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Abstract: In addition to providing general constraints on probability distributions, fluctuation
theorems allow us to infer essential information on the role played by temperature in heat exchange
phenomena. In this numerical study, we measure the temperature of an out-of-equilibrium active
bath using a fluctuation theorem that relates the fluctuations in the heat exchanged between two
baths to their temperatures. Our setup consists of a single particle moving between two wells of a
quartic potential accommodating two different baths. The heat exchanged between the two baths
is monitored according to two definitions: as the kinetic energy carried by the particle whenever it
jumps from one well to the other and as the work performed by the particle on one of the two baths
when immersed in it. First, we consider two equilibrium baths at two different temperatures and
verify that a fluctuation theorem featuring the baths temperatures holds for both heat definitions.
Then, we introduce an additional Gaussian coloured noise in one of the baths, so as to make it
effectively an active (out-of-equilibrium) bath. We find that a fluctuation theorem is still satisfied
with both heat definitions. Interestingly, in this case the temperature obtained through the fluctuation
theorem for the active bath corresponds to the kinetic temperature when considering the first heat
definition, while it is larger with the second one. We interpret these results by looking at the particle
jump phenomenology.

Keywords: heat exchange; out-of-equilibrium systems; fluctuation theorem; active bath; out-of-
equilibrium temperatures

1. Introduction

A fundamental open issue in statistical physics is the extension of the equilibrium
framework to out-of-equilibrium settings. Amongst the many questions still waiting for an
answer, the definition of a proper temperature that consistently regulates heat fluctuations
and exchanges between out of equilibrium thermal baths posits a central problem. For glassy
systems, whose non-equilibrium character is due to very long relaxational times [1,2], an
effective thermal picture has already emerged. There, an effective temperature can in fact be
defined using the non-equilibrium deviations of the fluctuation–dissipation theorem [3,4].
One then naturally wonders if a similar scenario also applies to other classes of out-of-
equilibrium systems.

One class of out-of-equilibrium systems that, in the past few years, has attracted great
interest is active matter [5–17]. The distinctive feature of all systems from this class is a
continuous conversion and injection of energy from internal reservoirs or the surrounding
environment into the system itself to produce self-propulsion of its minimal constituents. In-
terestingly, the mere introduction of a self-propulsion mechanism results in a wealth of new
phenomena and features, for example, collective motion [13,18–21], motility-induced phase
separation [22–24] a rich phase diagram [25–28] and dynamical phase transitions [29–31],
most of which have no equivalent in passive counterparts. According to stochastic ther-
modynamics [32–34], the injection of energy is an irreversible process which makes active
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systems inherently out of equilibrium [35,36]. As a consequence, the Stokes–Einstein re-
lation between injection and dissipation of energy is naturally violated at microscopic
scales [37–39], therefore making active matter systems a perfect stage for introducing and
testing different definitions of out-of-equilibrium temperatures. In this respect, we mention
that there have been several attempts to describe this inherent non-equilibrium character at
macroscopic scales through the introduction of an effective temperature [40–46]. However,
up to our knowledge, a general effective thermal picture has not yet emerged.

An approach that can be exploited to test at the mesoscopic level different definitions of
out-of-equilibrium temperatures is offered by the so called fluctuation theorems, i.e., universal
constraints on the probability distribution of integrated observables like work, heat and
entropy production evaluated along the trajectories of individual physical entities of the
system of interest [32,47–52]. An important result showing that temperatures naturally enter
heat fluctuation theorems is provided by [53], in which it is shown that the heat exchanged
between two equilibrium thermal baths satisfies the following fluctuation theorem

I(−q)− I(q) =
(

1
T1

− 1
T2

)
q , (1)

where q is the heat exchanged per unit time, I(q) ≡ limτ↑∞ − log P(q)/τ is its associated
rate function from Large Deviation Theory [54–56], and T1,T2 coincide with the bath
temperatures. The above result was later studied in the context of Brownian particles [57,58],
finding that its validity was in general restricted to finite intervals of q. The fluctuation
theorem from Equation (1) represents a natural starting point for an investigation on
the values T1 and T2 could take in (possibly still valid) fluctuation theorems in out-of-
equilibrium contexts, where fluctuations are central. The temperatures defined from a
fit of Equation (1) and denoted as TFT can in fact be compared with other significant
definitions of temperature, such as the effective temperature, denoted as Te f f and defined
from the deviation of the fluctuation–dissipation theorem [3,4,40,41,45,59–61], or the kinetic
temperature, instead denoted as Tkin and defined from the equipartition theorem [4,41,46,62]
(see Appendix A for more details).

Here, we numerically investigate the definition of TFT by considering an idealized
setup which consists of a single one-dimensional particle moving in a quartic double-well
potential (see Figure 1 for a schematic depiction). In each well, the particle is put in contact
with a different overall thermal bath, thus experiencing a different temperature. In the
right well, we place an equilibrium thermal bath which is formalized through a Gaussian
zero-mean delta-correlated white noise plus a viscous friction force and satisfies a usual
fluctuation–dissipation theorem with an effective temperature trivially coinciding with
both the bath and the kinetic ones. For the left well bath, we instead consider two different
cases: first, we fix a further equilibrium thermal bath with the same characteristics as the
one in the right well except for a different temperature; then, we make it an active bath
by fixing an equilibrium thermal bath analogous to the one from the right well, now with
the same temperature, and introducing an Ornstein–Uhlenbeck process playing the role
of an additional Gaussian coloured noise with exponential self-correlation. In this way,
when in the left well, the particle effectively turns into an active particle, more specifically
an active Ornstein–Uhlenbeck particle [63–66]. Moreover, we remark that in that case,
neither the usual fluctuation–dissipation theorem is satisfied [38] nor kinetic and effective
temperatures coincide [46]. The heat exchanged is measured according to two different
definitions: as the work performed by one of the two baths on the particle and as the sum
of the kinetic energies carried by the particle every time it jumps from one well to the other.
The first definition is nothing but the usual heat as defined in the framework of stochastic
thermodynamics [33,67]. The second one is instead newly introduced as suggested by our
specific setup.
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left well right well

Figure 1. Schematic depiction of our idealized setup. The black line denotes the quartic double-well
potential Equation (2) with minima and local maxima at ±xm and xu, respectively, and depth ∆U. The
red and blue areas and labels below and above xu denote instead the action of baths with different
features in the two wells.

We find that in all cases considered the fluctuation theorem Equation (1) is still valid. In
more detail, in the case in which two equilibrium thermal baths with different temperatures
are fixed, both definitions of heat exchanged lead to the validity of Equation (1) with a
slope in accordance with the bath temperatures. This first result provides an essential
correspondence between TFT and both Te f f and Tkin, which, as mentioned above, in this
case both trivially coincide with the bath ones. In the active bath case, we find instead that
different values of TFT associated with the active bath emerge based on the definition of
heat under study. When the heat as a sum of kinetic energies is considered, the extracted
TFT turns out to correspond to the kinetic temperature of the active bath. When instead
considering the heat as the work performed by the thermal environment, this temperature
assumes intermediate values between the kinetic temperature and the effective one. These
results and discrepancies can be interpreted by looking at the particle jump phenomenology.

The remainder of the paper is structured as follows. In Section 2, we present the model
and methods we adopted. In particular, in Section 2.1, we describe our setup and detail the
two cases under scrutiny; in Section 2.2, we introduce the two definitions of heat exchanged
we consider along with the energy balance of the system; in Section 2.3, we describe the
numerical methods we adopted, and in Section 2.4, we comment on the stationary position
distribution of the system. Next, in Section 3, we present and comment the results of our
investigation for the two bath configurations considered. Finally, in Section 4, we report
our closing remarks.

