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Abstract: Increasing awareness of the problems caused by synthetic agrochemicals, such as chemical
fertilizers, pesticides, and herbicides, makes it crucial to discover substitute approaches that can
guarantee competitive plant production and protect the environment while maintaining the natural
balance in agroecosystems. One of the leading alternatives is utilizing rhizobacterial strains named
plant growth-promoting rhizobacteria (PGPR). The utilization of PGPR-based biofertilizers for ad-
vancement in the sustainability of farming productions has received considerable critical attention all
over the world because of their contribution to not only improving plant growth but also inducing
biotic and abiotic stress tolerance. This review updates the aforementioned eco-friendly strategy in
sustainable agroecosystems and provides new insights into the phytostimulation and bioprotection
ability of lactic acid bacteria (LAB), an emerging taxon of PGPR. In this regard, the ability of LAB to
synthesize metabolites, including organic acids, phenolic acids and their flavonoid derivatives, phy-
tohormones, and antimicrobial substrates, is presented. The use of LAB provides a bridge between
PGPR and environmentally friendly crop productivity, which can lead to sustainable production
systems by reducing the use of agrochemicals, improving soil quality, and minimizing environmental
pollution. All the beneficial aspects of LAB need to be addressed by future research to plan systematic
methodologies for their use and/or to combine the use of PGPR along with other organic or inorganic
inputs in sustainable production systems.

Keywords: biofertilization; bioprotection; plant growth-promoting rhizobacteria; phytostimulation

1. Introduction

Supplying adequate agrifood products and byproducts, the demand for which has in-
creased as the global population rises, requires diverse strategies, including (i) incrementing
the cultivation area and (ii) improving the production per unit area. However, although the
first approach (e.g., land use change) increased production, the conversion of natural land-
forms into farming land led to an environmental challenge through land degradation [1–3].
This problem has become increasingly important in the Mediterranean basin, which demon-
strates obvious movements of degradation, especially in areas where climate changes and
meteorological conditions contribute extremely to it [4]. As an alternative strategy, the
application of agrochemicals (e.g., artificial fertilizers, herbicides, etc.) and intensive farming
management practices to increase crop production has brought the major disadvantage of
the increasing contamination of agricultural products and the environment [5,6]. Moreover,
the strong demand for agrochemicals from domestic and global markets has driven up their
prices and caused economic challenges in the agricultural sector [7].

One of the most significant current discussions is a reconsideration of technologies
to boost plant production, focusing on alternative strategies, mainly the application of
beneficial biological approaches and bio-based products. The application of beneficial
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microbial consortia, mainly plant growth-promoting rhizobacteria (PGPR), has become one
of the most widely used biological alternatives in sustainable agriculture. Such beneficial
rhizobacteria can be considered plant biostimulants, which, according to Regulation (EU)
No. 2019/1009 of the European Parliament [8], can be used as fertilizing products to
promote the plant nutritional value, increase the nutrient locked-up availability in the rhi-
zosphere/soil, and improve plant tolerance against abiotic and biotic stresses [9]. Moreover,
the presented sustainable alternatives of agrochemicals receive considerable critical atten-
tion in fulfilling part of the United Nations Sustainable Development Goal 15, including
how microbial-based biofertilization can promote the sustainable use of agroecosystems
and preserve farmlands from degradation.

Recently, investigators have attempted to evaluate the potential of identified PGPR and
their mechanisms of action as agents of biofertilization, phytostimulation, bioremediation,
and bioprotection (Figure 1). Table 1 presents an overview of some identified PGPR and
their functional attributes, as further discussed in Sections 2 and 3.
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Table 1. Some identified PGPR and their mechanisms as the agents of biofertilization, phytostimula-
tion, bioremediation, and bioprotection.

PGPR Strain Mode of Action
Plant (PGPR Isolated
from and/or Affected

by PGPR)
Reference

Providencia rettgeri
(Strain RFFL-I; Accession

No. MK618564.1)

- Phosphate solubilization
- Production of exopolysaccharides,

HCN, siderophores, and IAA
- Enzyme activities (e.g., phosphatase,

cellulase, pectinase, and chitinase)

Barley Ferioun et al.
[10]

Azospirillum spp.
(Strain YM 249; Accession No.

LN833443 and strain Gr 22;
Accession No. LN833448)

- Nitrogen biological fixation
- Phosphate solubilization
- IAA production

Potato Naqqash et al.
[11]

Bacillus cereus
(Accession No. AJ276351.1) - Production of cytokinins and IAA Walnut Liu et al. [12]

Bacillus spp.
(Accession No. OM978377; OM978378;

OM978375; OM978380)

- Phosphate solubilization
- IAA production Tomato Kouam et al.

[13]
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Table 1. Cont.

