indication of several adducts or modifications. A deep spectral examination is required to build 337 

up a comprehensive database in which retention time windows of lipid classes and most 338 
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common ions for a certain lipid generated in the described experimental conditions must be 339 

known. Specific and class-related product ions can be promptly retrieved by using the all ion 340 

fragmentation (AIF) MS/MS scan, a feature provided by the FTMS system, without the need 341 

of isolating and fragmenting definite precursor ions. By exploiting AIF MS/MS, it is possible to 342 

recover product ions related to the polar head of each PL generated at relatively high 343 

collisional energies in the HCD cell. In Figure S5 are compared XIC spectra and structures of 344 

(A) m/z 168.043 due to phosphatidylcholines (PC), lyso-PC (LPC) and sphingomyelin (SM), (B) 345 

m/z 224.069 associated with PC and LPC, and (C) m/z 196.038, due to PE and lyso-PE (LPE). 346 

From the information obtained by AIF spectra, elution windows of PC, LPC, SM, PE and LPE 347 

can be easily detected; ether phospholipids, lipids in which the sn-1 position of the glycerol 348 

backbone has a lipid attached by an ether bond, co-elute with the more common diacyl 349 

subclasses; plasmanyl-phospholipids (indicated using o-) have an ether bond in position sn-1 350 

to an alkyl chain, while plasmenyl-phospholipids (p-) have an ether bond in position sn-1 to an 351 

alkenyl moiety. A lipid species p-Z X:Y, where Z is the class name, X the carbon atoms and Y 352 

the degree of unsaturations in the side chains, respectively, is isobaric to a o-Z X:(Y-1) species; 353 

MS/MS analysis carried out in positive ion mode can be used to discriminate between these 354 

two species [46]. Note that in the first part of the work this information was not crucial and 355 

plasmanyl- and plasmenyl-phospholipids were indifferently indicated as –O and fully 356 

characterized later in the phospholipidomics of ASD disease.  357 

To create the Alex123 database, only unambiguous identifications were selected to 358 

obtain putatively annotated compounds on the basis of intra-laboratory class retention time 359 

and Orbitrap FTMS accurate mass [47]. For instance, source-induced dissociation (sid) 360 

enhances the generation of [M-CH3]− ions in PL bearing a choline moiety in the polar head, 361 

i.e., PC, LPC, and SM (M represents the zwitterionic form of these PL) that otherwise ionize 362 
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mainly as formate [M+HCOO]− adducts often confusingly with alternative isobaric species: 363 

e.g., the formate adduct of PC 36:2 is isobaric with the acetate adduct of PC 35:2. Therefore, 364 

after RSD criterion application, 324 variables were obtained (i.e., 17 Hex2Cer, 12 LPC, 4 LPC-O, 365 

20 LPE, 15 LPE-O, 39 PC, 23 PC-O, 49 PE, 40 PE-O, 27 PG, 18 PI, 33 PS and 27 SM). The score 366 

plot obtained by using all these variables and then a row normalization gave good clustering 367 

of QC in the middle of the PCA score plot, highlighting that the data processing did not 368 

introduce any artefacts into the data output and again confirmed the excellent analytical 369 

reproducibility of the used LC-ESI-FTMS approach. Despite some little differences (in Figure 5, 370 

plot A, biplot is reported), PCA showed that the centered data were rather like that obtained 371 

using XCMS for data matrix construction. Also using different pre-processing methods, the 372 

same groupings in PCA score plots were regularly obtained (data not shown). As already 373 

mentioned, one of the main advantages of Alex123 is the possibility to obtain data linked to 374 

lipid classes under examination. As an example, biplot obtained for LPE signals, normalized 375 

and auto scaled, exhibited a mixed distribution (Figure 5B). The examination of other lipid 376 

classes, also using different processing methods, did not lead to a well definite separation. 377 

Nonetheless, PLS-DA was applied on data elaborated by Alex123 using pathology as 378 

discriminant variable and different data pre-treatment. In Figure 6A and 6B, are displayed the 379 

PLS-DA performed on the whole data set and on SM class, respectively, either centered or 380 

autoscaled data; as reported for the data after deconvolution using XCMS, no significant 381 

discrimination power was again obtained. 382 

 383 

3.3. All ion fragmentation MS/MS scan as a tool in metabolomic analysis 384 

Recently we have described the possibility of using data generated after HILIC separation and 385 