2. Model and Methods
2.1. Model

The general framework of our setup is that of a unidimensional unit-mass mesoscopic
particle of position x(t) and diameter σ = 1 moving under the action of the external quartic
double-well potential

U(x(t)) =
a
4
(x(t)− xu)

4 − b
2
(x(t)− xu)

2 , (2)

where a, b > 0, and xu is the centre of the potential which we set to zero and which serves
as a separating point between the regions x > xu (right well) and x ≤ xu (left well), where
thermal baths with different features act. The local maximum of the potential is located at
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xu = 0, the global minima are at ±xm = xu ±
√

b/a distanced by 2
√

b/a, and the potential
depth ∆U = U(xu)− U(±xm) = b2/4a represents the height of the barrier the particle has
to overcome to hop from one well to the other. In order to highlight the spatial separation of
the two baths induced by the potential Equation (2), we recast the usual Langevin equation
describing the particle dynamics with initial conditions x(0) ≡ x0 and ẋ(0) ≡ v0 into the
following form

ẍ(t) = B1(ẋ(t), t)θ(x(t)) + B2(ẋ(t), t)(1 − θ(x(t)))− dU[x(t)]
dx

, (3)

where B1(ẋ(t), t) and B2(ẋ(t), t) collect the forces exerted by the overall baths in the two
wells. The presence of the Heaviside functions θ(x(t)) ensures in fact that B1(ẋ(t), t) and
B2(ẋ(t), t) only act when the particle is in the right or left well, respectively. For the sake
of simplicity, here, we assume the convention θ(0) = 0 [68] instead of the half-maximum
one θ(0) = 1/2 [69], so that the function is left-continuous at x = 0, and θ(t) and 1 − θ(t)
can be properly considered as the indicator functions of the intervals (0,+∞) and (−∞, 0],
respectively. We underline that this choice does not affect our results as the value of a
function at a single point does not affect the overall values of the heat integrals from
Section 2.2. Concerning instead the action of the baths, whenever the particle hops into
each of the two wells, their corresponding noise processes are made to restart acting with
an initial condition extracted from their stationary distributions. Figure 1 graphically
summarizes our setup, highlighting with different colours the left and right well regions.

We now specify the actual composition of the forces contributing to each bath. In the
right well, B1(ẋ(t), t) is always associated with a usual equilibrium thermal bath, hereafter
referred to as passive bath, thus

B1(ẋ(t), t) = −γẋ(t) +
√

2γT1 ξ1(t) , (4)

where γ is the viscous friction coefficient, T1 is the bath temperature, and ξ1(t) is a usual
Gaussian white noise with ⟨ξ1(t)⟩ = 0 and ⟨ξ1(t)ξ1(t′)⟩ = δ(t − t′). Note that for the sake
of simplicity, here and in the following, we set the Boltzmann constant kB to unity. The
distribution for the restart of ξ1(t) is then a normal Gaussian N (0, 1). As aforementioned,
for the bath in the left well, we instead distinguish two different cases:

(a) another passive bath with friction coefficient γ and temperature T2, i.e.,

B2(ẋ(t), t) = −γẋ(t) +
√

2γT2 ξ2(t) , (5)

where ξ2(t) is a Gaussian white noise independent from ξ1(t) with ⟨ξ2(t)⟩ = 0,
⟨ξ2(t)ξ2(t′)⟩ = δ(t − t′), and T2 in general different from T1. As for ξ1(t), the
distribution for the restart of ξ2(t) is N (0, 1). Note that in this specific case, the
temperature for the entire domain can be written as the x-dependent function
T(x) ≡ T2 + (T1 − T2)θ(x), so that the overall Langevin equation Equation (3) can
be recast as

ẍ(t) = −γẋ(t) +
√

2γT[x(t)] ξ(t)− dU[x(t)]
dx(t)

, (6)

where ξ(t) is a single Gaussian white noise with ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t− t′)
acting everywhere in the system which is made multiplicative by the presence of
T(x) in its multiplicative factor;

(b) a passive bath with friction coefficient γ and temperature T2 and an additional
Ornstein–Uhlenbeck noise reminiscent of the active force from the active Ornstein–
Uhlenbeck particle model [63–66] and hereafter referred to as active bath, i.e.,

B2(ẋ, t) = −γẋ(t) +
√

2γT2 ξ2(t) + a(t) , (7)
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where ξ2(t) is a Gaussian white noise analogous to the one from case (a) and a(t)
is an Ornstein–Uhlenbeck process implemented as the solution of the additional
stochastic differential equation

ȧ(t) = −γRa(t) + Fa
√

2γR η(t) (8)

with initial condition a(0) ≡ a0, where η(t) is a further Gaussian white noise inde-
pendent from both ξ1(t) and ξ2(t) with ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t − t′), and
γ−1

R and Fa are the persistence time associated with the active process and a positive
constant ruling its magnitude, respectively. From the average and self-correlation
of a(t)

⟨a(t)⟩ = a0e−γRt and ⟨a(t)a(t′)⟩ = a2
0e−γR(t+t′) + F2

a

(
e−γR |t−t′ | − e−γR(t+t′)

)
, (9)

one in fact immediately realizes that τp = γ−1
R controls the exponential decay of

both average and self-correlations at large times and ⟨a2(t)⟩ ≃ F2
a , so that Fa indeed

plays the role of an average magnitude for the active process [64,66,70]. Equation (9)
also suggests that the distributions for the restart of ξ2(t) and a(t) are N (0, 1) and
N (0, F2

a ), respectively. In order to better discern the action of a(t), here, we fix
T1 = T2 and for the sake of simplicity, we also set γR = 3T2/(γσ2) [24,31,71].
Moreover, as typically done [23–25,31,62,71], we control the relative magnitude
activity and thermal noise by varying the adimensional Péclet number

Pe ≡ Faσ

T2
, (10)

where we recall σ = 1 is the particle diameter. We remark that in general, the
active bath configuration can be realized in actual experiments by using Janus
particles [72–75] or optical tweezers [76,77], or by introducing a passive tracer particle
in a suspension of active particles whose collisions with the tracer itself can be
described by a(t) [52,78].

Finally, in order to allow the particle to correctly thermalize in each well before every
jump, we need to correctly assess the relevant timescales of the system. Concerning case a),
there are only two relevant timescales. The first one is the inertial time τI = γ−1, which is
the typical time needed to attain thermal equilibrium with the bath. The second one is the
average time the particle remains in one well before hopping starting the barrier ascension
from ±xm, or average residence time, τr. In the overdamped limit for a single white-noise
bath acting everywhere and a parameter choice such that ∆U/T ≫ 1, τr is estimated as [79]

τr =
πγ√

U′′(xm)|U′′(x0)|
e

∆U
T =

πγ√
2b

e
∆U
T , (11)

where U′′(x(t)) is the second derivative of the potential Equation (2). In order to allow the
particle to thermalize after each jump we require τr > τI in each well. In the following,
we use the symbols τl

r and τr
r to denote the average residence times in the left and right

well, respectively. Concerning case (b), yet another timescale needs to be considered:
the persistence time τp = γ−1

R controlling the exponential decay of the coloured noise
correlations. A further condition that is required to let the particle thermalise in the
presence of the additional Ornstein–Uhlenbeck force is then τr > τp. We remark that in
presence of an active process like a(t) a Kramers-like formula similar to Equation (11) for
τp is still in place in some limiting conditions [80]. However, we checked in our settings
that such a formula did not hold, thus forcing us to resort to numerical estimations.
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2.2. Definitions of Heat Exchanged and Energy Balance

Our primary interest focuses on the heat exchanged between the two wells as the
particle hops between them, which here we sample according to two different definitions
capturing each different physical aspects of the system.

