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We use an accurate coarse-grained model for DNA, oxDNA, and
stochastic molecular dynamics simulations to study the pore translo-
cation of 10Kbp-long DNA rings that are knotted. By monitoring
various topological and physical observables we find that there is
not one, as previously assumed, but rather two qualitatively different
modes of knot translocation. For both modes the pore obstruction
caused by knot passage has a brief duration and typically occurs at
a late translocation stage. Both effects are well in agreement with ex-
periments, and can be rationalised with a transparent model based
on the concurrent tensioning and sliding of the translocating knotted
chains. We also observed that the duration of the pore obstruction
event is more controlled by the knot translocation velocity than the
knot size. These features ought to advance the interpretion and de-
sign of future experiments aimed at probing the spontaneous knot-
ting of biopolymers.
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How filamentous molecules behave when driven through a1

narrow pore is one of the classic, yet still open questions2

in polymer physics. The problem has important applications3

for single-molecule manipulation techniques, including the4

sequencing of single-stranded DNA filaments (1–8), and is5

relevant for fundamental research as well, particularly for bio-6

logical systems where the processing of DNA (9, 10), RNA (11)7

and protein chains (12) often depends on their active translo-8

cation through narrow pores.9

Because knots are statistically inevitable in long polymers10

and biopolymers (13–20), a relevant question is how such forms11

of entanglement affect pore translocation (21–34).12

Very recently, an important advancement in this research13

field has been made by Plesa et al. (34) who succeeded in de-14

vising an advanced single-molecule experiment where double-15

stranded DNA was translocated through a solid-state nanopore16

in carefully controlled conditions. The DNA filaments were17

sufficiently long to be spontaneously knotted in a sizeable18

fraction of the equilibrium population. The pore diameter,19

10-20nm, was purposely chose to be smaller than the DNA20

persistence length, lp = 50nm, and yet wide enough to accom-21

modate several dsDNA strands, and hence let knots through.22

A surprisingly rich phenomenology was found for the main23

monitored observables. These were the elapsed time at which24

the pore was obstructed by the passing knot, and the duration25

of the obstruction event. The latter had a rapidly decaying26

distribution, and an elegant, indirect interpretation was offered27

in terms of the self-tightened knots predicted in refs. (35). The28

distribution of the timing of the obstruction events remained,29

however, elusive to explain.30

Here, to advance the understanding of the process and its31

relationship with DNA knotting in equilibrium, we present a32

detailed study based on molecular dynamics simulations of33

an accurate mesoscopic DNA model. Specifically, we consider34

equilibrated knotted DNA rings of 10K base-pairs (bp) in the35

oxDNA (36–39) representation and use Langevin dynamics36

to simulate their driven passage through a 10nm-wide pore. 37

Such theoretical and computational framework allows us to in- 38

vestigate the translocation process and the geometry-topology 39

interplay with unprecedented structural and dynamical detail. 40

Our main findings are the following. First, we observe that 41

there is another mode of knot translocation besides the one 42

that has been considered so far. Secondly, the passage of the 43

entangled region through the pore is largely controlled by the 44

positioning of the knot on the ring, and its velocity at the time 45

of translocation. As a consequence, pore obstruction events 46

associated to knot passage are brief and mostly occur at late 47

translocation stages. Finally, these properties, which are in 48

good overall accord with single-molecules experiments, are 49

recapitulated with a schematic interpretative model which can 50

also be used for predictive purposes. 51

Results and discussion 52

System setup. We carried out various Langevin dynamics simu- 53

lations of knotted DNA rings translocating through a nanopore 54

embedded in a slab, see Fig. 1. The rings, modelled meso- 55

scopically with oxDNA (36–39), were 10Kbp long and were 56

nicked, to allow relaxation of torsional stress, as in typical 57

experiments (34, 40). The translocation is driven by a longitu- 58

