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Abstract

A leading hypothesis for schizophrenia and related psychotic disorders proposes that cortical brain 

disruption leads to subcortical dopaminergic dysfunction, which underlies psychosis in the 
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majority of patients who respond to treatment. Although supported by preclinical findings that 

prefrontal cortical lesions lead to striatal dopamine dysregulation, the relationship between 

prefrontal structural volume and striatal dopamine function has not been tested in people with 

psychosis. We therefore investigated the in vivo relationship between striatal dopamine synthesis 

capacity and prefrontal grey matter volume in treatment responsive patients with psychosis, and 

compared them to treatment non-responsive patients, where dopaminergic mechanisms are not 

thought to be central. 40 patients with psychosis across two independent cohorts underwent 18F-

DOPA PET scans to measure dopamine synthesis capacity (indexed as the influx rate constant Ki 
cer) and structural 3T MRI. The PET, but not MR, data have been reported previously. Structural 

images were processed using DARTEL-VBM. GLM analyses were performed in SPM12 to test 

the relationship between prefrontal grey matter volume and striatal Ki cer. Treatment responders 

showed a negative correlation between prefrontal grey matter and striatal dopamine synthesis 

capacity, but this was not evident in treatment non-responders. Specifically, we found an 

interaction between treatment response, whole striatal dopamine synthesis capacity and grey 

matter volume in left (pFWE corr.= 0.017) and right (pFWE corr.= 0.042) prefrontal cortex. We 

replicated the finding in right prefrontal cortex in the independent sample (pFWE corr.= 0.031). 

The summary effect size was 0.82. Our findings are consistent with the long-standing hypothesis 

of dysregulation of the striatal dopaminergic system being related to prefrontal cortex pathology in 

schizophrenia, but critically also extend the hypothesis to indicate it can be applied to treatment-

responsive schizophrenia only. This suggests that different mechanisms underlie the 

pathophysiology of treatment-responsive and treatment-resistant schizophrenia.
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Introduction

Schizophrenia is a severe mental illness, affecting approximately 1% of the population1 and 

ranks as a leading cause of disability and functional impairment.2 Disability is compounded 

by the fact that approximately one third of patients with schizophrenia show limited or no 

response to first-line antipsychotic drugs.3–6 It has recently been suggested that there may be 

two different subtypes of schizophrenia (hyperdopaminergic and normodopaminergic) with 

differing neurobiological mechanisms.7, 8 Investigating the pathophysiology of 

schizophrenia is essential for screening, early intervention, secondary prevention and 

treatment of this illness.

One focus of research exploring the neurobiology of schizophrenia has been the interaction 

between prefrontal cortex (PFC) and striatal function. Two of the most robust neuroimaging 

alterations in schizophrenia are increased striatal dopamine synthesis and release capacity9, 

and reduced grey matter volume in the prefrontal cortex.10–15 Preclinical studies have 

provided evidence for a key role of PFC in regulating dopaminergic neuronal firing and 

striatal dopamine release: PFC lesions in rats have been linked to increased striatal dopamine 

levels16, 17 and to increased release of subcortical dopamine evoked by drug challenges or 
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stress18–20. These findings have led to the hypothesis that increased striatal dopaminergic 

transmission in schizophrenia may be a consequence of a primary prefrontal alteration.
16, 21–24

Recent human studies showed an inverse correlation between frontal cortical thickness and 

d-amphetamine-induced striatal dopamine response in healthy subjects.25, 26 Moreover, 

correlations between striatal dopaminergic function and prefrontal functional activation 

during cognitive tasks have been reported both in individuals at clinical high risk for 

psychosis27 and in patients with schizophrenia.28 Furthermore, a correlation was 

demonstrated between reduced N-acetyl-aspartate, a measure of neuronal integrity, in the 

PFC and increased amphetamine-induced dopamine release in patients with schizophrenia.29 

The most clear-cut elevation in dopamine synthesis and release capacity has been found in 

the part of the striatum that receives projections from prefrontal cortical regions, termed the 

associative striatum30–34 and confirmed by meta-analysis35, further suggesting a link 

between prefrontal cortex and striatum in schizophrenia. However, it is not known if reduced 

PFC volume is associated with elevated striatal dopaminergic function in vivo in patients 

with schizophrenia, as suggested by the preclinical studies reviewed above.

