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ABSTRACT

In precision agriculture, non-invasive remote sensing can be used to observe crops and weeds in visible
and non-visible spectra. This paper proposes a novel approach for weed mapping using lightweight Vision
Transformers. The method uses a lightweight Transformer architecture to process high-resolution aerial
images obtained from drones and performs semantic segmentation to distinguish between crops and weeds.
The method also employs specific architectural designs to enable transfer learning from RGB weights in a
multispectral setting. For this purpose, the WeedMap dataset, acquired by drones equipped with multispectral
cameras, was used. The experimental results demonstrate the effectiveness of the proposed method, exceeding
the state-of-the-art. Our approach also enables more efficient mapping, allowing farmers to quickly and easily
identify infested areas and prioritize their control efforts. These results encourage using drones as versatile
computer vision flying devices for herbicide management, thereby improving crop yields. The code is available
at https://github.com/pasqualedem/LWViTs-for-weedmapping.

1. Introduction

The Food and Agriculture Organization (FAO) has estimated that
world population growth will reach nine billion people by 2050, and
demand for food will double. This is while the natural resources that
sustain agriculture will become increasingly scarce, degraded, and
vulnerable to climate change [1]. To address these challenges, there is
a need to better understand complex, multivariate agricultural ecosys-
tems by monitoring, measuring, and analyzing the physical aspects
and phenomena that occur. To this aim, the agricultural sector has
experienced significant growth in using civilian satellites, autonomous
field robots, and unmanned aerial vehicles (UAVs) [2,3]. In particular,
UAVs, also known as drones, are becoming increasingly popular due
to their versatility and low cost. This applies not only to precision
agriculture, but also to many other areas, such as crowd analysis [4]
or cinematography-oriented tasks [5].

In precision agriculture, in particular, there has been significant
interest in the successful transfer of non-agricultural applications, based
on deep learning, to agricultural ones [6,7]. This is due to the promise
that such techniques can facilitate more informed decision-making and
management. Among the various tasks studied in this context, there
is weed mapping. Weeds are unwanted plants that grow in fields
and take vital resources away from crop plants, reducing their yields.
Weed mapping is one of the Site-Specific Weed Management (SSWM)
steps, which involves applying herbicides precisely rather than spraying
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them over the entire field. The excessive use of herbicides can favor
the evolution of herbicide-resistant weeds and affect crop growth. In
addition, herbicides pose a severe threat to the environment. Finally,
their use is expensive.

Recent work that solves weed mapping treats the problem as a
semantic segmentation task based on Convolutional Neural Networks
(CNNs) [8-10]. However, despite progress to date, it is still challenging
to have models that simultaneously optimize effectiveness and effi-
ciency, mainly because the complexity of neural networks makes them
difficult to run on devices with limited hardware, such as drones. In
recent years, Transformer-based models have emerged as a power-
ful alternative tool in computer vision tasks [11,12], but computing
them is often as or more expensive. In this paper, we contribute to
this research by proposing a novel approach based on lightweight
Vision Transformers that achieve state-of-the-art weed mapping results
without harming inference time. To this end, we have leveraged the
challenging WeedMap dataset [13] and proposed specific architectural
designs aimed at better reusing weights already pre-trained on RGB im-
ages so that they can be used to improve performance in a multispectral
setting significantly. This technology can improve weed management
practices, leading to more sustainable and efficient agriculture.

The rest of this paper is structured as follows. Section 2 reviews re-
lated work. Sections 3 and 4 describe materials and methods. Section 5

Received 6 March 2023; Received in revised form 29 August 2023; Accepted 8 October 2023

Available online 10 October 2023

0925-2312/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/neucom
http://www.elsevier.com/locate/neucom
https://github.com/pasqualedem/LWViTs-for-weedmapping
mailto:pasquale.demarinis@uniba.it
https://doi.org/10.1016/j.neucom.2023.126914
https://doi.org/10.1016/j.neucom.2023.126914
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126914&domain=pdf
http://creativecommons.org/licenses/by/4.0/

G. Castellano et al.

reports and discusses the experimental results. Section 6 concludes the
paper and outlines future developments in our research.

2. Related work

Many precision agriculture tasks have been addressed recently due
to the rapid development of computer vision techniques and data
collection methodologies through remote sensing. Recent tasks include
disease and pest identification, abiotic stress assessment, growth mon-
itoring, crop yield prediction, and weed classification/mapping.

Disease and pest identification is the technical basis for diagnosing
and controlling crop diseases, and ensuring the safety of agricultural
products. For example, Zeng et al. [14] proposed a self-attention CNN
to identify crop diseases, while Liu et al. [15] developed a new dataset
for forest pest identification. To achieve a more specific goal, re-
searchers have employed quantitative analysis to assess the severity of
the disease. A dataset of 7669 images of maize fields was collected in
the summer of 2017 using a camera mounted on a DJI Matrice 600
UAV [16]. Using this dataset, Garg et al. developed an end-to-end deep
learning model called Cascaded MRCNN [17]. They aimed to identify
northern leaf blight disease in field maize, utilizing a severity index
they defined. The model demonstrated an accuracy of up to 73% when
evaluated against this specific task.