The first definition we consider relies on the intuitive idea that exchanges of energy
and heat between the two baths must somehow be related to the jumps of the particle from
one well to the other. More in detail, each of the NE ≥ 0 jumps occurring during a time
interval of duration τ can be considered as an event of instantaneous transfer of kinetic
energy from one bath to the other, with the particle playing the role of carrier. Therefore, an
intuitive way in which we define the energy exchange between the two is

QR
E ≡ 1

2

NE

∑
j=1

∣∣ẋ(τj)
∣∣ẋ(τj) . (12)

We would like to stress that the above formula is simply configured as the sum of the
kinetic energies carried during each jump by the particle, i.e., a simple quantitative version
of the intuitive idea delineated above. Here, the subscript E denotes the energetic origin of
this definition, while {τj}j=1,...,NE is the succession of times during the sampling interval of
duration τ in which all jumps events occur, i.e., at which x(t) = xu. Note that the absolute
value in Equation (12) ensures the increments of QE are given a proper sign depending
on the direction of each jump event. For the right well, they are in fact positive (negative)
when the particle jumps from left (right) to right (left), in agreement with the physical
intuition that the right well bath receives (loses) energy when the particle enters in (goes
away from) it. In order to remain faithful to the prescription that a bath acquires (loses)
energy when the particle jumps in (away from) it, when focusing on the left well, we need
to invert our point of view. In particular, now, the increments of QL

E must be considered
negative (positive) when the particle jumps from left (right) to right (left). In terms of the
total energy exchange QL

E, this translates into an overall minus sign with respect to QR
E , i.e.,

QL
E = −QR

E . Trivially, QL
E +QR

E = 0.
The second definition we consider takes up the usual one provided by stochastic

thermodynamics in which heat is defined as the work performed on the particle by the
passive bath, i.e., a viscous friction force plus white noise [33,67]. In our specific setting, the
definition for the heat exchanged between particle and passive bath during a time interval
of duration τ in the right well transforms into

QR
W ≡ −

∫ τ

0
B1(ẋ(s), s)θ(x(s)) ◦ dx(s)

= −
NR

∑
j=1

∫ τR,j

τ0,j

B1(ẋ(s), s)ẋ(s) ds

= −
NR

∑
j=1

∫ τR,j

τ0,j

(−γẋ(s) +
√

2γT1 ξ1(s))ẋ(s) ds

(13)

where the symbol ◦ denotes the adopted Stratonovich prescription [81], the minus sign
denotes that it is the particle that performs work on the bath and ensures the same sign
convention as for QR

E is fulfilled, the subscript W highlights the thermodynamical origin of
this definition, NR denotes the number of times the particle resides in the right well and
τ0,j, τR,j, j = 1, . . . , NR denote the beginning and ending times of the jth residency in the
well, respectively, with τR,j − τ0,j > 0 its duration.

In order to provide some physical intuition about the difference between the heat
definitions from Equations (12) and (13), in Figure 2a we show a typical particle trajectory
in case (a), while in Figure 2b we show the corresponding realisations of QR

E and QR
W

during the same time interval (numerical data are obtained using the numerical techniques
described in Section 2.3). Note that QR

E is piecewise continuous and presents discontinuous
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variations only when jump events occur, while QR
W continuously evolves when the particle

is in the right well, remaining constant when the particle jumps in the left well, and
showing significant variations only when jump events occur. Note also that during the first
permanence of the particle in the left well, QR

W averages to zero, in agreement with the fact
that during that time interval, the particle is thermalized with the right-well bath and the
latter has not yet received any energy injection from the left-well bath.

(a)

(b)

Figure 2. (a): Typical trajectory of a Brownian particle from case (a) at sampling time τ = 5× 103. The
black dashed lines denote the location of the left and right potential minima at ±xm = ±

√
b/a = ±

√
2.

(b): Time evolution of QR
E and QR

W corresponding to the trajectory in panel (a). Parameters are a = 1.0,
b = 2.0, γ = 10, T1 = 0.2 and T2 = 0.3.

Following standard procedures, from Equation (13) the trajectory-wise energy balance
of the system can be obtained [33,67]. By simply using the Langevin equation Equation (3)
to replace B1(ẋ(t), t)θ(x(t)) in Equation (13) for generality in case (b) and adopting the
Stratonovich prescription to calculate integrals [81], one in fact finds

1
2

∆ẋ2(τ) + ∆U(x(τ)) =
∫ τ

0
B1(ẋ(s), s)θ(x(s))ẋ(s) ds +

∫ τ

0
B2(ẋ(s), s)(1 − θ(x(s))ẋ(s) ds

= −QR
W −QL

W +Wa ,
(14)

where
∫ τ

0 ẍ(s)ẋ(s) ds = (ẋ2(τ)− ẋ2(0))/2 ≡ 1
2 ∆ẋ2(τ) and

∫ τ
0

dU(x(s))
dx(s) ẋ(s) ds = (U(x(τ))−

U(x(τ))) ≡ ∆U(x(τ)), respectively, denote the variation in kinetic and potential energy
from the initial configuration at s = 0 and final one at s = τ, QW

R denotes the work
performed by the particle on the right passive bath defined in Equation (13),

QL
W ≡ −

∫ τ

0
(−γẋ(s) +

√
2γT2 ξ2(s))(1 − θ(x(t))) ◦ dx(s)

= −
NL

∑
j=1

∫ τL,j

τ0,j

(−γẋ(s) +
√

2γT2 ξ2(s))ẋ(s) ds
(15)

denotes the work performed by the particle on the passive component of the left bath only,
i.e., the friction force plus white noise, with NL the number of times the particle resides in
the left well, and τ0,j < τL,j the beginning and ending times of each of the jth residencies,
and finally

Wa ≡
∫ τ

0
a(s)(1 − θ(x(s))) ◦ dx(s) =

NL

∑
j=1

∫ τL,j

τ0,j

a(s)ẋ(s) ds (16)
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denotes the active work, i.e., the work performed by the additional noise in the left well pro-
viding a measure of the energy cost to sustain the particle self-propulsion [31,52,66,82,83].
In both Equations (15) and (16), ◦ again underlies the Stratonovich prescription. We point
out that QR,L

W and Wa are energy contributions extensive in time, while the variation in
both kinetic and potential energies ∆ẋ2(τ)/2 and ∆U(x(τ)) are not, i.e.,

lim
τ↑∞

1
τ

∫ τ

0
d
(

1
2

ẋ2(t) + U(x(t))
)
= 0 , (17)

or, by assuming ergodicity,

d
dt

〈
1
2

ẋ2(t) + U(x(t))
〉

= 0 , (18)

where the derivative is zero due to ⟨ẋ2(t)/2 + U(x(t))⟩ assuming a constant value inde-
pendent of t. As a consequence, when passing to the energy balance per unit time, at times
much larger than all relevant timescales of the system, one has

0 = −qR
W − qL

W + wa . (19)

where q = Q/τ for all sub- and superscripts, and w = Wa/τ. Note that, coherent with
the fact that the system under consideration is globally isolated, Equation (19) shows the
overall energies exchanged by the two baths, −qR

W for the right and −qL
W + wa for the left

one, to be of opposite signs and to sum to zero.
Finally, a few comments and remarks. We underline that case (a) does not include the

additional noise a(t), so that Wa = 0, and Equation (14) reduces to the usual equivalence
between the energy variation of the system and the heat exchanged. We would also
like to stress that in case (b), QL

W does not capture the heat exchanges related to the left
bath in its entirety. As −

∫ τ
0 B2(ẋ(s), s)ẋ(s)(1 − θ(x(s))) ds = QL

W −Wa, the latter in fact
also includes the active work contribution. Nevertheless, as shown in Section 3.2, QL

W
is indirectly influenced by the action of the active noise as the latter clearly affects the
particle velocity in the left well. In this respect, we remark that as the active noise a(t)
pushes the particle, it is very likely for a(t) and ẋ(t) to have the same sign so that Wa
from Equation (16) is very unlikely to be negative. Finally, referring to the trajectory of
QR

W relative to case (a) from Figure 2b, we conclude by pointing out that during each
permanence of the particle in the right well, QR

W is bounded from above by a different
value. In order to prove this point, let us consider a particle which has jumped into the
right well the last time at τJ and up to time τ > τJ , remained in it. Then, one has