We therefore investigated the in vivo relationship between presynaptic striatal dopamine 

function and prefrontal grey matter volume in patients with first episode psychosis. 18F-

DOPA PET was used to assess dopamine synthesis capacity in the striatum, and voxel-based 

morphometry was employed to evaluate grey matter volume. Consistent with the preclinical 

findings, we hypothesised that there would be an inverse correlation between grey matter 

volume in the PFC and striatal dopamine synthesis capacity in treatment responsive patients, 

who are hypothesised to have a dopaminergic disorder.8 In contrast, we predicted that 

treatment non-responders would not show a relationship between striatal dopamine function 

and prefrontal volume on the basis of the hypothesis that they do not show a dopaminergic 

disorder and prior findings that non-responders do not show elevated dopamine synthesis 

capacity.7, 36, 37 We further tested our findings in an independent replication sample of 

treatment responders and non-responders.

Methods and Materials

Participants

Discovery sample—The study was approved by the East of England-Cambridge East 

NHS Research Ethics Committee.

We studied 16 patients who had presented to specialised mental health services for first 

episode psychosis in London. Inclusion criteria were: diagnosis of a psychotic disorder 

according to ICD 10 criteria38; and within 5 years of the first onset of illness39. All 

participants provided informed written consent to participate.

Exclusion criteria were: history of significant head trauma, history of neurological disorder, 

pregnancy or breast-feeding, history of alcohol or any other substance abuse or dependence, 

any significant medical disorder, use of antipsychotic drugs for longer than two weeks at 

baseline.40
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All patients were assessed at baseline, when they received a clinical assessment and PET and 

MRI scan. The clinical assessment was repeated after they had received at least 4 weeks of 

antipsychotic treatment at a therapeutic dose to determine clinical response. This period of 

minimum 4 weeks did not include the time to titrate the antipsychotic to the therapeutic 

dose. This is in keeping with inclusion criteria for a recent large randomised controlled trial 

of antipsychotic response in first episode schizophrenia.41 All patients then received clinical 

follow-up for at least six months to determine if non-responders showed a subsequent 

response with a longer duration of treatment. The choice of antipsychotic was made by the 

patient in discussion with their treating clinician in line with standard clinical practice. All 

doses were within the therapeutic range defined in the Maudsley Prescribing Guidelines,42 

and measures of concordance used (antipsychotic blood monitoring, self-report and 

pharmacy records).43 Chlorpromazine-equivalent dose-years44 was calculated to measure 

antipsychotic exposure (see Supplementary Table 1). Use of other psychotropic medication 

(such as antidepressants and benzodiazepines) was permitted.

The definitions of response and non-response used the Positive and Negative Syndrome 

Scale (PANSS), which was rated at both time-points (ratings were conducted blind to the 

PET imaging data). We defined treatment response as a total PANSS reduction of ≥50%.45 

Percentage change was adjusted for minimum scores (% change in total PANSS = 

{[(baseline score - 30) - (follow up score - 30)] * 100}/(baseline score - 30))45 All the 

subjects received follow-up for six months to determine subsequent response in patients. 

Moreover, treatment response was confirmed using two additional criteria. The first 

approach was based on the administration of the Clinical Global Impression Improvement 

scale (CGI-I).46 A rating of 1 or 2 on the CGI-I (corresponding respectively to “very much 

improved” and “much improved”) equates to a clinically significant improvement.47, 48 

Based on this, we defined a treatment response as a CGI-I score of 1 or 2, and non-response 

as a rating of ≥3. The other one was based on the remission criteria evaluated at 6 months.49

Replication sample—The study was approved by the institutional review board of Seoul 

National University Hospital, Seoul, Korea, and was carried out in accordance with the 

Helsinki Declaration of 1975, as revised in 2008. An independent replication sample of 

patients with schizophrenia was recruited from the Seoul National University Hospital: 12 

responders (patients whose illness had responded to first-line antipsychotic drugs) and 12 

non-responders (patients on clozapine who had a history of non-response to at least two 

different first-line antipsychotics but who had shown a response to clozapine, defined as a 

total score of ≤80 in the PANSS and no items with a score > 3 on the positive subscale of the 

PANSS, as reported for this sample before).37 Written informed consent was obtained from 

all subjects. Inclusion criteria: diagnosis of schizophrenia according to DSM-IV criteria50 

and having been on a stable dose of a first-line antipsychotic drug including risperidone, 

olanzapine and paliperidone (responders group) or clozapine (non-responders group) for at 

least 12 weeks. Exclusion criteria were: presence of other DSM-IV axis I disorders 

(including affective episodes), history of alcohol or any other substance dependence or 

abuse, history of significant head trauma, history of neurological disorder, pregnancy or 

breast-feeding, any significant medical disorder. Clinical measures were assessed using the 

PANSS and Clinical Global Impression Severity scale (CGI-S).46 To be classified as 

D’Ambrosio et al. Page 4

Mol Psychiatry. Author manuscript; available in PMC 2021 March 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



treatment responders, patients were required to have a CGI-S score of ≤ 3, a total score of ≤ 

80 in the PANSS and no items with a score > 3 on the positive subscale of the PANSS, to 

have not experienced a symptomatic relapse in the 6 months prior to the study, and not to 

have history of being given clozapine or being resistant to first-line antipsychotic drug 

treatments.37

MRI scanning

Image acquisition— Discovery sample: Images were acquired on a 3.0 Tesla Signa (GE) 

system at the Centre for Neuroimaging Sciences, IoPPN, London. 196 high-resolution T1-

weighted images were acquired using a three-dimensional enhanced fast gradient echo 

sequence using the following scan parameters: repetition time – 6.98 msec, echo time – 2.85 

msec, flip angle - 11°, matrix – 256 x 256, FoV – 260, slice thickness - 1.2 mm.