Abiotic stress is the negative impact of nonliving factors on living
organisms in a specific environment. Crops face a severe threat when
exposed to multiple abiotic stresses such as water scarcity, salinity, or
heat [18]. These stresses induce various plant symptoms, observed in
visible and non-visible spectral bands captured through imaging. To
effectively detect and evaluate the severity of abiotic stress incidents,
a promising approach involves combining distance and proximity sen-
sor technology with deep learning techniques [19]. This integration
has the potential to play a crucial role in accurately identifying and
assessing the impact of abiotic stress on crops. Chandel et al. [20]
compared AlexNet, GoogLeNet, and InceptionV3 to identify maize wa-
ter stress. Feng et al. [21] exploited hyperspectral images to obtain
high-throughput phenotyping of salt-stressed plants.

Growth monitoring is essential in decision-making and is a cru-
cial metric for quantifying crop yield [22]. Traditional methods for
assessing crop growth stages and nutritional status rely on expert
visual inspection or chemical laboratory analysis. However, these ap-
proaches are time-consuming and impractical for on-site monitoring
in large-scale conditions. To address this challenge, image processing
technology based on machine learning has emerged as a potential so-
lution for continuous monitoring throughout the entire crop life cycle,
providing real-time information on crop health and nutrient status [23].
Abdalla and colleagues [24] combined a CNN and an LSTM to classify
the nutrient status of oilseed rapes. This model can identify nutrient
deficiencies that may limit yield. In 2020, Rasti et al. [25] conducted
a study using a cell phone and a DJI Osmo+ camera to capture high-
quality videos from a nadir direction and at a 45° angle. The collected
data were used to compare different models, including CNN-based and
SVM classifiers. The results showed that CNN-based models outper-
formed SVM classifiers, with VGG19 achieving the highest accuracy
among the tested models.

Accurate crop yield prediction is crucial for trade, policy-making,
decision support, and humanitarian efforts. Employing RGB or spec-
tral images with CNNs and recurrent neural networks (RNNs) enables
timely and precise crop yield predictions [26,27]. In a study by Oliveira
et al. [28] three detection algorithms, namely Faster R-CNN, SSD,
and SSDLite, were compared for predicting cotton yield. Among these
algorithms, SSD achieved the lowest mean percentage error of 8.84%.
Another research by Nevavuori et al. [29] investigated the impact of
network parameters and architectures on prediction error using RGB
and NDVI images. The RGB-trained models exhibited superior accuracy,
with an error rate of 8.8%, particularly during the early growth stages,
compared to the NDVI-trained models. Chu et al. [30] proposed an
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end-to-end CNN-RNN model to predict summer and winter rice crop
yields. Their approach fused spatial features from neural networks with
temporal features. The model converged quickly and demonstrated
superior prediction performance compared to only temporal features,
yielding excellent results for both summer and winter rice yields.

Among precision agriculture tasks, we focus on weed mapping, a
segmentation task.

2.1. Semantic segmentation using deep neural networks

Semantic segmentation is a computer vision task that aims to infer
a class for each pixel in the image. Recently, deep learning techniques
have been shown to significantly improve this task over more clas-
sical techniques. Fully-convolutional networks (FCNs) are one of the
most promising ways to solve this task [31]. Classical used FCNs are
SegNet [32] and U-Net [33]. Zhao et al. [34] addressed the problem
of capturing multi-scale information with the proposed pyramid scene
parsing network (PSPNet). Chen et al. [35] proposed a new archi-
tecture called DeepLabv3+ that uses atrous spatial pyramid pooling
(ASPP) and an encoder—decoder structure. ASPP is a technique that
uses multiple parallel atrous convolutional layers with different dilation
rates to capture multi-scale information. While CNNs were traditionally
favored, Transformer-based architectures [11] have emerged as game-
changers. By leveraging self-attention, Transformers capture long-range
dependencies and contextual information, yielding more accurate and
coherent segmentation. Their ability to efficiently process variable-
sized inputs and handle high-resolution images, coupled with extensive
pre-training, has significantly contributed to their growing popularity.
SegFormer brought Transformers into semantic segmentation using a
hierarchical encoder suited for the task [36]. Instead, the Dense Pre-
diction Transformer maintains a high resolution to provide fine-grained
segmentation [37].