QR
W = cq −

∫ τ

τJ

(−γẋ(s) +
√

2γT1 ξ1(s))ẋ(s) ds

=

(
1
2

ẋ2(τJ) + U(x(τJ))

)
−

(
1
2

ẋ2(τ) + U(x(τ))
)
+ cq

≤ 1
2

ẋ2(τJ) + U(x(τJ))− Um + cq ,

(20)

where in the first row we used the definition Equation (13) and cq records the value
accumulated by QR

W up to time τJ , in the second row we instead used the Langevin equation
Equation (3) and performed an integration similarly to the case of Equation (14), and finally,
in the third row we used the lower bounds ẋ2(τ)/2 ≥ 0 and U(x(τ)) ≥ U(±xm) ≡ Um.
Interestingly, the bound of QR

W from Equation (20) comes to depend on cq, which englobes
the integration of QR

W up to time τJ , on the potential energy Um at the minimum and also
on the kinetic and potential energies evaluated exactly at τJ , i.e., when the particle last
entered into the right well.
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2.3. Numerical Methods and Parameters

The numerical integration of Equations (3) and (8) was performed via the velocity
Verlet [84] and the Euler–Maruyama [85] integrators, respectively, with integration timestep
dt = 10−2 in both cases. We chose for the quartic potential Equation (2) a = 1 and
b = 2, then setting a distance between minima and a barrier height of 2

√
2 and ∆U = 1,

respectively. Along with the unitary particle mass and diameter σ, the barrier height ∆U
set the reduced units of our simulations. In all cases, we fixed γ = 10 and T1 = 0.2, while in
case (b), we fixed γR = 3T2/(γσ2) with T2 = T1 = 0.2 and varied Pe by acting on Fa. The
inertial, persistence, and right residence times therefore resulted τI = 0.1, τp ∼ 16.67 and
τr

r = 1.65 × 103. The specific choices for T2 in case (a) and Fa in case (b) and consequent
left-well residence times are instead specified case by case. We evolved the system for time
intervals of duration τ, in the following referred to as sampling time, up to τ = 3 × 104, the
latter in all cases considered much larger than all of the characteristic times of the system.

We sampled the heat per unit time q = Q/τ for different sampling times τ according
to the two definitions Equations (12) and (13) (as in the definitions from Section 2.2, in the
following, the subscripts E, W and superscripts L, R will specify on a case-by-case basis
which heat in which well is being considered). The heat distributions p(q) were obtained
by considering Np = 106 independent trajectories previously evolved for a time τeq = 104

much larger than all of the characteristic time so as to always start from the stationary
configuration. Taking into account that whenever q satisfies a large-deviation principle its
distributions takes the asymptotic form p(q) ≍ e−τ I(q), with ≍ the asymptotic equivalence
symbol underlying sub-exponential contributions c(q) and I(q) rate function [54–56], these
distributions were then used to check the validity of the fluctuation theorem Equation (1)
by evaluating the ratio

1
τ

log
(

p(q)
p(−q)

)
≍ I(−q)− I(q) =

(
1
Tr

− 1
Tl

)
q , (21)

where I(−q)− I(q) is the rate function difference appearing in Equation (1), and Tr and
Tl denote the temperatures associated with the right and left well, respectively. Note
that the symbol ≍ underlies at finite times the appearance of the ratio (c(q)− c(−q))/τ,
which becomes increasingly negligible as time flows. Operatively, the estimates for Tr
and Tl , in the following denoted as TFT , were obtained by first evaluating the ratio in the
left-hand side of Equation (21) with our numerical distributions p(q) at different τ’s and
then performing at each of these times a linear fit of the resulting curves. Without loss
of generality, in the following, we consider settings in which the slope in Equation (21)
is positive, corresponding to Tl > Tr. While for case (a) one intuitively expects Tr (Tl) to
coincide with T1 (T2) (a circumstance which is indeed verified in Section 3.1), for case (b),
we have no a priori indications for the values they could take in the presence of the active
bath, especially for Tl . In order to extract a TFT estimate for the left well, motivated by the
results for case (a), we assumed Tr = T1, extracted TFT = Tl from a fit of Equation (21) and
compared it with the effective and kinetic temperatures Te f f and Tkin, in turn numerically
sampled according to their definitions from Appendix A.

To conclude, we remark that sampling both positive and negative values of heat
becomes increasingly more difficult as the difference between the relevant temperatures
of the two baths is made larger. Therefore, in the following, we implemented parameter
choices for which such a sampling is numerically feasible.

2.4. Stationary Position Distribution

Before presenting our results, let us comment about the stationary position distribution
in the two cases under consideration. These distributions, which we recall can be obtained
as the solution of the Fokker–Planck equation with time derivative set to zero [86], provide
in fact useful insights on average residence times, in turn useful for our later discussion.
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Concerning case (a), in the overdamped limit and under the Itô prescription, the drift
and diffusion coefficients of the Fokker–Planck equation are −γ−1U′(x) and γ−1T(x) [86,87],
respectively, with T(x) the x-dependent temperature defined in Section 2.1. The resulting
stationary Fokker–Planck equation has the following solution

pst(x) =
NI

T(x)
e−

U(x)
T(x) , (22)

with NI a normalisation factor and U(x) the quartic potential Equation (2), which is clearly
reminiscent of the equilibrium Boltzmann distribution. This solution is obtained by first
replacing T(x) with a continuous parameter-dependent function Tϵ(x) such that T(x) =
limϵ↓0 Tϵ(x), then following the standard procedure for the solution of the stationary
Fokker–Planck equation with Tϵ(x), and finally taking the limit ϵ ↓ 0. Note that pst(x)
shows a jump discontinuity at xu when T1 ̸= T2, which disappears when T1 = T2, i.e.,
in the usual case of a Brownian particle under the effect of just one equilibrium thermal
bath. The associated discontinuity height is ∆pst =

∣∣ limx↑xu pst(x) − limx↓xu pst(x)
∣∣ =

NI
∣∣T−1

2 − T−1
1

∣∣ and becomes more and more marked as the difference |T1 − T2| is increased.
Note also that the two temperatures T1 and T2 determine the shape and height of the
distribution in each well, but they play no role in the maxima locations, which in turn come
to coincide with the potential minima at ±xm = xu ±

√
b/a. For the sake of completeness,

we mention that under the Stratonovich prescription, the diffusion coefficient of the Fokker–
Planck equation remains unaltered, while its drift coefficient becomes γ−1(−U′(x) + T(x)),
so that the stationary solution is now

pst(x) = NSe−
U(x)
T(x) , (23)

with NS a normalisation factor, which, contrary to Equation (22), is always continuous at
xu also when T1 ̸= T2. We would like to stress that the difference between Equations (22)
and (23) can be ultimately traced back to the presence of two regions with different tempera-
tures. In fact, as mentioned in Section 2.1, in case (a), the Langevin equation Equation (3) can
be recast as Equation (6), which is characterised by a multiplicative noise due to the presence
of the x-dependent temperature T(x). Therefore, as well known from the literature [86,88],
applying different integration schemes leads to different results, hence the different drift
coefficients for the stationary Fokker–Planck equation in the Itô and Stratonovich pre-
scriptions and the resulting different stationary distributions Equations (22) and (23). In
Figure 3a, we provide a comparison between these two stationary solutions and the nu-
merical position distributions at τ = 3 × 104 obtained by integrating the equations of
motions as described in Section 2.3 and setting T1 = 0.2 and T2 = 1.4, so that |T1 − T2| ∼ 1.
The figure at the same time shows that the numerical algorithms we used perform the
integration under the Itô prescription and confirms the presence of the jump discontinuity
in Equation (22).