AIF MS/MS scan to obtain a snapshot of the fatty acyl composition of some 386 
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glycerophospholipid classes [31]. Here, the same approach was applied, and data quality was 387 

assessed by using a metabolomic approach. Under the seven main chromatographic bands, 388 

i.e. PI (#1), PE & PEO (#2), LPE & LPE-O (#3), PS (#4), PC & PC-O (#5), SM (#6) and LPC & LPC-O 389 

(#7), AIF MS/MS spectra were integrated and data were evaluated by Alex123. Note that the 390 

AIF data integrated under the SM band cannot be included among suitable spectra because 391 

the instrumental variability was higher than biological one as demonstrated by QC samples 392 

not clustered in the middle of the score plot (see Figure S6). This result was somehow 393 

predictable since fragmentation of SM does not produce very intense fatty acyl signals [46]; 394 

so, AIF data related to FA of SM species were removed and not further analysed. Upon RSD 395 

criterion application and QC correction, up to 133 FA related signals were obtained, namely 396 

17 for band #1, 30 for band #2, 23 for band #3, 22 for band #4, 29 for band #5, 12 for band #7. 397 

Figure 5C shows a centered PCA plot of all the extracted FA data matrix. As can be seen, signals 398 

of fatty acyl substituents mainly bounded to PC and PE discriminate between studied subjects 399 

(i.e. mainly FA 16:0, 18:1 and 20:4 in PC, FA 20:4 in PE class, but also FA 18:0 in LPE and in PS), 400 

in accordance with relative intensities of the considered lipid classes. Notwithstanding no 401 

clustering related to ASD, gender or age was established. Interestingly, these preliminary 402 

findings showed for the first time the possibility to exploit AIF data collected by HILIC also for 403 

lipidomics purposes. HILIC-ESI(-)AIF MS/MS scan can be used to collect data under each 404 

chromatographic band, thus demonstrating subtle differences in the composition of acyl 405 

chains; Figure 5D shows the PCA score plot of FA signals under band #5. PLS-DA was applied 406 

using the whole data set (Figure 6C) or only FA signals obtained in AIF MS/MS scan under band 407 

#2 (Figure 6D) using different pre-treatment methods (for example, level scaling for data in 408 

Figure 6C and log10-transformation in Figure 6D) but no significant discrimination power was 409 

obtained. 410 
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 411 

3.4 Univariate test.  412 

To supplement the multivariate approaches discussed above and to try to overcome between-413 

subjects’ variability, paired-sample t-test and Wilcoxon signed rank test for zero median were 414 

explored as selected by Alex123, thus comparing the level of each variable between ASD 415 

children and their healthy sibling. It is worth mentioning that this is a pseudo-paired test as 416 

the pairs are not the same children after some perturbation but pairs of siblings: one with ASD 417 

and the other non-autistic. The level of significance was set initially at P < 0.05 and, to avoid 418 

multiple testing problems, false discovery rates (FDR) of multiple-hypothesis were tested 419 

applying the procedure described by Storey et al. [48]. Notably, different significant features 420 

were obtained, and box plots were constructed reporting lipid levels vs ASD severity degree; 421 

whether an ascending or descending trend was observed, the feature could be related to 422 

autism. Some variables seemed to follow a specific trend but the between-subject variability 423 

still remains the dominating effect; an example is given in Figure 7 where box-plots of PI 38:4 424 

(Alex123 assignment, m/z 885.550) and FA 20:4 under PI band (m/z 303.323) are illustrated. As 425 

can be seen, similar trends were obtained in both graphs as a confirmation of the utility of full 426 

and AIF scan comparison: in principle, AIF data can be used to understand which fatty acyl 427 

chains are involved in the aetiology of the considered pathology. MS/MS spectra confirmed 428 

the attribution to PI as two isobaric species, namely PI 18:0/20:4 and PI 16:0/22:4 (not shown). 429 