2.2. Weed mapping using deep neural networks

Weed mapping is a particular type of semantic segmentation task.
The work of dos Santos et al. [8] was one of the first to show the
excellent results of CNNs, particularly AlexNet, compared to classical
machine learning approaches such as SVM and Random Forest. Lottes
et al. [38] used a CNN with two decoders, one to detect stem position
and the other to segment the plant. Two datasets were used for evalua-
tion, the BoniRob dataset and one collected with a UAV. They achieved
an mAP of 79.2% and 75.3% for stem detection and 83.8% and 87.3%
for segmentation, respectively. In [10], SegNet with ResNet50 as en-
coder was used, achieving an F1 score of 64.6%. Additionally, in [39],
U-Net was applied to the CWFID dataset [40], achieving an F1 score
of 89% and a mIoU of 98%. Another work on CWFID [41] achieved a
mloU of 71% using U-Net with data augmentation techniques.

2.3. Weed mapping using multispectral images and UAVs

Depending on the bands acquired, multispectral images may contain
information related to a plant’s growth and health status and its species.
Therefore, they can improve the accuracy of deep learning models
compared to models trained only with RGB. In addition, sensors for
multispectral image acquisition can be easily used with UAVs.

In [39], the popular U-Net was used on a set of data available on
the Internet to separate weeds from crops and soil, achieving an F1
score of 89% and a mloU of 98%. Sa et al. [9] developed WeedNet,
a semantic segmentation network based on SegNet, and trained it
on a collected dataset, achieving an F1 score of 80%. This publicly
released dataset was called WeedMap and includes two sets of images
of sugar beet fields collected in Germany (Rheinbach) and Switzerland
(Eschikon). Both were collected with UAVs equipped with multispec-
tral cameras. The first used a 5-channel RedEdge-M camera, and the
second a 4-channel Sequoia camera. The authors also trained SegNet



G. Castellano et al.

with multiple combinations of the acquired channels, obtaining an
AUC of 84.3% [13]. In [42], the DeepLabv3 architecture for semantic
segmentation was compared to SegNet and U-Net, on the WeedMap
dataset, achieving, in particular, an F1 score of 81% on the Rheinbach
subset. On the same dataset, also using the Eschikon subset, Mozzam
et al. [43] used a patch-based training with a modified VGG model.
Patches were selected manually, and those containing both classes were
dropped. The results showed 92% accuracy on the Rheinbach subset
and 90% accuracy on the Eschikon subset. Khoshboresh-Masouleh and
Akhoondzadeh [44] also attempted to improve weed mapping using
this dataset. However, they used another manual train-test split made
at the field level. Their proposed model, called DeepMultiFuse, was
purpose-built for weed segmentation and is based on dilated convo-
lution, a modified inception module, a fusion module, and a gated
encoder—decoder architecture. In their setting, they achieved a mIoU of
83% on the Rheinbach subset and 97% on the Eschikon subset. Since
WeedMap has become a dataset of choice in several papers because of
its volume and quality, we also used it for benchmarking purposes.

As noted, there is active research in weed mapping employing deep
neural networks and UAVs. To our knowledge, this work is the first
attempt to use a Vision Transformer for this task, which also uses
a transfer learning approach based on an RGB-trained model in a
multispectral setting.

3. Materials

In this section, we describe the dataset we considered and the
additional preprocessing and data augmentation we applied.

3.1. Dataset

To address the problem of distinguishing weeds from crops, we
considered the dataset proposed in [13], which contains orthomosaic
maps of sugar beet fields, specifically Beta vulgaris of the “Samuela”
variety. Considering also the background, in total, there are three
classes: background, crop, and weed. It is worth noting that despite
the limited number of classes, the dataset used in this study has a level
of complexity comparable to larger reference datasets for semantic seg-
mentation, such as Cityscapes [45], which contain dozens of different
classes and scenarios. The intricacy of the task stems from the subtle
distinctions between crop and weed classes and the limited number
of examples, which highlights the need to use a pre-trained model
or incorporate additional techniques, such as data augmentation, to
improve the performance of the segmentation.

As mentioned earlier, the dataset is divided into two main subsets:
one related to fields located in Germany (Rheinbach); the other related
to fields located in Switzerland (Eschikon). In particular, the dataset
presents eight orthomosaic maps, [000, 001, 002, 003, 004, 005, 006,
007], the first five in the Rheinbach subset and the last three in the
Eschikon subset. Each orthomosaic map corresponds to a set of tiles.
Multiple tiles were derived from each orthomosaic map by sliding a
window over the maps. Each tile has a size of 480 x 360, for a total of
971 tiles for the Rheinbach subset and 700 for the Eschikon subset.