PGPR Strain Mode of Action
Plant (PGPR Isolated
from and/or Affected

by PGPR)
Reference

Azospirillum brasilense
(commercial inoculant)

- Nitrogen biological fixation
- IAA production Maize Hungria et al.

[14]

Azotobacter vinelandii ATCC 12837
- Nitrogen fixation
- Production of siderophores, IAA,

GA3, HCN, and vitamins
Tomato Conde-Avila

et al. [15]

Pseudomonas aeruginosa, P. putida,
P. cepacia,

P. fluorescens

- Phosphate solubilization
- Production of siderophores, IAA,

and HCN
- Deshwal and

Kumar, [16]

Acinetobacter pittii
(Accession No. MT974044),

Acinetobacter oleivorans
(Accession No. MT974043),
Acinetobacter calcoaceticus

(Accession No. MT974039),
Comamonas testosteroni

(Accession No. MT974042),

- Phosphate solubilization
- Potassium solubilization
- Zinc solubilization
- Biological nitrogen fixation
- IAA production

Durum wheat Yaghoubi et al.
[17]

Lactococcus lactis (Genome accession
No. JADBCD000000000),

Enterococcus faecium (Genome accession
No. JADBCB000000000),

Bacillus velezensis FUA2155,
Bacillus amyloliquefaciens Fad 82

- Phosphate and potassium
solubilization

- Antifungal activity
Wheat Strafella et al.

[18]

Enterobacter asburiae
Pseudomonas koreensis P. linii

- Phosphate solubilization
- Production of siderophores and IAA Melon Murgese et al.

[19]

Enterobacter sp.
(Accession No. KX209145)

Pseudomonas sp.
(Accession No. KX290125)

Azotobacter chroococcum
(Accession No. KX209144)

Rhizobium sp.
(Accession No. KX209152)

Staphylococcus sp.
(Accession No. KX209174)

- Phosphate solubilization
- Production of siderophores and IAA
- Enzyme activity (ferric-chelate

reductase)

Barley, tomato, and
cucumber

Scagliola et al.
[20]

Bacillus tequilensis
Variovorax paradoxus

Acidovorax facilis
Leucobacter aridicollis

Streptomyces fimicarius
Pseudomonas nitroreducens

- Phosphate solubilization
- Production of siderophores and IAA
- Nitrogenase and

1-aminocyclopropane-1-carboxylic
acid (ACC) deaminase activity

Sugarcane Solanki et al.
[21]

Pseudomonas sp.
(Accession No. GU550663)

- Heavy metal phytoremediation
- Production of siderophores and IAA

Thyme leaf, sandwort,
and brown mustard Ma et al. [22]

Pantoea ananatis,
Enterobacter sp.

(commercial inoculant)

- Phosphate and potassium
solubilization Rice Bakhshandeh

et al. [23]

Bacillus cereus,
B. megaterium

(commercial inoculant)
- Potassium solubilization Soybean Bakhshandeh

et al. [23]
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Table 1. Cont.

PGPR Strain Mode of Action
Plant (PGPR Isolated
from and/or Affected

by PGPR)
Reference

Pantoea agglomerans
(Accession No. KT804413),

Rahnella aquatilis
(Accession No. KM977991),

Pseudomonas orientalis
(Accession No. KJ529081)

- Potassium solubilization
- IAA production

Rice Yaghoubi et al.
[24]

Bacillus licheniformis
(Strain MSB29; Accession No. KF803996),

Pseudomonas azotoformans
(Strain HSS-1; Accession No. KJ816640)

- Potassium solubilization
- IAA production

Rice, banana, maize,
sorghum, and wheat Saha et al. [25]

Burkholderia cenocepacia - Phosphate solubilization Tobacco Liu et al. [26]

Agrobacterium tumefaciens
(Accession No. KX209151)

Rhizobium sp.
(Accession No. KX209189)

- Zinc solubilization Barley and tomato Yaghoubi et al.
[27]

Enterobacter asburiae
(Strain BFD160; Accession No. KX290147),

Pseudomonas koreensis
(Strain TFD26; Accession No. KX290158),

Pseudomonas lini (Strain BFS112;
Accession No. KX290180)

- Mineral solubilization Cucumber Scagliola et al.
[28]

Pseudomonas putida P. fluorescens
Azospirillum lipoferum

- Zinc and iron solubilization
- IAA production Rice Sharma et al.

[29]

Rhizobium sp. - Nitrogenase activity
- IAA production Rice Purwanto et al.

[30]

Micrococcus yunnanensis YIM 65004,
Stenotrophomonas chelatiphaga LPM-5 - Siderophore production Canola and maize Ghavami et al.

[31]

Bacillus amyloliquefaciens RWL-1
(Accession No. HQ840415)

- Biostimulation (gibberellin
production) Rice Shahzad et al.