However, as already mentioned, interindividual variability seems to be the dominant 430 

outcome. In an attempt to minimize the environmental factors, the level of each considered 431 

lipid and the corresponding FA obtained through AIF MS/MS scan was plotted and compared 432 

among siblings; no presence of systematic trend was still evidenced. 433 

 434 
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Discussion 435 

Lipids represent a very broad group of molecules with a substantial structural diversity that is 436 

reflected in the variety and complexity of the physiological processes in which they are 437 

involved, from providing cell structure to energy storage for cell signalling [49–52]. Generally, 438 

any perturbation of a biological system is expected to alter the abundance and/or composition 439 

of the lipid pool of that system [53]. In the field of ASD biomarker discovery, very few studies 440 

have examined fatty acid metabolism with the underlying idea being that the abnormal 441 

membrane fatty acid composition is involved in neurodevelopmental and psychiatric 442 

disorders [54–57]. However, ambiguous or at least non-definitive results have been presented 443 

including higher levels of PUFA occurring in biological fluids of autistic subjects. Vancassel et 444 

al. [58] speculated that the total n-3 PUFA were significantly lower in the population of autistic 445 

patients compared to mentally retarded ones, yet arachidonic acid (AA, i.e. FA 20:4) and 446 

docosahexaenoic acid (DHA, i.e. FA 22:6) plasma levels were only moderately reduced. 447 

Likewise, Bell et al. [59,60] found significantly lower AA and n-6 PUFA levels in phospholipids 448 

of red blood cells (RBC) in the autistic test group compared to pair-matched developmentally 449 

delayed controls. Yet, these abnormalities were not replicated in the study of Bu et al. [61] as 450 

no strong evidences of PUFA differences between autistic individuals and age-matched 451 

controls were confirmed. Wiest and colleagues [54] found that within the phosphatidylcholine 452 

class, DHA was significantly lower in the autistic group than in the general population, while 453 

plasma AA levels in phospholipids were not significantly different between groups, although 454 

AA was found to be significantly lower in free fatty acids of ASD participants. An increase in 455 

most of the saturated fatty acids and a decrease in most of polyunsaturated fatty acids was 456 

reported in the plasma of a cohort of autistic patients from Saudi Arabia [62]. More recently, 457 

multivariate statistical analysis of the content of a dozen fatty acids, including AA and DHA, 458 
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suggested that unsaturated fatty acids in erythrocytes are not predictive of autism spectrum 459 

disorder [63]. A major limitation of these studies lies in the fact that fatty acid contents in 460 

plasma and to a lesser extent also in red blood cells are responsive to dietary habits [64]. 461 

Indeed, many children with ASD display restrictive food preference [64] and low intake of 462 

foods containing PUFA by individuals with ASD has been documented [65]. Most importantly, 463 

these studies have been carried out under the assumption that ASD children are largely 464 

biochemically homogenous and a single or even a small number of “marker” molecules could 465 

discriminate them from sex/age matched neurotypical peers. However, it is likely that ASD 466 

covers a bunch of biochemical phenotypes such as the large heterogeneity observed clinically. 467 

Therefore, more insight into ASD pathogenicity may result from analyzing large patterns. 468 

Here, for the first time, we have used high-resolution mass spectrometry to perform a 469 

comprehensive phospholipidomic analysis of PBMCs from ASD children and their non-autistic 470 

siblings. Another strength of this study is the case-sibling approach undertaken to minimize 471 

genetic variability. In fact, it is believed that genetic variation explains over 50% of the risk of 472 

developing ASD [66] and the risk is increased 10 fold if a sibling reports the diagnosis; 473 

moreover, aggregates in families and early twin studies estimated the proportion of the 474 

phenotype variance due to genetic factors to be up to 90% [67]. Therefore, unaffected siblings 475 

are an ideal control group because they enable a more accurate assessment as to whether 476 

any observed differences are due to the autism phenotype because they control for shared 477 

genes and possibly also common epigenetic modifications induced early in life.  478 

For its complex aetiology, the role of environmental factors in the onset of ASD is still 479 

largely unknown: physiological and chemical elements are the most commonly studied in 480 

association with ASD, while research on nutritional and social influences are limited [68]. 481 

Unfortunately, the case-sibling approach does not overcome the difficulty of disentangling the 482 
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effects of variable genetic risks, environmental exposures across development and the likely 483 

interactions between these factors in a population with considerable phenotypic and 484 

prognostic heterogeneity. Furthermore, the fatty acid composition of human immune cells 485 

can be modified by altering oral intakes of certain fatty acids [69]. All those factors, together 486 

with differences in sex, age and lifestyles, could explain the observed variance in the present 487 

study and the lack of ability to separate ASD from paired healthy siblings.  488 

Limitations of this study predominantly include the partial phenotyping, which, as 489 

noted previously, prevent us from addressing pressing questions about heterogeneity in ASD. 490 