The authors performed data acquisition using two UAVs: a DJI
Inspire2, equipped with a RedEdge-M camera; and a DJI Mavic Pro,
equipped with a Sequoia camera. The former was used for the first
location (Rheinbach), and the latter for the second location (Eschikon).
The drones flew at a cruising speed of ~4.8 m/s and an altitude of
10 m. Crop plants are around 15-20 pixels in size, and individual weeds
occupy 5-10 pixels: this makes the segmentation task particularly chal-
lenging. The RedEdge-M camera can acquire five raw image channels:
R, G, B, Near Infrared (NIR), and Red Edge (RE). The Sequoia camera
acquires the same channels except for the blue channel. From the R
and NIR channels, the Normalized Difference Vegetation Index (NDVI),
calculated as follows, can also be considered:

NIR - R

NDVI = ————
v NIR +R

(€Y
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It is an indicator of vegetation cover, so it is beneficial for distinguish-
ing plants from soil and can be used with the other channels. We also
employed the Color Infrared (CIR) color combination, which consists
of the NIR, R, and G channels.

3.2. Data preprocessing

Although the dataset has already been thoroughly processed by
the authors [13], further preprocessing is necessary. First, since the
orthomosaic maps are not rectangles, they have some black areas
at the borders, which generate many totally black tiles. As a first
preprocessing step, these tiles have been removed, reducing the dataset
to 557 tiles for the Rheinbach subset and 561 for the Sequoia subset.
In addition, the height of each tile of 360 is quite problematic because
it needs to be divisible by 2/,i > 3 as some convolutional filters
would require. For this reason, four crops of size 256 x 256 have been
extracted from each image. This also reduces the computational load.

3.3. Data augmentation

The authors of the dataset applied a random horizontal flip in their
experiments. In most tasks, this augmentation is applied to the training
data as it does not denature the image, unlike the vertical flip, which
overturns the image. However, having images acquired from the nadir
direction allows us to use the vertical flip without problems. For the
same reason, it is also possible to apply random rotations of the image,
sampling for the full range of degrees from 0 to 360. In this case, we
applied a “selective” random rotation to cope with data imbalance. It
consists of applying data augmentation only to those examples that
contain at least one pixel in the minority class, in our case weed.
With this technique, it is possible to increase the number of images
that contain weeds, which can help the model learn the minority class
better. However, although it seems counterproductive when counting
at the pixel level, the number of pixels in the minority class is reduced
because the examples containing weeds are unbalanced. This last step
was applied only to the Eschikon subset, where images containing weed
account for only 0.166% of the dataset, which was increased to 0.499%.
In the Rheinbach subset, the percentage is already 0.706%.

4. Methods

The methods we propose for weed mapping are inspired by a
recently proposed network architecture, Lawin [46]. Lawin is a Vision
Transformer suitable for semantic segmentation that has achieved state-
of-the-art results on the benchmark datasets Cityscapes, ADE20K, and
COCO-Stuff. However, Lawin cannot be directly applied as is. Weed
mapping, like other precision agriculture tasks, benefits from some
bands of the non-visible spectrum, particularly the NIR and RE bands.
This hampers the application of deep learning models, typically suited
to be fed with RGB images. To handle other channels besides RGB,
specific architectural designs are required. Below, we describe simple
modifications applied to the basic Lawin architectures, as well as two
new variants we propose that can handle both RGB and non-visible
channels.

4.1. Lawin modified for weed mapping

Like other semantic segmentation models, Lawin consists of an
encoder and a decoder. The encoder is a Mix Transformer (MiT) [36],
an architecture for semantic segmentation designed as a specific alter-
native to the original Vision Transformer (ViT) [11] and designed to
take RGB images as input. However, unlike ViT, MiT can generate CNN-
like multi-level features with different resolutions, providing a feature
map for each Transformer block as output. This hierarchical repre-
sentation provides high-level coarse-grained and low-level fine-grained
features that usually increase performance in semantic segmentation.
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Fig. 1. Lawin. “CAT” is the concatenation layer, “Conv” is a convolutional layer with a 3 x 3 kernel and “MLP” stands for fully-connected layer. Unlike the original version, the

e Cout x5 x (W H)
Concatenate

Fig. 2. The proposed weight loading strategy. In this example, the RGB weights are adapted for the (R, G, B, NIR, RE) input reusing the green related weights. The weights refer
to a convolution layer and are represented as a 3D tensor collapsing width and height into a single dimension for visualization purposes.

model accepts both visible and non-visible channels as input.

RGB weights
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.
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Starting from an RGB image of size 3 x H x W, the first Transformer
block produces a feature map of size C; X % x % where C, is a
selected embedding dimension. Then, each subsequent Transformer
block, taking the feature maps of the previous block as input, produces
a feature map F, € RC’XZ'%XZ%.