dinal electric field exerting a force of 0.2pN on each nucleotide 59

inside the pore. For simplicity, we neglect the action of the 60

field outside the pore (41, 42) that, in actual realizations, 61

can facilitate the capture and pore insertion of the knotted 62

chains (43–45). The pore is 10nm wide and 10nm long, so 63

that each of the two dsDNA filaments inside it (∼ 30bp-long) 64

is pulled with a total force of 12pN. 65

The translocation dynamics was studied for 50 different 66

equilibrated knotted DNA configurations. These were gener- 67

Significance Statement

Pore translocation, the driven passage of molecules through
narrow channels, has become an important tool for probing
DNA properties. In a recent breakthrough experiment, this tech-
nique was used to detect knots that form spontaneously in DNA
filaments and can hence impact the in vivo functionality. Here,
by using an accurate model, we simulate the translocation of
knotted DNA, expose its unexpectedly rich phenomenology
and clarify the implications for experiments. We show that knot
translocation occurs in two possible modes, depending on the
knot initial position and size. These properties also account
for the typically late occurrence of the knot passage event. Fi-
nally, the passage duration is found to depend more on the
translocation velocity of the knot than its size.
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Fig. 1. Typical configuration of a knotted double-stranded DNA ring translocating
through a nanopore. The knot approaching the pore entrance is highlighted in the
inset. The ring, which is modelled with oxDNA, is 10Kbp-long and the pore, which is
10nm wide, is embedded in an impenetrable 10nm-thick slab. A translocating force of
0.2pN is applied to each nucleotide inside the pore.

ated with a Monte Carlo scheme applied to a coarse-grained68

DNA model and were subsequently refined and relaxed with69

the oxDNA model. All configurations featured a trefoil or 3170

knot, which is by far the dominant topology at the considered71

DNA length (17, 32, 46). These initial configurations were72

primed at the pore entrance at a random point lying on their73

convex hull.74

Translocation dynamics overview. For a first, general charac-75

terization of the process we profiled the translocated fraction76

of the chain, x, as a function of the elapsed simulation time,77

t. This dependence is shown in Fig.2a where, as customary,78

it is presented as a t versus x plot. The red curves cover the79

individual trajectories while the filled points represent the80

average curve.81

Fig.2b shows, instead, the so-called waiting time (47),82

w = dt/dx, i.e. the inverse of the translocation velocity,83

whose profile clearly outlines the two known main transloca-84

tion regimes (45, 47, 48).85

The first part of the curve, for x . 0.5, corresponds to the86

tension propagation along the chain, which itself presents an87

articulate phenomenology (49–51). For chains that are asymp-88

totically long and free of entanglement, theoretical scaling argu-89

ments predict a power-law behaviour, w ∝ xν , where ν = 0.58690

is the metric exponent for self-avoiding walks (47, 49, 52–55),91

while smaller effective exponents are expected for chains of92

finite length (47, 56). Fig. 2b shows that data points for the93

10Kbp chains are indeed well fitted by a power law, and the94

effective exponent, 0.32, is close to what previously reported95

at comparable DNA lengths (57).96

At x ∼ 0.6 the tension propagation regime crosses over to97

the tail retraction regime. In this stage the still untranslocated98

remainder of the chain, which is fully rectified, accelerates99

towards the pore. Because the pore is large enough to let the100

whole knot pass through, this second stage too follows the101

behaviour expected theoretically, w ∝ (1− x) (47).102

Statistics of knot translocation events. Inspired by experi-103

ments, we detect the passage of the knot through the pore104
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Fig. 2. a) The time required to translocate a fraction x of the knotted DNA rings
is shown for 50 independent simulations (red curves). The black points show the
average 〈t〉 versus x curve. b) The waiting time curve, w = d〈t〉

dx highlights two
main regimes corresponding to the tension propagation along the chain (x . 0.5)
followed by the translocation of the rectified chain tail (x & 0.75). The dashed and
dotted lines are best fits based, respectively, on w ∝ xα (yielding α ∼ 0.32) and
w ∝ (1− x).