The search for shared patterns of lipid composition associated with ASD may be more fruitful 491 

within ASD subgroups that reflect shared etiological and developmental factors. Detecting 492 

shared patterns of lipid composition associated with ASD subgroups requires a larger sample 493 

size and more extensive phenotyping and/or genotyping than the current dataset. All those 494 

factors, together with differences in sex, age and lifestyles, could explain the observed 495 

variance in the present study and the lack of ability to separate ASD from paired healthy 496 

siblings.  We are therefore left wondering: are lymphocytes not a good choice for lipid levels 497 

comparison? We believe that further work is most likely needed to shed light on this tricky 498 

question. 499 

 500 

CONCLUSIONS 501 

In this study, lipid extracts obtained from isolated PBMC of children affected by ASD, along 502 

with samples of their healthy siblings were analysed by metabolomics. Deconvolution of the 503 

LC-ESI-FTMS data using untargeted (XCMS) and semi-targeted (Alex123) approaches, were 504 

examined and compared. Interindividual variability is seemingly the most dominant factor as 505 

no significant differences were revealed by multivariate analysis for ASD vs healthy siblings 506 



Running title: Lipidomics of children affected by ASD 

22 
 

within the sampled lipid pools. It is possible that dietary habits and comorbidities contribute 507 

to the system complexity, together with differences in sex, age and/or ASD severity. The fact 508 

that the disease aetiology of ASD is unknown and likely multifactorial, confounds the current 509 

studies such as the present one. Further work with more defined ASD subgroups may shed 510 

some light on this complex disease. 511 
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Table 1. Summary information of patients and healthy siblings involved in the 745 
present study. In the table, each row represents siblings of the same family; age 746 
and sex (F=female, M=male) together with the degree of severity established 747 
according to Diagnostic and Statistical Manual of Mental Disorders (DSM-5) are 748 
reported. 749 

Family Age Severity Cog. Delay Sex 

03 9/5 2 Yes M/M 

04 6/4 2 No F/M 

06 9/13 1 No M/M 

07 15/17 1 No F/F 

08 15/10 1 No M/M 

09 3/6 1 No M/M 

10 15/7 1 No M/M 

11 11/8 2 Yes F/M 

12 3/8 2 Yes M/M 

13 9/15 1 Yes M/M 

14 3/7 1 No M/M 

15 10/5 2 No F/F 

16 7/3 2 No F/M 

17 9/7 2 No M/F 

18 10/8 2 Yes M/M 

19 5/3 3 Yes F/M 

20 10/4 2 No M/M 

21 5/3 3 Yes M/M 

25 12/5 2 No F/M 

25 12/8 3 Yes F/M 

26 3/5 2 No F/M 

27 4/3 3 Yes M/F 

28 15/11 2 Yes M/M 

29 9/6 2 Yes F/M 

30 6/3 1 No M/M 

31 12/6 1 No F/M 

32 10/5 1 No M/M 

33 4/3 2 No F/M 

34 10/9 1 No F/M 

35 12/5 1 No M/M 

36 3/5 3 Yes F/M 

37 8/4 1 No F/M 

38 10/12 2 No M/M 

39 5/7 3 Yes M/M 

40 5/7 1 No F/M 

41 3/8 1 No M/M 

42 9/8 3 Yes M/F 

42* 8 - - F 

43 4/16 1 No M/M 

* Monozygotic twin sister 750 

 751 

  752 
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Table 2. Average confusion matrices obtained upon PLSD-DA using 1000 iterations of bootstrapping 753 
resampling of full, AIF Alex123 and XCMS data using (a) the incidence of pathology or (b) the degree 754 
of pathology as discriminant variable. No discriminatory power was obtained. 755 