Replication sample: Images were acquired on a 3.0 Tesla Siemens Trio MRI scanner. 208 

high-resolution T1-weighted images were acquired using a three-dimensional enhanced fast 

gradient echo sequence using the following scan parameters: repetition time – 1.67 msec, 

echo time – 1.89 msec, flip angle - 9°, matrix – 256 x 256, FoV – 250, slice thickness – 1.0 

mm.

Analysis of MRI data—Voxel Brain Morphometry Analysis (VBM) of the MRI data was 

performed using the standard Diffeomorphic Anatomical Registration Through 

Exponentiated Lie Algebra (DARTEL)51 processing pipeline in Statistical Parametric 

Mapping (SPM12; Wellcome Trust Centre for Neuroimaging, London, UK, http://

www.fil.ion.ucl.ac.uk/spm) via Matlab 8.2 (Mathworks, Natick, MA, USA). The same 

pipeline was used on both discovery and replication sample. Prior to data processing, all the 

scans were checked for artefacts and poor image quality. Subsequently, each image was 

reoriented in order to set the anterior commissure at the origin of the Montreal Neurological 

Institute (MNI) coordinate system. Following this, the T1-weighted scans were partitioned 

into different tissue classes - grey matter (GM), white matter (WM) and non-brain voxels 

(cerebrospinal fluid, skull) based on separate tissue probability maps for each tissue class 

using the segmentation approach implemented in SPM12. The DARTEL algorithm was used 

to generate a study-specific template and the resulting flow fields generated by DARTEL 

were used to obtain GM images of each subject; these images were spatially normalised in 

the MNI space, modulated, resliced (1.5 mm isotropic voxels) and smoothed with a 10-mm 

full width at half maximum (FWHM). Total intra-cranial volumes (TIV) were computed 

using the new “Tissue Volumes” utility implemented in SPM12.52

PET scanning

Image acquisition— Discovery sample: Dynamic scans were acquired using a Siemens 

Biograph™ 6 HiRez PET/CT scanner (Siemens Medical Systems, Germany) in three-

dimensional mode (transaxial resolution of ~5 mm full width at half maximum.53 All 

subjects received 400 mg entacapone, a peripheral catechol-o-methyl-transferase inhibitor, 

and 150 mg carbidopa, a peripheral aromatic acid decarboxylase inhibitor, to increase 

specific signal, as these compounds decrease the formation of radiolabelled metabolites that 

may cross the blood–brain barrier.54, 55 Participants were positioned with the orbitomeatal 
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line parallel to the transaxial plane of the tomograph. Head position was marked and 

monitored and movement was minimised using a head strap. After a CT scan for attenuation 

correction and scatter correction, approximately 150 MBq of 18F-DOPA was administered 

by intravenous injection following a 30-s background frame. PET data were acquired in 32 

frames of increasing duration over the 95 min scan (frame intervals: 8x15 seconds, 3x60 

seconds, 5x120 seconds, 16x300 seconds). The PET imaging data acquired in a list mode 

were reconstructed using DIFT (discrete inverse Fourier transform) and a 5mm isotropic 

Gaussian smoothing. The resulting image consisted in 82 axial slices, an image size of 128 x 

128 and a voxel size of 2.0509 x 2.0509 x 2 mm.

Replication sample: Participants underwent a short CT for attenuation correction and PET 

imaging on a Siemens Biograph 40 Truepoint PET/CT scanner (Siemens, Knoxville, 

Tennessee, USA) for 95 minutes after an intravenous bolus injection of approximately 370 

MBq of 18F-DOPA (transaxial resolution of ~4.2 mm full width at half maximum).37 All the 

subjects were instructed to take their antipsychotic medication at 9 PM a day before the 

scan, which was performed approximately 17 hours later. They received 150 mg carbidopa 

and 400 mg entacapone orally 1 hour prior to scanning to reduce the formation of 

radiolabeled metabolites. Images were collected in a three-dimensional mode with 148 axial 

slices, an image size of 256 x 256 and a voxel size of 1.3364 x 1.3364 x 3 mm. The dynamic 

volumetric images were reconstructed using filter-back projection into 27 frames sequenced 

using the following framing: 2×30 seconds, 4×60 seconds, 3×120 seconds, 3×180 seconds, 

and 15×300 seconds.