In Figure 3b, we report instead a comparison between the numerical stationary position
distributions for cases (a) and (b). For case (a) we choose T1 = 0.2, T2 = 0.3, while for
case (b), we fix T1 = T2 = 0.2 and Fa = 10 (Pe = 50) so that, as is shown in Section 3.2,
the kinetic temperature in the left well is ∼0.3 = T2 (the reason for considering the kinetic
temperature will appear clear in Section 3.2). Note that in the left well for case (b), the
location −x̃m of the peak of the distribution is shifted towards the left with respect to the
location of the potential minimum −xm due to the persistent pushing of the active noise.
Even though, up to our knowledge, the stationary Fokker–Planck equation in case (b) has
no exact analytical solution, our numerical results are coherent with the ones from [70], in
which a single active Ornstein–Uhlenbeck particle in a quartic double-well potential like
Equation (2) is studied. In particular, in [70] the location of the peaks of the distribution are
identified as the points in which the confining force due to the quartic potential Equation (2)
and the active force approximated by its average magnitude Fa are balanced, i.e., as the
solutions of the equation −ax3 + bx = ±Fa, where the ± signs apply to the right and left
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wells, respectively. In our case, the solution of the above equation relative to the left well
gives −x̃m ≃ 2.46, which is in good agreement with the location of the left peak from
Figure 3b.

(a) (b)

Figure 3. (a): Stationary position distributions for case (a), with T1 = 0.2 and T2 = 1.4 at sampling
time τ = 3 × 104. The black solid and green dashed lines are the stationary solutions Equation (22)
and Equation (23), respectively, while the blue histogram is the position distribution numerically
sampled, as denoted by the legend. (b): Stationary position distributions for cases (a) and (b) and
Equation (22), as denoted by the legend. For case (a), we fix T1 = 0.2, T2 = 0.3, while for case (b),
T1 = T2 = 0.2, Pe = 50. In all panels, we fixed γ = 10 and a = 1.0, b = 2.0.

To conclude, we point out that the distributions we just commented on provide
qualitative insights on the average residence time τr

r and τl
r of the particle in each well,

which are essential information especially for case (b) in which an analytic estimate for τl
r is

not available. It is in fact intuitive to see that in general, apart from the specific distribution
features, lower temperatures associated with higher peaks in the distributions imply larger
residence times, and vice versa for higher temperatures. According to Figure 3b, we then
intuitively expect that the average residence times in the cases under consideration rank
as follows: τr

r is the largest, τl
r in case (a) is intermediate and finally, τl

r in case (b) is the
shortest.

3. Results
3.1. Heat Exchanges between Two Passive Baths

We start in this section with the investigation of case (a) envisaging a passive bath
in each of the two wells. We first fixed T1 = 0.2 and considered three T2 values, 0.22, 0.3
and 0.4. According to Equation (11), the corresponding average residence times τl

r are
much larger than the inertial time tI = 0.1, ranging from τl

r = 1.05 × 103 for T2 = 0.22
to τl

r = 1.35 × 102 for T2 = 0.4. In Figure 4a, we show the distribution p(qR
E) for these

three choices of temperatures at sampling time τ = 3 × 104 (the distributions p(qL
E) are

just symmetrical). Note that all distributions are characterised by a positive average value,
∼2.10 × 10−5 for T2 = 0.22, ∼1.34 × 10−4 for T2 = 0.3 and ∼2.68 × 10−4 for T2 = 0.4,
confirming that, as intuitively expected, on average, the colder bath in the right well
receives more energy from the hotter bath in the left well than the one it outputs towards
it through the jumping particle. Note also that the distributions are characterised by an
increasing skewness as the temperature difference ∆T = |T1 − T2| is increased. In the
remainder of the present section, we focus on the case T1 = 0.2, T2 = 0.3, which at the
same time guarantees an appreciable skewness of p(qR

E) as well as an efficient sampling of
both positive and negative heat values. Up to what our simulations afforded us to sample,
we checked that the following results for this case also applied to the other values of T2.
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(d)

(e)

(a) (b)

(c)

Figure 4. (a): Distribution p(qR
E ) for case (a) at sampling time τ = 3 × 104 for T2 = 0.22, 0.3 and 0.4,

as denoted by the legend. (b): Curves − ln(p(qR
E )/Aτ)/τ for T2 = 0.3 at different sampling times,

as denoted by the legend. Aτ denotes the maximum of the distribution at each sampling time. The
inset shows instead the trend of the same curves at the largest sampling times considered. (c): Ratio
ln(p(qR

E )/p(−qR
E ))/τ evaluated at different sampling times τ using data from panel (b) along with

the right hand-side of Equation (21) plotted with Tr = T1 = 0.2 and Tl = T2 = 0.3, as denoted
by the legend. (d): Ratio between the average number of jumps in the right→left direction and
left→right directions denoted by ⟨nR→L⟩ and ⟨nL→R⟩, respectively, as functions of sampling time.
The dashed lines denote the left and right average residence times τl

r = 3.11× 102 and τr
r = 1.64× 103,

respectively. (e): Shift ∆S(τ) of the curves from panel (c) as a function of time. For comparison,
here, the black solid line reports the trend of ∼ τ−1. In all panels, we fixed γ = 10, T1 = 0.2 and
a = 1.0, b = 2.0.

In order to study the validity of Equation (1), we first focused on the trend of
− ln(p(qR

E))/τ, which in the large time limit converges to the rate function I(qR
E) whenever

qR
E satisfies a large-deviation principle [54–56]. More specifically, in Figure 4b, we report
− ln(p(qR

E)/Aτ)/τ extracted at different sampling times τ’s, as reported by the legend. At
each sampling time, Aτ denotes the maximum of the distribution and in the ratio, it makes
the resulting curves shift vertically so as to have a minimum value of zero. As highlighted
by the inset of Figure 4b, for τ > 104 ≫ τI = 0.1, we observe that the curves do overlap,
thus implying that qR

E satisfies a large-deviation principle. We therefore proceeded to check
the validity of Equation (1) as prescribed by Equation (21). We used data from Figure 4b
and report the resulting curves at the same τ’s in Figure 4c, as denoted by the legend. We
found that at all τ’s, these curves were linear and, within numerical error, with a slope in
agreement with 1/T1 − 1/T2, so that we could identify Tr with T1 and Tl with T2. We would
like to underline that while previous results proved a fluctuation theorem like Equation (1)
to stand in the case of two different thermal baths separately at equilibrium but acting
simultaneously everywhere in the system [53,57,58], our results extend this scenario to the
case of spatially separated baths.

Interestingly, Figure 4c also shows that at short times, the numerical lines in Figure 4c
do not cross the origin, but rather present a time-decreasing positive shift ∆S(τ) which we



Entropy 2024, 26, 439 13 of 23

can explain by looking at the system phenomenology at short times. During the evolution
of our system, three timescales come into play, i.e., the left and right well residence times,
τl

r ≃ 3.11 × 102 < τr
r ≃ 1.64 × 103, and the sampling time τ at which the distribution

p(qR
E) is considered. When taking into account a large number Np independent realizations

of the system, one then intuitively expects that, as long as τ < τl
r , more jumps from left

to right occur than in the opposite direction, while when τl
r < τ < τr

r , the number of
right→left jumps starts increasing until essentially matching the number of left→right ones
at τ ≫ τl

r , τr
r . Figure 4d confirms this intuition by showing the trend of the numerical ratio

between the average number of jumps in the right→left and in the left→right directions,
respectively denoted as ⟨nR→L⟩ and ⟨nL→R⟩, as functions of sampling time τ. The curve
in fact starts from a value lower than one for τ < τl

r , which then it reaches asymptotically
from below when τ ≫ τr

r . This jump phenomenology clearly bears consequences on the
distribution p(qR

E), and then on the resulting fluctuation theorem. In fact, as apparent from
Figure 4b, at short times τ < τl

r , its left and right branches weigh differently positive and
negative heat values, the left branch being further away from its large-time stationary form
than the right one and mirroring the jump imbalance biased towards left→right positive
heat jumps. As mentioned in Section 2.3, when commenting about Equation (21), these
effects are encoded in the distribution as a sub-exponential contribution c(qR

E), which is a
function of qR

E scaling as tα with α < 1 and in our case, which is directly related with the
observed shift ∆S(τ). As shown in Figure 4e, we in fact find ∆S(τ) = (c(qR

E)− c(−qR
E))/τ

decreasing as ≃ τ−1 corresponding to α ≃ 0, the latter value signalling that the difference
c(qR

E)− c(−qR
E) is of order ∼ O(1).