The decoder uses a Large Window Attention Spatial Pyramid Pool-
ing (LawinASPP), consisting of five parallel branches, a pooling layer, a
shortcut connection, and three large window attentions with different
context sizes. The pooling branch functions as global context, while
the three window attentions as local context extractors. LawinASPP is
applied to the concatenation of the last three outputs of the decoder.
The last two are adapted using a standard multilayer perceptron and an
upsampling operation. The first output of the encoder, instead, skips the
LawinASPP and is concatenated to its output. A final linear transforma-
tion, followed by an upsampling operation, is then applied to build the
final segmentation map in the form of a probability distribution over
the classes for each pixel.

Building on Lawin’s basic architecture, in this paper, we propose
a first simple variant specifically designed to solve the weed mapping
problem (see Fig. 1). To handle additional input channels, we modified
the first convolutional layer so that it can accept not only visible
channels but also different combinations of visible and non-visible
channels. Different strategies can then be adopted to cope with non-
RGB channels. A first, simple one is to load pre-trained RGB weights
as is. The model has learned to perform segmentation when fed with
RGB inputs; starting from this configuration, the model must then
refine its weights with a different combination of channels. However,
this strategy can no longer be applied when a different combination
involving more than three channels is to be used. In this case, the
weights for the additional inputs must be initialized randomly or copied
from existing ones. To provide the model with a more informed starting
point, we followed the second strategy, based on selecting one of
the three RGB channels and transferring the relative weights for each
extra channel. One possible criterion for this choice is to consider
the similarity of reflectance in plants [47]. Following this criterion,
we selected the G channel, which has the highest reflectance in the
visible spectrum. With this strategy (shown in Fig. 2), we can effectively

transfer the knowledge and capabilities gained from RGB imagery to
the multispectral domain, eliminating the need for pre-training on a
broad multispectral dataset. However, in both strategies, this way of
fitting the model to these extra inputs can lead to a phenomenon called
catastrophic forgetting. The encoder weights have been trained to be
used on RGB inputs, so the information stored by the weights could
be “forgotten” during fine-tuning.

4.2. DoubleLawin

To explore a strategy in which the input channels are not considered
together, we propose a more refined model called DoubleLawin. It con-
sists of two parallel MiT encoders that work independently to extract
features from the visible and non-visible channels. Its architecture is
depicted in Fig. 3. The first encoder is fed with visible channels and
inherits the weights already pre-trained on RGB images. These weights
can be kept constant during training to avoid catastrophic forgetting.
Depending on the non-visible channels to be used, the second encoder,
a copy of the first, is also supplied with weights pre-trained on RGB
images. Relying on the criterion of vegetative reflectance, as before,
the weights are copied from the G channel.

To combine the features extracted by the two encoders, we in-
troduce three different fusion blocks, from the simplest to the most
complex. The first one is inspired by the fusion block proposed in [48]
and consists of a summation preceded by a point-wise convolution. This
operation is applied to each pair of encoder outputs and maintains the
same number of channels. The output of the fusion block is a fused
feature map F; computed as:

F = (X)) + ¢(Xy) (2)

where ¢(-) is the point-wise convolution, and X;; and X,; are the
outputs from the two encoders at the ith stage. Note that the feature
maps F;, X,; and X,; share the same size S;:

H w

2i+1

Si =G % Qi+l

3

being C; the number of channels in the feature map and (H, W) the
size of the input image. The purpose of the fusion block is to transform
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Fig. 4. Fusion block with convolution only (a), with DropPath (b), and Squeeze-and-Excitation fusion (c). “GAP" stands for “Global Average Pooling".

the channel information so that it is weighted for the subsequent sum-
mation. We adopt a point-wise convolution because it is much cheaper
than a spatial convolution and the aggregation of spatial information
is not necessary for the fusion block as the goal is a depth-wise fusion
(Fig. 4(a)).

The simultaneous use of two encoders may cause overfitting because
of the co-adaptation problem, which refers to the highly correlated
behavior of neurons in a neural network. When multiple branches
of neurons are fused, in fact, they tend to co-adapt; in particular,
one path is used as an anchor, the other as a corrective term. This
configuration is prone to overfitting. One possible solution is using a
DropPath layer [49] that randomly drops operands in the joint layers;
in this way, each branch of the network learns features independently
of the others, discouraging co-adaptation. In particular, we use the local
DropPath that applies the drop with a fixed probability p to each joint
layer independently. In case no path survives, a residual connection is
chosen, inspired by the so-called Stochastic Depth proposed in [50].
This is the second proposed fusion block (Fig. 4(b)). Eq. (2) becomes:

F; = DP($(X 1) + DP($(Xy) + DP (X1, X)) 4

Here, DP stands for DropPath and DP, is the DropPath that guarantees
that at least one input is retained. In this work, the DropPath survival
probability p for the convolutional paths was set to 0.9, while the
probability for the residual connection paths was set to 0.5 to reduce
the number of training steps in which both paths were active.