by monitoring the degree of obstruction of the latter. During 105

such event, in fact, the pore lumen must accommodate up to 106

four double-stranded filaments, instead of the usual two, see 107

sketches in Fig. 3a. 108

We accordingly monitored the time evolution of the chain 109

fraction inside the pore, ∆x, which is shown in Fig. 3a. The 110

pore obstruction caused by the passing knot is indeed signalled 111

by a bump that stands out against the ∆x baseline, see Fig. 3b. 112

Notice that this major pore obstruction event is preceded by a 113

smaller signal burst caused by the knot partially entering the 114

pore and then retracting from it. Such translocation attempts, 115

illustrated in Movies S1-S2, affect about 50% of the trajectories. 116

Their occurrence arguably depends on frictional effects arising 117

from the geometry of the knot and the direction with which it 118

engages the pore. 119

Various observables of interest, related to those monitored 120

in the experiments of ref. (34), can be derived from the analysis 121

of the ∆x profile: the fraction of the translocated chain at 122

which the pore-obstruction event takes place, x∗, the elapsed 123

time at which it occurs, t∗, and the temporal duration of the 124

event, ∆t∗. Because t∗ and x∗ are monotonically related, we 125

will focus on x∗ and ∆t∗, whose probability distributions are 126

shown in Fig. 3c-d. 127

The key features are two. First, the distribution of x∗ is 128

skewed towards large values of x∗, see Fig. S1 for the same 129

effect in the companion distribution of t∗. In fact, passage 130
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Fig. 3. a) Time evolution of the chain fraction that is inside the pore, ∆x (red), and that has already translocated through it, x (blue). An absolute scale in base-pairs for x and
∆x is also provided for the semi-log plot. The knot passage event is highlighted in panel b) and its time of occurrence, t∗, is defined as the midpoint of the time interval ∆t∗
during which ∆x exceeds by more than 30% its baseline value. Panels c) and d) show the probability distributions, computed over the 50 independent runs, of the translocated
chain fraction at the passage (pore obstruction) event, x∗, and of the event duration, ∆t∗, respectively.