 Alex123 
FULL MS DATA 

Alex123 
AIF MS/MS DATA 

XCMS 

a 

Healthy Patient Healthy Patient Healthy Patient 

Healthy 0.48 0.52 0.47 0.53 0.50 0.50 

Patient 0.48 0.52 0.48 0.52 0.55 0.45 

 b 

H
ea

lt
h

y 

ASD DoSa 
H

ea
lt

h

y 

ASD DoS 

H
ea

lt
h

y 

ASD DoS 

1 2 3 1 2 3 1 2 3 

Healthy 0.64 0.16 0.19 0.02 0.82 0.07 0.11 0.01 0.68 0.14 0.17 0.01 

A
SD

 D
o

S 

1 0.59 0.18 0.21 0.67 0.87 0.04 0.08 0.01 0.67 0.14 0.18 0.01 

2 0.65 0.14 0.19 0.69 0.91 0.03 0.06 0.00 0.69 0.12 0.17 0.01 

3 0.66 0.14 0.18 0.72 0.89 0.04 0.07 0.00 0.72 0.12 0.15 0.01 

a Degree of severity (ASD DoS). 756 
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 758 
 759 

Figure 1. Adopted workflow: lipids from biological samples of PBMC have been extracted by using the 760 

procedure described by Bligh and Dyer: using a metabolomic approach, a HILIC column has been used to 761 

separate lipids according to their polar head and high resolution/accurate mass MS analysis has carried out 762 

using an ESI-Orbitrap spectrometer. XCMS and Alex123 have been used to obtain data matrices; QC 763 

represent the quality controls and are useful for data reduction preceding the chemometrics analysis. 764 
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 766 

 767 
Figure 2. Superimposition of all the total ion current (TIC) chromatographic profiles obtained after XCMS 768 

alignment procedure (y-axis 1) along with retention time deviation (y-axis 2) between runs; HILIC-ESI-MS 769 

was applied for the lipid separation of 38 samples of autism spectrum disorder affected children, 36 control 770 

samples (unaffected siblings of studied subjects) and 21 quality control samples (QC). 771 

 772 
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 773 
Figure 3. Comparison between Two-dimensional ordination plots of PC1 and PC2 scores from principal 774 

component analyses on data matrix obtained by using XCMS. Despite different pre-processing methods 775 

were used (i.e. (A) data centering, (B) autoscaling, (C) level scaling, (D) log10-transformation) no obvious 776 

groupings/clusters or trends in the data were obtained. Note that the cluster of QC is tightly together 777 

showing that the analytical pipeline is robust. 778 
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 779 

 780 
Figure 4. PLS-DA on XCMS data matrix using pathology (yes (coded as ‘1’) or not (‘0’)) as the Y-target 781 

variable. Despite different pre-processing methods were used (i.e. (A) data centering, (B) autoscaling, (C) 782 

level scaling, (D) log10-transformation), no statistically significant separation was obtained.  These results 783 

are from 1000 bootstraps (with replacement);blue histograms show the predictions from the 1000 test sets 784 

and red histograms the null distributions from permutation testing. 785 

 786 
 787 
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 788 
Figure 5. Principal component analysis biplot diagram obtained for (A) Alex Full MS data matrix after being 789 

mean-centered, (B) Alex LPE attributions, normalized and autoscaled; (C) Alex AIF MS/MS data matrix 790 

centered, (D) Alex AIF MS/MS data obtained under PC band. In all cases a mixed distribution has been 791 

obtained. Note that the QC cluster tightly together showing that the analytical pipeline is robust. 792 
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 793 

Figure 6. PLS-DA using pathology (yes or not) as target variable on Alex123 data matrix obtained from (A) 794 

the Full MS spectrum (B) from the SM band MS spectrum (C) the whole AIF MS/MS spectrum and (D) FA 795 

signals obtained in AIF MS/MS modality under PE and PE-O band. Despite different pre-processing methods 796 

were used (i.e. (A) Data centering, (B) Autoscaling, (C) Level scaling, (D) log10-transformation), no 797 

statistically significant separation was obtained. 798 

 799 
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 800 

Figure 7. A) and B) Example of boxplots on two of the putative variables statistically different among healthy 801 

and ASD affected children (p value<0.05) showing a trend according to severity degree of autism obtained 802 

by using Alex123 software both on full MS and AIF MS/MS data (i.e. PI 38:4 and FA 20:4 generated from PI). 803 

C) and D) Comparison among siblings of the considered intact lipid and the corresponding FA obtained 804 

through AIF MS/MS analysis. Intrasubject variability is too large to find putative biomarkers that 805 

correlate/associate with autism. 806 