The third fusion block takes inspiration from Squeeze-and-
Excitation networks [51]. The Squeeze-and-Excitation block (Fig. 4(c))

allows recalibrating channel-wise feature responses by explicitly mod-
eling channel interdependencies. The block consists of two operations:
a squeeze operation, which aggregates the spatial information of the
feature map into a channel descriptor, and an excitation operation,
which uses the channel descriptor to generate a set of channel-wise
weights. The channel-wise weights are then used to re-weight the
feature map. Thus, by concatenating the two feature maps before
feeding them into the Squeeze-and-Excitation block, we can re-weight
the features extracted by the two encoders considering the relationship
between the two feature maps. After the re-weight operation, we
return to the original number of channels by applying a point-wise
convolution.

4.3. SplitLawin

The DoubleLawin architecture treats the non-visible channels (with-
out pre-trained weights) as separate from the RGB channels and ex-
tracts features from the former while keeping the features extracted
from the latter fixed. However, learning features separately may pre-
vent the discovery of joint features related to exploiting the interaction
of different channels. To account for this issue, we experimented with
an additional variant, called SplitLawin (Fig. 5). Instead of adding an-
other encoder, we take advantage of the block-based MiT architecture
and duplicate only the first block. In this way, only the low-level
features will be learned separately, allowing visible and non-visible
channels to interact in the higher-level spaces. Since only the first
block is duplicated, considering MiT-BO as an encoder basis and three
input channels, SplitLawin is lighter than DoubleLawin with 5.25M
parameters versus 8.44M.
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Table 1
Channels used (note that the blue channel is only present in the
Rheinbach subset).

Lawin Double/SplitLawin
NDVI R, G, (B), NDVI
R, G, (B) R, G, (B), NIR
CIR R, G, (B), RE

R, G, (B), NIR, RE R, G, (B), NIR, RE

5. Experiments

This section presents our experimental setup, followed by the quan-
titative and qualitative results of crop/weed segmentation.

5.1. Experimental setup

We used the same train-test split applied in [13,42], that is [000,
001, 002, 004]-[003] for the Rheinbach subset and [006, 007]-[005]
for the Eschikon subset. We used Adam as an optimizer for training
the models, with batch size 6, a maximum number of epochs of 500,
and early stopping with patience 10. Specifically, validation sets were
randomly drawn from the training sets for early stopping. We used the
focal loss as a loss function, weighted by the pixel class frequency:

FL=-w./1- f(x))log(f(x).) )

where f(x), is the probability of the true class predicted by the model

and w, the corresponding class weight, calculated as follows:
FoA(c)

w. =

c - — (6)
FoA(c)

where FoA(c) = %, m) is the median of FoA(c) by varying ¢, I, is
the number of pixels in ¢ and I is the total number of pixels.

The chosen combinations of channels are reported in Table 1. We
also grid-searched over the different versions of the MiT encoder, BO
and B1, which differ only in the number of parameters. To train the
models, we used two methods: fine-tuning the pre-trained weights; or
freezing them. All fusion blocks were tested. For better readability, we
do not report the results obtained with every possible hyperparameter
configuration: we show only the best-performing hyperparameters for
each model and backbone in Table 2. All tested configurations and their
results can be found in the supplementary materials of this paper. The
experiments were performed on a GTX 1660 Ti with 6 GB of VRAM.

We used the macro-averaged F1 score to give a quantitative evalu-
ation of the models, calculated as:
3 2TP
T 2TP+FP+FN
where TP stands for true positives, FP for false positives, and FN for
false negatives. We also calculated AUC for comparison with other
works; however, it is worth noting that it is not as representative as
the F1 score for highly unbalanced datasets as in our case.

F1 (@)

5.2. Ablation studies

As shown in Fig. 6, which concerns ablation studies we performed
on the Rheinbach subset, each Lawin variant almost doubles the time
per example when using MiT-B1 compared to MiT-BO, with a slight
increase in F1 score, except for Lawin. This means that a lighter model
could reach or exceed these scores with less inference time. Considering
MiT-BO as a backbone, Lawin is the lightest model, with 14 ms per
example, while DoubleLawin needs 17 ms. SplitLawin, which duplicates
only the first block instead of the entire encoder, needs 15 ms. In any
case, all three of these variants are extremely light. In contrast, the
baseline SegNet needs 25 ms. The calculated GFlops, as can be seen
in Table 5, reflect the measured time for example.

DropPath for Double and SplitLawin has no impact on inference
time as it is only applied in the training phase. Regarding the Squeeze-
and-Excitation fusion block, the difference in terms of complexity is
negligible. It is notable from Table 3 that, on the Rheinbach subset,
all three fusion blocks obtain similar results, with the Squeeze-and-
Excitation fusion having slightly better F1 for SplitLawin-BO. How-
ever, on the Eschikon subset, the most straightforward fusion block,
based on convolution only, achieves the best performance, while the
Squeeze-and-Excitation fusion block performs worse across all models.