We now discuss the validity of the fluctuation theorem from Equation (1) for qR
W by

studying p(qR
W) in comparison with p(qR

E). In Figure 5a,b, we compare the distributions
p(qR

W) and p(qR
E) for the same parameter choice as in Figure 4b at sampling times τ = 103

and τ = 3 × 104, respectively. Let us focus on Figure 5a first. What immediately catches
the eye is that, contrary to p(qR

E) and as highlighted by the vertical arrows, p(qR
W) is

characterised by three peaks. This peculiar structure can be readily explained by recalling
the jump phenomenology discussed above. The left and right external peaks highlighted
by the red arrows are due to particles leaving and entering the right well, which are
then responsible for negative and positive energy exchanges, respectively. Since here,
τl

r < τ < τr
r , more particles have jumped from left to right than in the opposite direction,

hence the higher right peak. However, in our large sample of Np independent realizations,
at that time, a large number of particles have not yet jumped at all from the right well,
but rather have been exchanging an average zero heat with the equilibrium thermal bath
in that well, hence the central peak located at qR

W = 0 highlighted by the black arrow.
At large times, p(qR

W) instead loses its three-peak structure and comes to coincide with
p(qR

E) from Figure 4b. In particular, the central peak disappears because at large times, it
is extremely probable that all particles have already jumped almost once, while the other
two become closer and closer until eventually merging. This overall scenario is graphically
confirmed and clarified by Figure 5c, which reports the curves − ln(p(qR

W)/Aτ)/τ extracted
at different sampling times τ’s, as denoted by the legend. The figure, in fact, at the same
time shows the two external peaks clearly getting closer until eventually merging and also
the curves converging towards a convex rate function I(qR

W). Combining further this last
information with the content of Figures 4b and 5b, we can therefore affirm that at large
times, I(qR

W) = I(qR
E). The curves from Figure 5c allow us to finally check the validity of

a fluctuation theorem for qR
W as prescribed by Equation (21). Figure 5d reports the ratio

ln(p(qR
W)/p(−qR

W))/τ evaluated at different sampling times using data from Figure 5c
and, as highlighted by the black line reporting Equation (21) plotted with Tr = T1 = 0.2
and Tl = T2 = 0.3, shows that at large sampling time τ, qR

W indeed satisfies the same
fluctuation theorem shown in Figure 4c and satisfied by qR

E with the same slope. Note
that at short times, the fluctuation theorem is not satisfied because of the sub-exponential
contribution (c(qR

W)− c(−qR
W))/τ, which encodes the three-peak structure of p(qR

W) and
makes the curve actually curvilinear rather than rigidly vertically shifted. To conclude, we
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report that for the left well, we checked that p(qL
W) = p(−qR

W) and consequently, that the
same results discussed until this point for qR

W symmetrically still applied, so that the energy
balance Equation (19)’s results were satisfied.

(d)(c)

(a) (b)

Figure 5. (a,b): Comparison between the distributions p(qR
E ) and p(qR

W) at sampling times τ = 103

and τ = 3 × 104, respectively, with the same parameters as in Figure 4. In panel (a), the three arrows
highlight the three peaks of p(qR

W). (c): Curves − ln(p(qR
W)/Aτ)/τ for T2 = 0.3 at different sampling

times, as denoted by the legend. As in Figure 4, Aτ denotes the maximum of the distribution at
each sampling time. The inset shows instead the trend of the same curves at the largest sampling
times considered. (d): Ratio ln(p(qR

W)/p(−qR
W))/τ evaluated at different sampling times using data

from panel (c) along with the right hand-side of Equation (21) plotted with Tr = T1 = 0.2 and
Tl = T2 = 0.3, as denoted by the legend. In all panels, we fixed γ = 10, T1 = 0.2 and a = 1.0, b = 2.0.

3.2. Heat Exchanges between a Passive and an Active Bath

In this section, we investigate case (b) envisaging a left bath which is given an active
character through the introduction of an additional Ornstein–Uhlenbeck noise. In Figure 6a,
we preliminarily show the distribution p(qR

E) for T1 = T2 = 0.2 and three different Pe at
sampling time τ = 3 × 104 (the distributions p(qL

E) are just symmetrical). The figure is
clearly reminiscent of Figure 4a, with Pe effectively playing the role of a temperature like
T2: as Pe is increased, the distributions shift towards the right, with a consequent increase
in their skewness as well as of the average value of qR

E .
Let us consider in detail the case Pe = 50.0. As in Section 3.1, for the right well, the

residence time is τr
r ∼ 1.64× 103 as prescribed by Equation (11). For the left well we instead

numerically estimate it as τl
r ∼ 34.18, so that the conditions τl

r , τr
r > τp = 16.67 ≫ τI = 0.1

are satisfied. Figure 6b shows the trend of − ln(p(qR
E))/τ for an increasing sampling time

τ, as denoted by the legend. As remarked by the inset and similarly to Section 3.1, also
in this case, we find the curves to converge at large times towards a convex rate function
I(qR

E), thus proving qR
E satisfies a large-deviation principle even when one of the baths is

made active. Figure 6c shows instead the ratio ln(p(qR
E)/p(−qR

E))/τ evaluated at different
times using data from Figure 6b. Interestingly, also in this case, the resulting curves show a
linear trend at all times. Here, the effect of the sub-exponential contribution c(qR

E) makes
the slope of the curves reduce until reaching a constant value, as remarked by the inset.
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Following the same line of action as in Section 3.1, one can fit these lines as prescribed by
Equation (21), so as to extract a temperature estimate for the right well based on fluctuation
theorems. When doing so, identifying a priori Tr with T1 = 0.2, one finds for the left well

TqR
E

FT ∼ 0.3 (whence the choice of parameters in Figure 3b for which T2 = 0.3 from case (a)

and TqR
E

FT ∼ 0.3 from case (b) essentially coincide). The resulting line (T−1
1 − (TqR

E
FT)

−1) · qR
E is

reported in Figure 6c for completeness. The possibility Tl = T2 = 0.2 can thus be trivially
discarded since, as in the case Pe = 5 from Figure 6a in which the effect of the active noise is
essentially negligible, it would lead to p(qE) = p(−qE), and therefore to a vanishing slope.

(d)

(a) (b)

(c)

Figure 6. (a): Distribution p(qR
E ) for case (b) at sampling time τ = 3 × 104 for Pe = 5, 50 and

75, as denoted by the legend. (b): Curves − ln(p(qR
E )/Aτ)/τ for Pe = 50 at different sampling

times, as denoted by the legend. As in Figure 4, Aτ still denotes the maximum of the distribution at
each sampling time. The inset shows instead the trend of the same curves at the largest sampling
times considered. (c): Ratio ln(p(qR

E )/p(−qR
E ))/τ evaluated at different sampling times τ up to

τ = 103 in the main figure and between τ = 104 and τ = 3 × 104 in the inset, as denoted by the
legend. The main plot and inset were obtained using data from the main plot and inset of panel
(b), respectively, and both report the trend of (T−1

1 − T−1
FT ) · qE as a black solid line, with TFT ∼ 0.3

extracted from a fit of the curves in the inset performed as described in the main text. (d): Overview of

the temperatures TqR
E

FT and TqR
W

FT (yellow and green circles) extracted from p(qR
E ) and p(qR

W) at sampling
time τ = 3 × 104 as prescribed by Equation (21) as a function of Pe compared to Th

kin, Th
e f f and

Tdw
kin , Tdw

e f f obtained in the harmonic (light blue and red lines) and double-well (dark blue and red lines)

configurations, respectively. Th
kin and Th

e f f are plotted as solid lines to highlight their analytical origin
from Equations (A12) and (A13), while all other data are plotted as dot and lines, the dots reporting
the values obtained numerically, the lines being a guide to the eye, including the lower black solid
line reporting a sample linear trend ∼ Pe. In all panels we fixed γ = 10 and T1 = T2 = 0.2, while in
the harmonic and double-well configurations, we set k = 4.0 and a = 1.0, b = 2.0, respectively.