Analysis of PET data—In both discovery and replication sample, head movement 

correction was conducted using a level 2, order 64 Battle-Lemarie wavelet filter to denoise 

non-attenuation-corrected dynamic images. Frames were realigned to a single reference 

frame (characterised with the highest measured PET activity), acquired 20 minutes post-

injection, employing a mutual information algorithm.56, 57 The transformation parameters 

were then applied to the corresponding attenuated-corrected dynamic images, creating a 

movement-corrected dynamic image, which was used in the analysis. Realigned frames were 

then summated to create an individual motion-corrected reference map for the brain tissue 

segmentation. SPM8 (http://www.fil.ion.ucl.ac.uk/spm) was used to normalize a tracer-

specific (18F-DOPA) template33, 58 together with the striatal probabilistic brain atlas59 to 

each individual PET summation image. Importantly, the PET pre-processing was not based 

on the MRI images; thus, the correlations between PET and MRI data were independent of 

co-registration. An eroded cerebellar region was used as reference for tissue quantification in 

agreement with previous analyses.60 Tracing and tractography studies have shown that the 

cortical projections to the striatum show a topographical distribution across the striatum.
61–63 Projections from limbic regions such as the hippocampus project to anterior and 

ventral regions of the striatum, projections from regions involved in associative cognitive 

functions such as the dorsolateral prefrontal cortex (DLPFC) project to the head of caudate 

and anterior putamen, and projections from sensorimotor cortex project to more dorsal and 

posterior regions of the striatum, predominantly putamen. The striatum can thus be sub-

divided into limbic, associative and sensorimotor sub-divisions respectively based on this 

topography. We sub-divided the striatum into these sub-regions as previously described.33, 59 
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The striatal influx constant (Ki cer, written as Ki in some previous publications)33 was 

calculated relative to uptake in the reference region using a graphical approach adapted for a 

reference tissue input function.64 A previous test/re-test study has shown this approach has 

good reliability with an intra-class correlation coefficient of >0.84 for the whole striatum.58 

Further details of the image analysis approach are given in Jauhar et al65 and Bloomfield et 

al.60 The PET, but not MR, data have been reported for the discovery sample in Jauhar et 

al7, 66 and for the replication sample in Kim et al.37

Integration of MRI and PET data - statistical analyses

A general linear model in SPM12 was used to test the negative interaction between 

treatment response, whole striatum dopamine synthesis capacity (entered in the statistical 

model as Ki cer value) and grey matter volume. The analysis was masked using the WFU 

Pick-Atlas67 with an ROI in the DLPFC identified as lateral BA9 and BA 4668, 69 because of 

our a priori hypothesis based on the fact this brain region has been consistently implicated in 

the pathophysiology of schizophrenia70, 71 and sends a large number of cortico-striatal 

projections63, 72. Results were initially visualised at the statistical threshold of p< 0.001 

uncorrected with a minimal cluster size (k) of 50 contiguous voxels and then corrected for 

multiple comparisons at the voxel level (FWE correction). The software MRIcroGL (http://

www.mccauslandcenter.sc.edu/mricrogl/) was used for the visualisation of the results. For 

descriptive purposes, grey matter volume values were extracted from the significant clusters 

using the MarsBar 0.44 SPM toolbox (http://marsbar.sourceforge.net/) and plotted against Ki 
cer values using GraphPad Prism 7.02 (http://www.graphpad.com/). The analysis in the 

replication sample was performed using the same procedure.

The grey matter volume values extracted from the significant clusters in DLPFC were 

compared between responders and non-responders. Moreover, whole brain VBM analyses 

were performed in each sample to test for any GM volumetric differences between 

responders and non-responders.

Separate exploratory analyses in the discovery and replication samples were conducted using 

associative striatum, limbic striatum and sensorimotor striatum Ki cer as predictors. 

Moreover, to test the specificity of the findings, we performed exploratory ROI analyses, 

examining the correlation between dopamine synthesis capacity in the limbic and 

sensorimotor striatal subdivisions and GM volume of the corresponding frontal regions.35 

Specifically, we used a ROI in the limbic areas of the frontal cortex, which included medial 

prefrontal cortex and orbitofrontal cortex, for the limbic striatum Ki cer analysis; and a ROI 

in primary and supplementary motor cortex for the sensorimotor striatum Ki cer analysis.
73, 74 The correlation between associative striatum Ki cer and DLPFC (the corresponding 

cortical region)63 was not repeated, as it was already included in the above analyses.