In addition to the performance comparison of the fusion blocks,
Table 4 presents the performance comparison between runs conducted
without and with RGB pre-training on non-visible related weights.
The results demonstrate that employing RGB pre-trained weights on
multispectral channels enhances performance across all configurations
except for the Lawin algorithm on the Eschikon subset. However, it
is noteworthy that Lawin achieves the best result on the Eschikon
subset by utilizing the NDVI channel with R-related weights, thereby
reaffirming the effectiveness of this strategy.

5.3. Comparison with the state-of-the-art

The best results, compared with the models that currently hold
the state-of-the-art, are reported in Table 5. DeepMultiFuse [44] is
not included as the experiments conducted were based on a non-
reproducible train—test split. In fact, the authors used a manual splitting
within each field, which may have also carried the risk of introducing a
bias, as the splitting is no longer at the field level. Our proposed models
outperformed SegNet on both data subsets as well as DeepLabv3 on
Rheinbach (the only subset used in that work). The proposed models
also exceeded the state-of-the-art when considering AUC, the primary
metric reported in previous work. SplitLawin achieved the best overall
F1 score on the Rheinbach subset, while Lawin outperformed the
other models on Eschikon. When AUC is considered, DoubleLawin-
B1 obtained the best results (on Eschikon). However, the results on
Eschikon may be less reliable because it contains only a few images
of weeds in the test set compared to Rheinbach.

Regarding computation time, the proposed models with the BO
variant are faster even than DeepLabv3, whose calculated inference
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Hyperparameters used for the best-performing runs (Conv = fusion block with convolution only; Drop = with DropPath; SE

= Squeeze-and-Excitation fusion).

Subset Model Backbone Weights Channels Strategy Fusion
Lawin MiT-BO G, G R CIR Fine-tuning -
Lawin MiT-B1 G, G R CIR Fine-tuning -
Rheinback DoubleLawin MiT-B0 R, G, B, G R, G, B, NDVI Fine-tuning Conv
DoubleLawin MiT-B1 R, G, B, G R, G, B, NIR Fine-tuning Drop
SplitLawin MiT-BO R,G B, G G R, G, B, NIR, RE Fine-tuning SE
SplitLawin MiT-B1 R, G B, G G R, G, B, NIR, RE Fine-tuning SE
Lawin MiT-BO R, G R, G, NIR, RE Fine-tuning -
Lawin MiT-B1 R NDVI Freeze -
Eschikon DoubleLawin MiT-BO R, G, G R, G, NDVI Freeze Conv
DoubleLawin MiT-B1 R, G G R, G, NDVI Freeze Drop
SplitLawin MiT-BO R, G G R, G, NDVI Fine-tuning Drop
SplitLawin MiT-B1 R, G G R, G, NDVI Fine-tuning Drop
35.0
1 MiT-BO 0.864 _0.865 MiT-B0
2 MiT-B1 0.863 _0.863 MiT-B1
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Fig. 6. Comparison of F1 score (bar chart) on the Rheinbach subset for each model and backbone with relative time per example (line chart). SegNet’s F1 score was obtained by

reproducing the experiments in [13].

Table 3
Comparison of different fusion blocks (Conv = fusion block with convolution only; Drop
= with DropPath; SE = Squeeze-and-Excitation fusion).

Model Rheinbach Eschikon

Conv Drop SE Conv Drop SE
DoubleLawin-BO 0.863 0.863 0.857 0.601 0.540 0.534
DoubleLawin-B1 0.862 0.863 0.857 0.499 0.580 0.557
SplitLawin-BO 0.859 0.862 0.864 0.565 0.635 0.592
SplitLawin-B1 0.865 0.862 0.865 0.571 0.630 0.584

Table 4
Comparison of random weights with pre-trained weights on non-visible related
channels.

Model Rheinbach Eschikon
Random Pre-trained Random Pre-trained

Lawin-BO 0.753 0.856 0.663 0.499
Lawin-B1 0.767 0.855 0.610 0.493
DoubleLawin-BO 0.851 0.863 0.519 0.601
DoubleLawin-B1 0.850 0.863 0.541 0.580
SplitLawin-BO 0.862 0.864 0.582 0.635
SplitLawin-B1 0.865 0.865 0.571 0.630

time, assuming ResNet50 as the encoder, is 26.60 ms on our hardware.
In addition, the number of GFlops, a hardware-independent metric, also
shows that the proposed models are more efficient than DeepLabv3.