At this point, one could naturally ask how TqR
E

FT is influenced by the strength of the ac-
tivity, i.e. by Pe, and also whether this temperature coincides with other out-of-equilibrium
temperatures like the kinetic and effective ones mentioned in Section 1 and detailed in

Appendix A. Concerning the first question, Figure 6d shows the trend of TqR
E

FT (yellow dots)
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obtained by varying Pe while keeping fixed all other system parameters, while Table 1
reports the exact values emerging from the analytical expressions from Appendix A and
from our fit procedure performed while keeping Tr = T1 = 0.2 fixed. The data suggest

that TqR
E

FT increases roughly linearly as a function of Pe. Note that at all Pe considered, the
estimated left residence times τl

r satisfy the condition τl
r > τp = 16.67 ≫ τI = 0.1, as

reported in Table 1.

In order to answer the second question, we instead compared TqR
E

FT with the kinetic
and effective temperatures obtained for a particle subjected everywhere to the active bath
and under the separate action of two different external potentials. The first potential we
considered was a harmonic one U(x) = kx2/2 introduced in such a way as to approximate
the quartic double-well potential Equation (2) around one if its minima, i.e. setting k = 2b
with 2b the second derivative of Equation (2) at its minima locations ±xm. In such a case, we
referred to the overall configuration as the harmonic configuration, the two temperatures
were denoted as Th

e f f and Th
kin, and, as detailed in Appendix A, an analytical derivation was

feasible with resulting expressions provided by Equations (A12) and (A13). The second
potential we considered was instead the usual quartic double-well potential Equation (2),
and the relative configuration was referred to as the double-well configuration. Here, the
two temperatures were denoted as Tdw

e f f and Tdw
kin and their estimates were obtained by

numerical means. The rationale underlying these configurations followed our desire to

understand if the value of TqR
E

FT was determined mostly by the permanence of the particle
around the potential minimum (hence the harmonic configuration), or, similarly to what
was observed for the variation in entropy production for an active particle under the action
of a quartic double-well potential [70,89], by the non-convex region of Equation (2) (hence,
the double-well configuration).

Table 1. Estimates of the average residence time in the left well τl
r and of the temperatures TqR

E
,

TqR
W

, Th
e f f , Th

kin, Tdw
e f f , Tdw

kin for various choices of increasing Pe. The values of Th
e f f , Th

kin were obtained
analytically from Equations (A12) and (A13), while all other time and temperature estimates were
obtained numerically. In all cases, the system was evolved until τ = 3 × 104, and we fixed γ = 10
and T1 = 0.2, T2 = 0.2, while in the harmonic and double-well configurations, we set k = 4.0 and
a = 1.0, b = 2.0, respectively.

Pe τl
r TqR

E
FT TqR

W
FT

Th
e f f Th

kin Tdw
e f f Tdw

kin

50.0 34.18 0.30 0.42 22.05 0.33 21.20 0.30

65.0 32.09 0.35 0.45 37.13 0.42 30.68 0.35

75.0 31.41 0.39 0.47 49.36 0.49 32.92 0.38

100.0 29.85 0.43 0.60 92.42 0.72 37.49 0.46

150.0 27.36 0.63 1.59 207.69 1.43 97.12 0.66

Figure 6d reports the trend of the temperature values we obtained in the two con-
figurations under consideration, while Table 1 offers an overview of their values. From

a comparison with the trends and values of TqR
E

FT it is immediate to realise that there is no
correspondence between any of the two effective temperatures. The kinetic temperatures

are instead much closer to TqR
E

FT , with Tdw
kin essentially coinciding exactly. We therefore con-

clude that it is not enough to limit our attention to the evolution of the particle around
the potential minima, but rather considering its dynamics around its local maximum at xu

is essential. Moreover, the affinity of TqR
E

FT to the kinetic temperature seems to mirror the
inherent character of QR

E : instantaneous energy exchanges are best described in terms of an
instantaneous out-of-equilibrium temperature.
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We now turn to comment on the behaviour of the heat qW and active work wa per
unit time. Figure 7a reports the curves − ln(qR

W)/τ for an increasing sampling time τ
for the same parameter choice as in Figure 6b. Along with its inset, the figure shows
that also in this case, these curves converge at large times towards a convex rate func-
tion I(qR

W), thus proving that qR
W also satisfies a large-deviation principle when the left

bath is active. Concerning the validity of a fluctuation theorem, Figure 7b shows the
ratio ln(p(qR

W)/p(−qR
W))/τ evaluated at different times using data from Figure 7a. As in

Figure 5d, at small times, the sub-exponential contribution (c(qR
W)− c(−qR

W))/τ makes the
resulting curves actually curvilinear, while at large times, they assume a linear trend with a

constant slope. Following the usual fitting procedure, in this case, we found TqR
W

FT ∼ 0.42,

and the resulting curve (T−1
1 − (TqR

W
FT )

−1) · qR
W is reported in Figure 7b and its inset for

completeness. In order to give context to this finding, Figure 7c reports a comparison
between p(qR

W) and p(qR
E) at sampling time τ = 3× 104. Interestingly, contrary to Figure 5b

from case (a), here, at large times, the two distributions do not coincide, but p(qR
W) is

rather slightly shifted towards the right with respect to p(qR
E). As Figures 6b and 7a show

that at this τ, the curves − ln(p(qR
E))/τ and − ln(p(qR

W))/τ have both already converged
towards their respective rate functions, the origin of this discrepancy is not a matter of
not a long enough sampling time, but its explanation must rather be searched once again
in the very dynamics of the system. To this end, we reconsidered the position stationary
distribution from Figure 3b. As commented in Section 2.4, this is characterised by a left
peak shifted towards the left with respect to the location of the left minimum −xm of the
double-well potential Equation (2). This effect is in turn ascribable to the action of the
active noise a(t) which pushes the particle towards the left when assuming persistently
negative values. When instead a(t) persistently assumes positive values, it pushes the
particle towards the right until making it jump in the right well. In doing so, the particle
essentially takes a run-up, so that, contrary to case (a) , when jumping towards the right, its
velocity is enhanced. As a consequence, the particle is not able to dissipate all accumulated
excess energy essentially instantaneously at xu as in case (a), but it rather completes its
thermalization with the right-well bath during the descent towards the right minimum
located at xm, hence the released surplus energy, the shift of p(qR

W) and the resulting fit

temperature TqR
W

FT higher than both TqR
E

FT , Tdw
kin ∼ 0.3.

We remark that this finding is coherent with the phenomenology described above:
the release of energy associated with qR

W does not occur instantaneously, so the kinetic
temperature is obviously not fit to describe this phenomenon. At the same time, this
energy release does not persist long enough to make the effective temperature Tdw

e f f ∼ 21.2

intervene, so that Tdw
kin ∼ TqR

E
FT < TqR

W
FT < Tdw

e f f . Interestingly, Figure 6d and Table 1 show that
the temperature discrepancies we uncovered at Pe = 50 are not peculiar of this specific

case but are instead common for all other Pe we considered, with Tdw
kin ∼ TqR

E
FT < TqR

W
FT < Tdw

e f f
in all cases.