A further confirmation of the specificity of the finding was obtained by performing ROIs 

analyses with Ki cer as predictors and ROIs in all the brain areas other than PFC (ROIs 

selected by using the WFU Pick-Atlas).67
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All the statistical models above included age, gender and total intra-cranial volume (TIV) as 

“nuisance” variables, in order to control for any independent effects on our findings and to 

ensure that the analysis identified regionally specific “non-global” effects.75, 76

For illustrative purposes, we computed effect sizes from the maximum T statistic obtained 

from the significant clusters77 and meta-analysed them using Comprehensive Meta-Analysis 

Version 3.78

Results

Demographic (± SD) and Ki cer values of the samples included in the experiments are 

reported in Table 1 and Supplementary Table 1.

Discovery sample

All the subjects defined as responders according to the PANSS criterion had a CGI-I score of 

1 or 2 (mean= 1.3). All the non-responders (as for the PANSS criterion) had a CGI-I score of 

≥3 (mean= 4.1). At six-month follow up there were no changes in terms of treatment 

response status. We found an interaction between treatment response, whole striatal 

dopamine synthesis capacity and grey matter volume in left (BA 9: x= -40, y= 36, z= 38; k= 

158, Z= 4.22, pFWE corrected= 0.017) and right (BA 9: x= 32, y= 54, z= 33; k= 163, Z= 

3.94, pFWE corrected= 0.042) prefrontal cortex [Table 2]. Figure 1 illustrates that treatment 

responders show a negative correlation between prefrontal grey matter and striatal dopamine 

synthesis capacity but this is not present in treatment non-responders.

Responders and non-responders did not differ in terms of grey matter volume values 

extracted from the significant clusters. Moreover, the VBM whole brain analysis did not 

show any significant differences in terms of grey matter volume between the two groups (no 

clusters surviving FWE correction).

Replication sample

None of the responders had a score of 4 or more on any item of the PANSS positive 

subscale. All the patients had been clinically stable for longer than 6 months (responders: 

37.9 ± 20.4 months; non-responders: 40.2 ± 19.9 months). There was an interaction between 

treatment response to first-line antipsychotics, whole striatal dopamine synthesis capacity 

and grey matter volume in right prefrontal cortex (BA 9: x= 20, y= 46, z= 38; k= 57, Z= 

3.93, pFWE corrected= 0.031) [Table 3]. Patients who responded to first-line antipsychotics 

showed a negative correlation between prefrontal grey matter and striatal dopamine 

synthesis capacity. In non-responders no relationship was present [Figure 2].

Also in this sample there were no differences in terms of grey matter volume in the DLPFC 

or at a whole brain level.

The summary (discovery + replication samples) effect size for the interaction between 

treatment response, whole striatal dopamine synthesis capacity and prefrontal grey matter 

volume was 0.82 (calculated using Hedges’ g approach).
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Exploratory analyses: correlations with Ki cer in the different striatal subdivisions in the 
discovery sample

We found an interaction between treatment response, Ki cer value in the associative striatum 

and grey matter volume in left (BA 9: x= -42, y= 34, z= 38; k= 166, Z= 4.30, pFWE 

corrected= 0.013) and right (BA 9: x= 32, y= 54, z= 34; k= 138, Z= 3.92, pFWE corrected= 

0.046) prefrontal cortex [Supplementary Table 2] [Supplementary Figure 1]. The exploratory 

analysis with the sensorimotor subdivision Ki cer as predictor revealed that only the cluster in 

right prefrontal cortex survived FWE correction (BA 9: x= 34, y= 50, z= 34; k= 190, Z= 

3.93, pFWE corrected= 0.043) [Supplementary Table 2] [Supplementary Figure 2]. The 

results from the exploratory analysis with the limbic subdivision Ki cer as predictor did not 

survive FWE correction.

Exploratory analysis with limbic striatal Ki cer as predictor and ROI in the limbic area of 

frontal cortex did not show significant clusters.

Exploratory analysis with sensorimotor Ki cer as predictor and ROI in the primary and 

supplementary cortex did not show any significant clusters. All the ROI exploratory analyses 

with dopamine synthesis capacity as predictor and ROIs in all the brain areas other than PFC 

did not show voxels surviving FWE correction.

Exploratory analyses: correlations with Ki cer in the different striatal subdivisions in the 
replication sample

We found an interaction between treatment response, Ki cer value in the sensorimotor 

striatum and grey matter volume in right prefrontal cortex (BA 9: x= 18, y= 48, z= 38; k= 

46, Z= 3.89, pFWE corrected= 0.034) [Supplementary Table 2] [Supplementary Figure 3]. 

The results from the exploratory analyses with the limbic and associative subdivisions Ki cer 

as predictors did not survive FWE correction.