events are virtually absent for x∗ < 0.3 and the distribution131

is prominently peaked at x∗ ∼ 1. Secondly, the distribution132

of the obstruction duration has an overall decreasing trend,133

with the shortest obstruction events (which have a minimum134

duration of 300 τLJ ) being the most probable too. Both these135

features match the ones reported by Plesa et al..136

This consistency of the experimental and theoretical dis-137

tributions for x∗ and ∆t∗ is noteworthy given the different138

contour lengths considered here (10Kbp) and in the experi-139

ment (20Kbp or longer). This underscores the robustness of140

the effects addressed with either of the two approaches. The141

agreement also gives confidence for using the model to gain142

insight into aspects that cannot be directly accessed with cur-143

rent experiments. These primarily include various properties144

of the knotted region, which we discuss in the following.145

Knot translocation modes. As we discuss, both the position146

of the knot along the chain contour and its size affect the147

∆t∗ and x∗ distributions in ways that are much richer than148

previously suspected.149

A particularly intriguing relationship is found between the150

pore obstruction duration, ∆t∗, and the size of the knotted151

region, lk, when it arrives at the pore. We recall that, as152

customary, the knotted portion is identified as the shortest153

portion of the chain that, upon closure, has the same topology154

of the entire ring. A scatter plot of the two quantities is155

presented in Fig. 4a, where two relevant features are noted.156

First, the datapoints occupy an L-shaped region. Secondly,157

for either arm of this region the correlation between ∆t∗ and 158

lk is rather weak. Both aspects are not intuitive and, in fact, 159

had not been previously predicted nor envisaged. 160

The analysis of the trajectories showed that the distinct 161

arms in the diagram of Fig. 4a originate from two different 162

modes of knot translocation, as described below. 163

In the first mode the knot is tight and localised on one of 164

the two translocating filaments, see Fig. 4d. This is the most 165

intuitive type of knot passage and, in fact, it was the mode of 166

choice used in ref. (34) to interpret the experimental data on 167

∆t∗ and thus obtain a mapping between pore-obstruction time 168

and knot length. By using a linear mapping, Plesa et al. were 169

able to conclude that knots could be rather tight upon translo- 170

cation, spanning an arclength of tens of nanometers, hence 171

comparable to the DNA persistence length. This result was 172

further put in the context of the elegant theory of metastable 173

knots, which predicts knot localization based on the fact that, 174

in the otherwise broad distribution of knot lengths, the most 175

probable one is about constant - rather than growing - with 176

chain length. 177

Our results vividly confirm the significant occurrence of 178

tight knots. Indeed, one observes that the average knot length 179

at the passage event is about 54nm, which is in full accord 180

with the estimate of Plesa et al.. This knot length is reached 181

independently of the initial one thanks to tightening of the 182

knot caused by the propagating chain tension, see Fig. 4b. One 183

also notes that the lk versus ∆t∗ profile in Fig. 4a is rather 184
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Fig. 4. a) Scatter plot of the knot length at the pore obstruction event, lk(x∗), versus the duration of the event itself, ∆t∗. b) Knot length at the beginning of the translocation
process, lk(0), and at the pore obstruction event, lk(x∗). Data points are divided in two classes based on whether the knot at the beginning of the translocation straddled
(green) or not straddled (blue) the site antipodal (on the ring contour) to the translocation initiation site, see main text. For the first group, the pore obstruction event practically
involves only the essential crossings of the knotted region, which spans both translocating filaments, see panel c. For the second group, the pore obstruction is caused by a
single-filament knot, see panel d. e) Knot length lk during pore obstruction at x∗. Data points for double-filament knots follow closely the curve lk = lchain(1− x∗) (solid
green line), while for the other points lk is about constant and equal to 160bp. f) Scatter plot of ∆t∗ against the waiting time w∗ at the time of passage.

flat for this translocation mode, and hence is different from185

the linear relationship expected intuitively. An explanation of186

this effect will be discussed later.187

The second, and new mode is associated to the green points188

in Fig. 4. It involves knots that span a significant portion of189

the ring, consistent with the theoretical results of ref. (58) on190

DNA chains of comparable size, which indicated that the most191

probable knot length is about 2200bp. In fact, these knots192

experience significantly less tightening during translocation193

than those discussed above, see Fig. 4b. Intriguingly, these194

knots are large and yet their pore-obstruction times are not195

at all dissimilar from the tight knot case discussed before.196

This conundrum is solved by considering the actual confor-197

mation of such rings when the knot is presented at the pore198

entrance. A typical configuration is shown in Fig. 4c. The199

accompanying sketch clarifies that the knotted portion now200

spans the entire cis part of the ring. This is quantitatively201

shown in the semi-log plot of Fig. 4e where one observes that202

for this class of knots, the relative chain fraction occupied by203

the knot is lk/lchain ∼ (1− x∗).204

However, a significant obstruction of the pore occurs only205

when the region accommodating the essential crossings passes206

through it. As seen in the figure, this region is typically small,207

involving 123bp (42nm) on average.208

It is therefore this short, essentially-entangled portion of209

"double-filament" knots, and not their entire contour lengths,210

lk, that is captured by ∆t∗.211

To our knowledge, the possible occurrence of a second mode212

of translocation, though rather natural a posteriori, has not213

been considered nor foreseen in previous translocation studies,214

neither for dsDNA rings experiments, nor for simulations of 215

linear, open chains where it can also occur if translocation 216

starts from inside the knot loop region. 217

Notice that, because the essentially-entangled region is 218

comparable in size to the tight, single-filament knots, the two 219

modes of translocation cannot be distinguished from the sole 220

analysis of ∆t∗. This has direct bearings on the interpretation 221

of experimental data. In fact, it poses the necessity to devise 222

suitable means of discriminating or controlling the incidence of 223

the two modes. IN this way one could relate more reliably the 224

measured observables to the spontaneous knotting properties 225

of DNA. Our results suggest that this could be achieved, for 226

instance, by suitably choosing the DNA length. The latter, in 227

fact, affects the balance of the two modes, as we discuss later 228

in connection with Fig. 5a. 229

We conclude the analysis of the data in Fig. 4a by discussing 230

the second notable feature, namely the lack of a noticeable 231

correlation between the pore obstruction duration, ∆t∗, and 232

knot length, lk. For the second mode of translocation, it is 233

now clear that no obvious relationship between lk and ∆t∗ can 234

be expected, because the lk is not directly informative for the 235

pore obstruction caused by the essentially-entangled region. 236

The case is different, however, for the first mode, i.e. tight 237

single-filament knots, where a proportionality relationship 238

between knot size and passage time appears plausible and was 239

previously surmised (34). 240

This point is clarified by the plot of Fig. 4f, which shows 241

the relationship between ∆t∗ and w∗, the inverse translocation 242

velocity at the passage event. The two quantities are visibly 243

correlated for both knot translocation modes. Together with 244
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the plot Fig. 4a the data clarify that of these two properties245