5.4. Qualitative evaluation

High F1 scores reflect very accurate predictions whose errors are
hardly visible to the naked eye, as these are errors related to imperfect

Table 5

Comparison of our models with the state-of-the-art.
Model F1 AUC GFlops

Rheinbach Eschikon Rheinbach Eschikon

SegNet [13] - - 0.828 0.843 80.52
DeepLabv3 [42] 0.837 - 0.880 - 82.00
Lawin-BO 0.856 0.663 0.959 0.977 4.06
Lawin-B1 0.857 0.685 0.929 0.970 15.34
DoubleLawin-BO 0.863 0.601 0.964 0.972 5.18
DoubleLawin-B1 0.863 0.580 0.952 0.987 19.76
SplitLawin-BO 0.864 0.635 0.957 0.970 4.28
SplitLawin-B1 0.865 0.630 0.928 0.976 16.20

segmentation rather than misclassifications among whole plants. There-
fore, it becomes challenging to distinguish the predictions of the three
architectures. However, there are instances where crops are mistakenly
labeled as weeds. For instance, in the second sample of Fig. 7, located
at the center bottom of the image, Lawin misclassifies a crop as a weed,
whereas SplitLawin and DoubleLawin accurately identify it. On the
other hand, SplitLawin and DoubleLawin tend to overlook more weeds,
classifying them as background.

Furthermore, regarding SplitLawin, 20.8% of weed pixels are mis-
classified as background, while 1.4% are misclassified as a crop. We
argue that weed mapping does not require perfect segmentation maps
since the goal is to spray herbicide. Conversely, 11.8% of the crop is
misclassified as background, and 1.7% of the crop is assigned to the
weed class. For the same reason mentioned above, 11.8% is not a big
problem, but spraying herbicide on 1.7% of the crop would result in
significant crop yield losses. Models trained for this task should be
pushed to have a crop/weed error close to zero.
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Ground truth

RGB image

Lawin

DoubleLawin SplitLawin

Fig. 7. Examples of segmentation performed on the [003] test field (black = background, green = crop, red = weed).

Examples of segmentation maps obtained as output by the best-
performing run of Lawin, DoubleLawin, and SplitLawin are shown in
Fig. 7.

5.5. Generalization over different fields

Generalization across various species of crops and weeds poses a
significant challenge in weed mapping. The Eschikon subset consisted
of three fields with crops that exhibited slight variations in shape.
Notably, these crops were smaller in size in fields 005 and 007 while
bigger in field 006, as depicted in Fig. 8. Furthermore, the terrain
color is slightly different. Consequently, the Eschikon subset serves as
a valuable test for evaluating generalization. Despite this, we assessed
the ability of our proposed models to generalize also by training them
on the Eschikon subset and subsequently testing them on the Rheinbach
subset (field 003). We used the best-performing model on the Eschikon
subset, obtaining a macro-F1 score of 0.731, which is lower than the
models trained on Rheinbach (0.865) but higher than its performance
on Eschikon (0.685) showing a good generalization capability over
fields in different areas.

6. Conclusion

In this work, we proposed a novel approach based on lightweight
Vision Transformers to perform weed mapping from drones. The results
show that this type of model can achieve state-of-the-art performance
while maintaining an acceptable inference time, making them suitable
for running on mobile platforms such as drones. We also demonstrated
that weights pre-trained on RGB images can be effectively used in a
multispectral context with proper fine-tuning. In particular, the pro-
posed SplitLawin is the model that best transfers the knowledge of RGB
weights to a multispectral setting, as it obtained the best F1 score on
the Rheinbach subset with an addition of only 1 ms in the inference
time compared to the basic Lawin.

Building on the encouraging results obtained, several future works
could be addressed. The first is constructing a region-aware metric to
evaluate the model’s ability to make herbicide spraying efficient and
non-hazardous to crops. Current metrics, such as F1 score, Jaccard
index, or accuracy, cannot highlight this. Similarly, a custom loss could
be used to guide network learning better. In addition, an attention
mechanism can be implemented that can capture row arrangement
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Fig. 8. Samples drawn from the three fields in Eschikon in Color Infrared, respectively 005, 006, 007. It can be seen that the terrain has different colors and the crops slightly

different shapes.

information in crops. Injecting information about the arrangement of
plants in fields can make it easier for the model to detect weeds. This
can be added directly to the model or be a post-processing technique
applied to the segmentation map. Another future work is to integrate
such models into a fully autonomous system in which navigation over
large fields is guided by a vision-based learning method [52]. Finally,
it is worth noting that the shape of crops and weeds changes over time,
and our current model does not explicitly account for time-varying
properties. This future research may provide a more robust solution.

Developing effective and efficient computer vision algorithms on
drones can increase the confidence and use of this technology in pre-
cision agriculture. In particular, the proposed approach has significant
implications for precision agriculture, allowing farmers to quickly and
easily identify infested areas and prioritize control efforts. This can
significantly improve agricultural management practices, leading to
more sustainable and efficient agriculture.
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