Discussion

Our main finding is an inverse correlation between grey matter volume in the DLPFC and 

dopamine synthesis capacity in the whole striatum in patients with psychosis who respond to 

treatment, but no relationship in patients who do not respond to first-line treatment. 

Specifically, in patients who had responded to first-line antipsychotics, lower prefrontal grey 

matter volume was associated with increased dopamine synthesis capacity in the whole 

striatum. We replicated this finding in an independent sample of patients with chronic 

schizophrenia.

As predicted, the two subgroups of patients (responders and non-responders) showed 

differences in correlations between the measures examined. These results lend further 

evidence to the theory that the neurobiology underlying treatment-resistant psychosis is 

different from that seen in treatment-responsive schizophrenia.8 Moreover, it has been 

observed that patients who respond to antipsychotics have higher striatal density of 

dopaminergic synapses79 and higher striatal dopamine synthesis capacity7, 36, 37 when 

compared with patients with treatment-resistant illness, whilst the latter show greater frontal 

cortical glutamate levels.80, 81 This has led to speculation that only those patients whose 
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illness is characterized by dopaminergic dysfunction will show a good response to 

dopamine-blocking antipsychotics.8

The results of this study are consistent with previous findings of a correlation between 

measures of neuronal integrity and evoked release of striatal dopamine in patients with 

schizophrenia29 and between prefrontal cortex functional activation and dopamine synthesis 

capacity in subjects with an at-risk mental state and patients with schizophrenia.28, 82, 83 

They are also consistent with evidence of direct and indirect anatomical connections 

between PFC and striatum84, 85 and with the pre-clinical lesions studies and the long-

standing hypothesis of dysregulation of the striatal dopaminergic system being secondary to 

prefrontal cortex pathology in schizophrenia,21–24 but critically also extend the hypothesis to 

indicate it can be applied to treatment-responsive schizophrenia only. This is in line with 

recent evidence of a relationship between treatment response and cortico-striatal 

connectivity in schizophrenia.86

Projections from the prefrontal cortex act as a “brake” on the striatal dopaminergic system.
87, 88 Thus, if lower PFC volume reflects fewer or disrupted inhibitory projections from the 

PFC, then this could lead to a relative disinhibition of striatal dopamine function, which 

would explain the negative relationship we observed in the treatment responders. However, 

further work is required to test whether lower PFC volume is associated with disrupted 

projections.

Although there have been prior investigations of the relationship between dopaminergic 

function and cerebral morphology in healthy volunteers,25, 26, 89–92 to the best of our 

knowledge this is the first study investigating this relationship in patients with psychosis.

The exploratory analyses performed in the discovery sample with the different striatal 

subdivisions showed statistically significant relationships between bilateral prefrontal cortex 

and dopamine synthesis capacity in the associative striatum subdivision. This is consistent 

with the evidence that the associative subdivision of the striatum receives a large number of 

inputs from the DLPFC,61, 93–96 and extends previous studies that have localized 

dopaminergic dysfunction in schizophrenia to associative regions of the striatum,33–35 to 

indicate that striatal dopaminergic dysfunction is linked to structural alterations in the 

disorder. However, the specificity of the involvement of the associative striatum was not 

confirmed by the exploratory analyses in the replication sample. Differences in segmentation 

or normalisation can lead to variations in the analyses of small areas such as the striatal 

subdivisions; therefore, further studies are needed to explore the involvement of the specific 

loci within the striatum.

We did not find any statistically significant differences in grey matter volumes between 

responders and non-responders. This may reflect the fact that the present study was not 

powered to detect grey matter volume differences, which are expected to be small in terms 

of effect size.97

It is important to consider that treatment-resistant psychosis may be characterized by greater 

heterogeneity;98 thus, non-responders might have more variability in imaging measures 

leading to overall non-significant correlations. However, it should be noted that the findings 
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were replicated in a sample of non-responders to first-line antipsychotics but homogeneous 

in terms of response to clozapine and, therefore, likely to be neurobiologically similar.99–101 

Nevertheless, given heterogeneity in structural volumes in schizophrenia,10 further work 

would be useful to exclude variability as an explanation of our findings.

Interpretation and Limitations

Grey matter volume reflects a number of aspects of tissue composition, including the 

number of projection neurons and interneurons, and synaptic density.102, 103 Thus, further 

work is required to determine if it is lower density of projection neurons to the striatum that 

underlies the association we see. It should also be noted that we used an ROI approach and 

that the family-wise error correction that we applied is relatively conservative and thus there 

may be a risk of a type II error for other regions that could be linked to striatal dopaminergic 

dysfunction.104 Nevertheless, the application of family-wise error correction gives 

confidence in the association between prefrontal cortex and associative striatal dopaminergic 

function.