relatable the passage time, knot length and knot translocation246

velocity, the dominant one is the latter. Notice that, because at247

passage time the contour lengths of single-filament knots and of248

double-filament essential crossings spans a limited range, from249

120bp to 160bp, one has that ∆t∗ and w∗ have an approximate250

linear proportionality.251

This observation might be harnessed to extract further252

knot-related properties from ∆t∗. Because the average translo-253

cation velocity depends on the translocated chain fraction,254

the observed ∆t∗ vs w∗ correlation should effectively subsume255

a dependence of ∆t∗ on the knot position along the chain256

contour, x∗, which could be recovered with sufficient statistics.257
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Fig. 5. a) Model estimate of relative percentage of single- and double-filament knots
in DNA rings of different length. The estimate considers the length and positioning
of the knotted region (highlighted in red in the sketches) with respect to the point
(marked with a cross) antipodal to the root. b) The same model is used to predict the
translocated chain fraction at the time of the pore obstruction event, x∗, see panel
(b). Accounting for the sliding of the knot along the chain brings the model distribution
in good quantitative agreement with the actual simulation data, see panel (c).

Interpretative model. We now consider the origin of the two258

different translocation modes and of the skewed distribution259

of the knot position at passage time, x∗.260

Both aspects are best illustrated with the following261

schematic model of the translocation process. In this pur- 262

posely simplified scheme we assume that the rooting point 263

where the translocation process initiates is equally likely to lie 264

anywhere on the ring contour. We also assume that tension 265

propagates in the same way along the two ring arms, so that 266

they meet at the antipodal midpoint, that is at the point at 267

half ring contour length from the root. 268

The main discriminator for the two translocation modes 269

is whether the knot is entirely located on only one of the 270

two arms, or whether it straddles the antipodal midpoint and 271

hence spans both arms, see sketches in Fig. 5. 272

In the former case the sliding of the progressively tensioned 273

ring arm causes the knotted region to tighten towards the 274

distal knot end (i.e. the end that is furthest from the rooting 275

point) while it is dragged to the pore, see Movie S3. The 276

tightened single-filament knot will then pass through the pore. 277

Instead, when the knotted region straddles the antipodal 278

midpoint, the knot will be pulled from both sides and will 279

be dragged towards the pore by both tensioned arms. Such 280

double pulling typically causes the essential crossings to be- 281

come interlocked, trapping the knot in a moderate degree of 282

tightening, see Movie S4. The pore obstruction event is then 283

associated to the passage of the essential crossings. 284

These two cases are directly associated to the two different 285

translocation modes highlighted in Fig. 4. So much so that the 286

two sets in the figure were not assigned from an a posteriori 287

supervised inspection of the trajectories, but rather a priori 288

based on the aforementioned distinction. In fact, the two sets 289

precisely correspond to knots that span a single or both ring 290

arms at the beginning of translocation. The neat separation of 291

the two sets of points in Figs. 4a,b,e,f supports the viability 292

and usefulness of such discriminatory criterion. 293

The same criterion can be also used to estimate how the rel- 294

ative incidence of single- versus double-filament entanglement 295

varies with ring length. We considered an ensemble of Monte 296

Carlo-generated rings of length 10, 20 and 50 Kbp, picked a 297

rooting point randomly along their contour and then located 298

the knot on the ring, which we considered open in correspon- 299

dence of the rooting point. The rings were next assigned to 300

one of the two classes based on whether the knotted region 301

straddled the antipodal midpoint or not. The results, given 302

in Fig. 5a, show that the incidence of single-filament entan- 303

glement increases steadily with chain length, and goes from 304

35% for 10Kbp to 70% for 50Kbp. Based on this result, which 305

reflects the interplay of knot and chain lengths (35, 58–61), 306

we speculate that most of the knot passage events detected 307

in the experiment of Plesa et al. pertained to single-stranded 308

entanglements, as implicitly assumed by the authors. 309

The same schematic framework can account for the qualita- 310

tive features of the distribution of x∗, the knot positioning at 311

time of translocation. We considered, again, the Monte Carlo 312

generated ensemble of rings for which we stochastically-picked 313

the rooting points. Next, for double-filament knots (straddling 314

the antipodal midpoint) we picked x∗ uniformly between the 315

two knot ends. For the other, single-filament knots, we picked 316

x∗ as the distal end of the knot, the one further from the 317

pore. These criteria embody in the simplest possible way the 318

phenomenology described in the previous paragraphs. 319

The resulting probability distributions for x∗, shown in 320

Fig. 5b, are in qualitative agreement with simulation and 321

experimental data. It is seen that, at all ring lengths, the 322
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distributions are skewed towards x∗ = 1. As for the balance of323