To conclude, we briefly comment on the heat exchanges’ distributions for the left
bath, captured at sampling time τ = 3 × 104 and Pe = 50. Figure 7d reports p(qL

W) and
p(wa) and shows that values spanned by these distributions are much larger than the ones
spanned by p(qR

W) and p(qR
E) from Figure 7c. This effect is due to the enhanced velocity

of the particle pushed by the active force. Note also that the signs of qL
W and wa agree and

their distributions almost overlap. That they do not completely overlap is in turn shown
by the inset reporting p(qL

W − wa) compared to p(qL
E) = p(−qR

E). The inset in fact shows
that p(qL

W − wa) records non-zero values of three orders of magnitude lower than those
associated with the distributions from the main figure and of the same order of magnitude
as the ones associated with p(qL

E). Moreover, similarly to what happens for p(qR
W) and

p(qR
E) from Figure 7c, p(qL

W − wa) is slightly shifted with respect to p(qL
E). Finally, we

conclude by remarking that the distributions p(qR
W) and p(qL

W − wa) are coherent with the
energy balance Equation (19).
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(d)

(a) (b)

(c)

Figure 7. (a): Curves − ln(p(qR
W))/τ for Pe = 50 at different sampling times, as denoted by the legend.

Aτ denotes the maximum of the distribution at each sampling time. The inset shows instead the
trend of the same curves at the largest sampling times considered. (b): Ratio ln(p(qR

W)/p(−qR
W))/τ

evaluated at different sampling times using data from panel (a) along with the right hand-side of

Equation (21) with Tr = 0.2 fixed and Tl = TqR
W

FT ∼ 0.42 extracted from a fit of the curves in the inset
performed as described in the main text, as denoted by the legend. (c,d): Comparison between the
distributions p(qR

E ), p(qR
W) and p(qL

W), p(wa) at sampling time τ = 3 × 104, respectively, with the
same parameters as in Figure 6a. In panel (d), the inset shows instead a comparison between p(qL

E)

and p(qL
W − wa). In all panels, we fixed γ = 10, T1 = T2 = 0.2 and a = 1.0, b = 2.0.

4. Conclusions

In this paper we numerically studied the heat exchanges occurring between two heat
baths of different nature with the purpose to investigate the role temperature plays in these
phenomena. The baths were spatially confined in the two wells of a quartic double-well
potential, while the heat exchanges were mediated by a Brownian particle jumping between
the two. Heat was sampled according to two different definitions: as the total kinetic energy
carried by the particle when jump events occur and as the work performed by the particle
on one of the two baths when immersed in it. These heat distributions were used to check
the validity of a fluctuation theorem whence possibly extracting a temperature estimate
for the baths through a proper linear fit. This procedure allowed us to introduce the
definition of an out-of-equilibrium temperature whose resulting values we compared not
only with the bath temperatures, but also with other out-of-equilibrium temperatures as
the kinetic and effective ones. Operatively, we fixed an equilibrium bath in the right well
and considered two different configurations for the one in the left well.

In the first case, we fixed another equilibrium thermal bath with a different temper-
ature and found both heat definitions to satisfy the same fluctuation theorem with fit
temperatures coinciding with the ones of both baths. These results extend the analysis
of [53,57,58] to the cases of spatially separated equilibrium thermal baths.

In the second case, we instead considered an active bath by introducing an additional
Ornstein–Uhlenbeck noise, making the bath effectively out of equilibrium. Also in that case,
we found a fluctuation theorem to be satisfied. However, there, the temperature relative
to the left bath turned out to coincide with its out-of-equilibrium kinetic temperature for
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the heat defined as the sum of kinetic energies and with a higher one yet still lower than
the effective temperature for the other definition of heat. These results and discrepancies
were interpreted by looking at the system phenomenology, finding them to mirror the
instantaneous or longer release of energy captured by both heat definitions.

The present study could represent the first step towards a deeper and wider inves-
tigation on the role played by temperature in heat exchanges. If and where possible,
analytical approaches could in fact provide further validation and insights into the overall
scenario emerging from our investigation. Moreover, more complex geometries and bath
features could be explored so as to clarify even better the role of kinetic temperature in
heat exchanges or reveal cases where instead the effective temperature plays a prominent
role. Experiments adopting setups and technologies already in place like Janus parti-
cles [72–75] and optical tweezers [76,77] could provide further validation and connections
with real systems.
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Appendix A. Effective and Kinetic Temperatures

Effective and kinetic temperatures are two out-of-equilibrium temperature definitions able
to capture instantaneous and time-delayed properties of the system [3,4,40,41,45,46,59–62],
respectively. Their definitions rely in fact on two fundamental results of statistical me-
chanics more effective in these two time regimes: the equipartition theorem [90] and the
fluctuation–dissipation theorem [91].

Concerning the effective temperature, we first recall the definition of mean square
displacement and integrated linear response function. The former is defined as

∆2(t′, t) ≡ ⟨[r(t)− r(t′)]2⟩ , (A1)

and measures how far on average a particle travels over time with respect to a fixed initial
location, while the latter is defined as

χ(t′, t) ≡
∫ t

t′
dt′′

d

∑
α=1

Rαα(t′′, t) , (A2)

with

Rαβ(t′, t) =
δ ⟨rα(t)⟩λ

h
δhλ

β(t
′)

∣∣∣∣
hλ

β=0
(A3)

the linear response of the system, d the dimension of the system, α, β dimensional indices
and hλ

β(t
′) an external perturbation depending on the parameter λ and measures how
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a system responds to a small external perturbation. The above two functions are both
involved in the position fluctuation–dissipation theorem

2Tχ(t′, t) = ∆2(t′, t) . (A4)

Based on the above relation, the time-dependent effective temperature for an out-of-
equilibrium system is then defined as [3,4,61]

Te f f (t′, t) ≡ ∆2(t′, t)
2χ(t′, t)

. (A5)

Concerning the kinetic temperature, we recall the equipartition theorem stating that for
each degree of freedom i of an equilibrium system, the temperature T and the velocity
fluctuations are related as

1
2

m
〈

ṙ2
i (t)

〉
=

1
2

kBT . (A6)

It is then natural for each degree of freedom of an out-of-equilibrium system to define the
time-dependent kinetic temperature as [4,46,62]

Tkin(t) ≡
m ⟨ṙ2

i (t)⟩
kB

. (A7)

In equilibrium systems, as for example a single Brownian particle in contact with a
white-noise bath with temperature T, the two definitions boil down to the same expression,
T. In more complex configurations, they can instead be very different. For example, for
a free active Ornstein–Uhlenbeck particle [63–66], i.e. a particular instance of an active
particle, the integrated linear response function reads

χ(t′, t) =
t − t′

γ
, (A8)

while the mean square displacement and velocity expressions are provided by [64]. Com-
bining these functions as prescribed by Equation (A5) and (A7), and fixing t′ = 0, one finds
that in the long time limit t ↑ ∞

Te f f −→ T +
F2

a
γγR

. (A9)

and

Tkin −→ T +
F2

a
γ

1
(γR + γ

m )
, (A10)

where we dropped the time dependence as both temperatures reach a constant value.
Analytical estimates can also be provided for an active Ornstein–Uhlenbeck particle under
the action of an external harmonic potential like U(x) = kx2/2. In this case the integrated
linear response function is

χ(t′, t) =
1 − e−

γ
k (t−t′)

k
, (A11)

while the mean and velocity square displacement expressions are again provided by [64].
Combining these functions as above, and fixing t′ = 0, one finds that in the long time limit
t ↑ ∞

Te f f −→ T +
F2

a
γ

1 + γ
mγR

(γR + γ
m + k

mγR
)

. (A12)

and

Tkin −→ T +
F2

a
γ

1
(γR + γ

m + k
mγR

)
(A13)
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which in the limit k ↓ 0 reduce to Equation (A9) and Equation (A10), respectively.
To our knowledge, in even more complex systems analytical results are not available.

However, one can always resort to numerical methods and evaluate the kinetic and effective
temperatures as prescribed by their definitions Equations (A5) and (A7). In particular, the
effective temperature estimation requires the knowledge of the integrated linear response
function to be evaluated using an external perturbation low enough for the system to remain
in the linear regime and at the same time large enough to overcome large fluctuation effects.
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