However, it is important to recognise that association does not necessarily imply causality, 

and it should be recognised that some preclinical models also indicate that selective 

increases in striatal dopaminergic neurotransmission can affect frontal cortical function.105 

Moreover, elevated striatal dopamine synthesis and release capacity has been reported in 

people at risk of psychosis,31, 32, 106 and to increase during the prodrome,107 whilst frontal 

volume has been found to reduce during the prodrome.108–110 Longitudinal multimodal 

studies and pre-clinical studies are necessary to clarify the timing of these alterations and 

determine which is primary. An example of such a preclinical studies is that one conducted 

in mice by Kim et al111 where it has been shown that cortical spine density influences 

striatal dopamine release via monosynaptic control of dopaminergic neurons; specifically 

spine loss in prefrontal cortex led to increased striatal dopamine release and hyperactivity 

which was normalised by haloperidol.

Two recent studies have examined the relationship between striatal dopamine release and 

frontal cortical thickness in healthy controls.25, 26 We would hypothesise a similar negative 

relationship between prefrontal cortical volume and striatal dopaminergic function in healthy 

volunteers, in keeping with our findings in people with psychosis who have good clinical 

response. It would be useful to test this in a further study.

Previous studies have demonstrated a correlation between glutamatergic neurometabolites 

and cerebral structural measures in schizophrenia.112, 113 It would be interesting to explore if 

this relationship is different in treatment responders and non-responders, especially in the 

context of the putative role of the glutamatergic system in the neurobiology of treatment-

resistant schizophrenia.80, 81

Understanding the underlying neurobiology of schizophrenia is essential for the rationale 

development of new treatments. Our study provides further evidence that schizophrenia 

should be recognised as a condition with at least two neurobiologically different subtypes.
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A potential limitation is that some clinical and demographic variables differ between the 

discovery and replication samples. Specifically, the duration of antipsychotic treatment and 

duration of illness differ, and either may have effects on GM volume114–116 and, potentially, 

on dopamine synthesis capacity.117, 118 Despite this, effects were seen separately in each 

sample, suggesting the relationship between prefrontal cortical volume and striatal dopamine 

synthesis capacity in responders is a trait factor underlying the neurobiology of psychosis.

The subjects in the replication sample received a higher dose of 18F-DOPA. However, the 

administered dose in both samples are within the standard range used in imaging studies.
33, 65, 119–122 Doses within the standard imaging range are not thought to lead to appreciable 

differences in signal to noise ratio.123 Moreover, because of the quantification approach, the 

activity in the striatum (target region) is normalised to the one in the cerebellum (reference 

region). For this reason, differences in the injected dose are not expected to influence the Ki 
cer values.

Whilst the Ki cer values appear higher in the replication sample relative to the discovery 

sample, this could be due to scanner and other methodological differences.106

The summary effect size was large. However, it should be considered that traditional 

neuroimaging studies are not optimized to estimate effect sizes and post hoc effect sizes 

calculated from imaging studies can be inflated.124

Even though the findings were replicated in an independent sample, we should consider the 

relatively low sample size as a limitation. Therefore, future studies in larger samples are 

needed.

The discovery sample was in subjects with a diagnosis of first episode psychosis. It is 

important to recognise that first episode samples generally include patients who 

subsequently receive a diagnosis of bipolar affective disorder as well as schizophrenia. 

Indeed diagnoses often change in the first few years of a psychotic illness.125 In view of this, 

it is important to appreciate that the findings in the discovery sample may not be specific to 

schizophrenia. However, in the replication sample we had a sample with an established 

diagnosis of schizophrenia. As the replication sample confirmed the findings in the 

discovery sample, this indicates that the findings are relevant for schizophrenia but, as we 

did not have a replication sample with bipolar or other psychotic disorders, we cannot 

comment on the specificity of our findings in the discovery sample to schizophrenia or 

psychotic disorders in general. In view of recent evidence that striatal dopaminergic 

dysfunction also underlies psychosis in bipolar disorder,66 future studies investigating this 

would be useful.

Another potential limitation is that in the discovery sample there was a difference in 

medication status between responders and non-responders. However, the findings were 

replicated in a sample homogeneous in terms of medication status. Moreover, dopamine 

synthesis capacity has been recently demonstrated to be unaltered by second-generation 

antipsychotic treatment at doses commonly used in first episode patients,118 although it may 

be altered by following treatment with first-generation antipsychotic.117
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Conclusions

To our knowledge, the present study is the first to test the relationship between frontal 

cortical volume and striatal dopamine function in patients, finding in vivo evidence for an 

inverse correlation between prefrontal grey matter volume and striatal dopamine synthesis 

capacity in patients with psychosis. Moreover, the fact that treatment-resistant patients do 

not show this correlation suggests that different mechanisms underlie the pathophysiology of 

treatment-responsive and treatment-resistant psychosis. Future studies are needed to clarify 

the pathoetiology responsible for these two potentially neurobiologically different forms of 

psychotic disorder.
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Figure 1. Interaction GM volume in PFC x whole striatum Ki 
cer x treatment response 

(discovery sample)
Colour bar represents T score values.