single- and double-filament knots, the skewness too depends324

on the interplay of knot and ring length. Indeed, the x∗
325

distribution becomes flatter for longer rings, where the knotted326

region occupies a smaller fraction of the chain contour.327

The above modelling scheme neglects the possibility that328

tight knots may slide on the filament contour. As was clarified329

in the theoretical study of ref. (27, 30, 31), such sliding can330

occur for fully-flexible chains and, in fact, make it possible331

for individual knotted filaments to fully translocate through332

very narrow pores, as long as the driving force is not high333

enough to cause jamming (30, 62, 63). As a matter of fact, we334

observed the same knot sliding phenomenology for the present335

dsDNA system too, see Movie S1-S3.336

To account for such sliding effect for single-filament knots,337

we accordingly adjusted the model. Specifically, we assumed338

that x∗ could fall with equal probability between the distal339

knot end and the antipodal midpoint. The x∗ probability340

distribution predicted by such model is shown in Fig. 5c. It341

presents a noticeably stronger shift forwards x∗ values that342

follows closely the data from the simulated trajectories. This343

good level of agreement is somewhat surprising given the sim-344

plicity of the model, which does not account for frictional345

effects related to pore size and force magnitude. Yet, the good346

accord further corroborates the relevance of sliding effects for347

dsDNA. We believe, this would be an important avenue to ex-348

plore further, especially by seeking a quantitative comparison349

against experimental data. For this, it would probably become350

essential to take into account the finite resolution of time351

measurements which could account for the observed effective352

dependence of the distribution of t∗ (related monotonically,353

but non-linearly, to x∗) on the driving force.354

Conclusions and perspectives355

It is only very recently, that innovative single-molecule tech-356

niques have made it possible to detect knots in double-stranded357

DNA chains driven through nanopores (34). On the one hand,358

this gave a striking demonstration of spontaneous knot for-359

mation in linear and circularised DNA. On the other hand it360

also helped unveil a rich and complex phenomenology that,361

though expectedly relevant for the in vivo processing of DNA362

filaments, is still largely unexplored.363

Here, to advance the understanding and characterization364

of such phenomenology, we studied theoretically the pore365

translocation of knotted DNA rings using an accurate coarse-366

grained model for DNA and stochastic molecular dynamics367

simulations.368

We find good agreement with the experimental data, par-369

ticularly regarding the remarkably brief duration of pore-370

obstruction events associated to the passage of the knot. By371

profiling the dynamical evolution of the knotted DNA rings372

we expose unexpectedly rich properties of the process that373

cannot be directly accessed in current experiments.374

First, we found that translocation of the knotted region375

can occur in two qualitatively modes depending on whether376

the knot is dragged to the pore by only one of the ring arms,377

or both. In the latter case, knots are typically not tight, and378

yet we find that the pore obstruction time can be small (as379

in experiments) because the essential crossings of the knot380

coalesce in a short region.381

Secondly, we found that the sliding and tensioning of the382

translocating knot causes the same bias towards late knot pas- 383

sage events found in experiments, and previously unexplained. 384

We finally show that one of the key determinants of the pore 385

obstruction duration is the initial positioning of the knot along 386

the chain, and suggest how this effect might be deconvolved in 387

experimental measurements for a more precise determination 388

of the length of the region accommodating a knot or its essen- 389

tial crossings. In particular, the occurring phenomenon of knot 390

sliding might give an important contribution. This might be 391

exploitable in future experiments, along with chain length and 392