D’Ambrosio et al. Page 21

Mol Psychiatry. Author manuscript; available in PMC 2021 March 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Interaction GM volume in PFC x whole striatum Ki 
cer x treatment response 

(replication sample)
Colour bar represents T score values.
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Table 1
Demographic characteristics of the sample

Medication status classification: antipsychotic naïve, antipsychotic free (prior oral antipsychotic medication 

but free of treatment for at least 6 weeks (oral) or 6 months (depot, if relevant)) or minimally treated (taking 

antipsychotic medication for two weeks or less).

Analysis in the discovery sample Analysis in the replication sample

Responders Non-responders p-value Responders 
(first-line AP 

group)

Non-
responders 
(clozapine 

group)

p-value

n 9 7 - 12 12 -

Age (yr ± SD) 24.8 ± 3.5 25.6 ± 3.9 0.675 31.1 ± 9.8 31.3 ± 8.1 0.946

Gender (male/female) 7/2 7/0 0.475 8/4 9/3 0.65

PANSS total score (± 
SD) [baseline] 74.2 ± 19.8 76.7 ± 17.4 0.796 50.3 ± 11.1 49.7 ± 7.9 0.867

PANSS positive score (± 
SD) [baseline] 19.7 ± 8.0 20.4 ± 4.4 0.824 10.8 ± 2.7 11.3 ± 2.4 0.635

PANSS negative (± SD) 
[baseline] 18.4 ± 4.1 17.4 ± 7.4 0.730 13.3 ± 5.2 12.8 ± 2.9 0.809

PANSS general score (± 
SD) [baseline] 36.1 ± 10.1 38.9 ± 8.4 0.571 26.3 ± 6.1 25.6 ± 3.9 0.722

PANSS total score (± 
SD) [follow-up] 41.7 ± 8.8 78.6 ± 22.7 0.001* NA NA -

PANSS positive (± SD) 
[follow-up] 9.6 ± 2.6 19.1 ± 5.4 0.0001* NA NA -

PANSS negative (± SD) 
[follow-up] 10.1 ± 3.1 19.1 ± 6.9 0.003* NA NA -

PANSS general (± SD) 
[follow-up] 22.0 ± 4.4 40.3 ± 14.1 0.002* NA NA -

Medication status until 
scan

7 antipsychotic-
naïve, 1 minimally 

treated, 1 
antipsychotic-free

2 antipsychotic-
naïve, 2 minimally 

treated, 3 
antipsychotic-free

0.14 medicated medicated -

GM volume (ml) in 
DLPFC (± SD) 8.77 ± 1.01 9.08 ± 1.37 0.606 7.88 ± 0.96 7.57 ± 0.93 0.429

Ki
cer (1/min) Whole 

Striatum (± SD)
0.013398± 0.000848 0.012229 ± 

0.001140 0.033* 0.014651 ± 
0.001119

0.013509 ± 
0.001353 0.035*

Ki
cer (1/min) Associative 

Striatum (± SD)
0.013410 ± 
0.000861

0.012064 ± 
0.001169 0.019* 0.014201 ± 

0.001255
0.013178 ± 
0.001365 0.069

Ki
cer (1/min) Limbic 

Striatum (± SD)
0.012927 ± 
0.000796

0.012346 ± 
0.001124 0.245

0.014105 ± 
0.000762

0.013150 ± 
0.001074 0.020*

Ki
cer (1/min) 

Sensorimotor Striatum 
(± SD)

0.013579 ± 
0.001047

0.012556 ± 
0.001148 0.084 0.015962 ± 

0.001324
0.014456 ± 
0.001609 0.020*
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Table 2

Interaction GM volume in PFC x striatal Ki cer x treatment response (discovery sample)

Correlation with MNI coordinates Subregion BA cluster size (k) Z pFWE corr.

whole striatum Ki
cer -40 36 38 left Sup Frontal Gyrus 9 158 4.22 0.017*

32 54 33 Right Sup Frontal Gyrus 9 163 3.94 0.042*
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Table 3

Interaction GM volume in PFC x striatal Ki cer x treatment response (replication sample)

   Correlation with MNI coordinates Subregion BA cluster size (k) Z p FWE corr.

whole striatum Ki
cer 20 46 38 Right Sup Frontal Gyrus 9 57 3.93 0.031*
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