pore size variations, to discriminate the two modes. Further 393

relevant avenues include the impact on pore translocation of 394

complex topologies such as composite knots, which have so far 395

been characterised for flexible chains only (30), as well as the 396

geometry-topology interplay in DNA rings that cannot relax 397

supercoiling and torsional stress (64). 398

This first theoretical account, provides a detailed and 399

physically-appealing insight into phenomenology of knotted 400

dsDNA pore translocation. It provides a valuable and trans- 401

parent interpretative framework for available experimental 402

data while pointing out specific directions for new experiments 403

as well as theoretical ones aimed at better understanding 404

the implication of intra-chain entanglement for the in vivo 405

processing of DNA, and possibly other biopolymers too. 406

Materials and Methods 407

System setup and simulation details For an accurate, 408

mesoscopic description of double-stranded DNA we used 409

oxDNA (36–39). In this model, nucleotides are treated as 410

rigid and described by three-interaction centers. The potential 411

energy includes terms that account for the chain connectivity, 412

bending rigidity, base-pairing, screened electrostatic interac- 413

tions and stacking effects. These terms are parametrised to 414

reproduce the salient structural and equilibrium properties of 415

nucleic acids filaments at various values of the system temper- 416

ature and salt concentration, here set to T = 300K and 1M 417

NaCl, respectively. 418

The initial conformations of the 10Kbp-long DNA rings 419

were obtained by mapping the oxDNA model on top of knotted, 420

coarsed DNA rings sampled with a topologically-unrestricted 421

Monte Carlo scheme (46). These initial configurations, which 422

model those obtained experimentally by circularization of lin- 423

ear DNA with so-called sticky-ends, were then nicked and 424

primed at the entrance of the 10nm-wide pore, which was em- 425

bedded in a 10nm thick impenetrable slab. The translocation 426

process, simulated with Langevin dynamics using the oxDNA 427

software package, was driven by applying a force of 0.2pN to 428

each nucleotide inside the pore. Because the average number 429

of nucleotides occupying the pore at any given time is 120, 430

the average total driving force is 24pN (12pN on each of the 431

two double-stranded filaments), which is about equal to what 432

used in experiments. The constant-temperature (T = 300K) 433

molecular dynamics was integrated, without hydrodynamic 434

effects, with a time step of 0.005τLJ , where τLJ is the standard 435

Lennard-Jones time unit for the simulations. Further details 436

about the system setup are given in Fig. S2. An approximate 437

mapping with real time can be obtained by matching the 438

actual diffusion coefficient of small oxDNA fragments of 4bps 439

with that expected in water for spheres with 1.27nm diame- 440

ter, yielding τLJ ∼ 0.7ns. Based on this time mapping, the 441

typical translocation time of Fig.2a is 400µs, which, for longer 442
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chains of 50Kbp extrapolates to about 5ms, which compares443

well with experimental measurements available for this chain444

length (40).445

Observables. The passage of a knot, or of its essential446

crossings, through pore was revealed by monitoring the number447

of nucleotides inside the pore and detecting increases by more448

than 30% from the baseline value, which is about equal to 60bp.449

This threshold criteria, which was validated by supervised450

visual inspection, was also used to establish the duration of451

the time interval associated to the passage of the knot through452

the pore.453

For each instantaneous configuration, the location of the454

knot was identified with a bottom-up search. Specifically, we455

used the stochastic search scheme of ref. (65) to identify the456

shortest portion of the ring that, after suitable closure, has the457

same topology of the original ring. The search is limited to458

the trans or cis parts of the rings, respectively, depending on459

whether the knot has or has not already translocated through460

the pore.461
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