[32]

Lactobacillus acidophilus - Biocontrol (antimicrobial)
- IAA production

Banana, cotton, maize,
and wheat Mohite [33]

Pseudomonas fluorescens CHA0,
Rhizobium leguminosarum bv. phaseoli

- Biopesticede (to control root-knot
nematode, Meloidogyne javanica)

Chickpea, bean, lentil,
and pea

Tabatabaei and
Saeedizadeh

[34]

Bacillus subtilis GB03; FZB24,
B. amyloliquefaciens IN937a,

B. pumilus SE34

- Biodegradation of pesticides in
contaminated soil - Myresiotis et al.

[35]

Azospirillum lipoferum
A. brasilense - Biodegradation of crude oil in soil Wheat Parewa et al.

[36]

Pseudomonas aeruginosa
(Accession No. KP717554),

Alcaligenes feacalis
(Accession No. KP717561),

Bacillus subtilis
(Accession No. KP717559)

- Protection of plants against the toxic
effects of heavy metals (Ni, Cr, and Cd) Brown mustard Aka and

Babalola [37]

B. lentus A05,
Pseudomonas aeruginosa A08 - Bioherbicide Ageratum conyzoides

weed
Rakian et al.

[38]
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Table 1. Cont.

PGPR Strain Mode of Action
Plant (PGPR Isolated
from and/or Affected

by PGPR)
Reference

Pseudomonas fluorescens CHA0T

- Biosynthesis of the antibiotics
(2,4-diacetylphloroglucinol,
phenazine-1-carboxylic acid,
pyoluteorin, and pyrrolnitrin)

Wheat Müller et al.
[39]

Streptomyces rochei IDWR19,
S. carpinensis IDWR53,

S. thermolilacinus IDWR81

- Biocontrol (antifungal)
- Enzyme production (e.g., chitinase,

cellulase, and phytase)
Wheat Jog et al. [40]

Bacillus megaterium
- Ethylene inhibition
- Phosphate solubilization
- Phytohormones (ABA) production

Tomato Porcel et al.
[41]

Bacillus sonorensis

- Bioprotection (Chitinase production)
- Phosphate solubilization
- Production of HCN, IAA, and

ACC deaminase

Sweet and chili
peppers

Thilagar et al.
[42]

Ochrobactrum sp.
(Accession No. JQ514559)

- Biodegradation of chlorpyirfos
- Phosphate solubilization
- Production of HCN and IAA

Rice
Abraham and
Silambarasan

[43]

Sinorhizobium meliloti 1021 - Vitamins (biotin) production Alfalfa Hofmann et al.
[44]

Sinorhizobium meliloti 1021 - Vitamins (riboflavin and lumichrome)
production Alfalfa Phillips et al.

[45]

Among the most potentially beneficial rhizobacteria, lactic acid bacteria (LAB) are
suggested as a new promising group of PGPR. However, their functions in agroecosystems,
including their role as biofertilizers, biocontrol agents against pathogens, and biostimulants
in plant production, have received far too little attention, apart from intensive studies on
their traditional role in food processing sectors. Understanding the functional attributes
of LAB and their mechanisms is important to use them as a potential way to improve
soil health and sustainable plant production. Therefore, this review aims to update the
recognized potential of PGPR, mainly LAB, and to reveal their mechanisms of action via
which they impact agroecosystems by securing their sustainability.

2. Functional Attributes of PGPR and Their Mechanisms
2.1. Phytostimulation

Bacterial phytohormone production is one of the important studied traits in the plant–
microorganism relationship because plant growth and development are directly dependent
on phytohormone levels. To date, nine categories of plant hormones have been recognized:
auxins (mainly in the form of 3-indol acetic acid (IAA)), gibberellins (GAs), cytokinins
(CKs), ethylene (ETH), abscisic acid (ABA), brassinosteroids (BRs), salicylic acid (SA),
jasmonic acid (JA), and strigolactones (SLs) [46].

2.2. Biofertilization

Atmospheric nitrogen can be converted to plant-absorbable forms (NH4
+) by PGPR

with biological nitrogen-fixing (diazotrophy) ability [18]. Nitrogen-fixing bacteria (NFB)
are categorized into two main groups including (i) symbiotic bacteria associated with
leguminous plants (e.g., Rhizobium) and nonleguminous plants (e.g., Frankia genus and
Azospirillum species associated with some dicotyledonous species and cereal grasses, re-
spectively) and (ii) nonsymbiotic free-living bacteria (e.g., cyanobacteria and some genera,
including Azotobacter, Arthrobacter, Beijerinckia, Pseudomonas, and Diazotrophicus) [47].



Appl. Sci. 2024, 14, 1798 6 of 18

Phosphate solubilizing bacteria (PSB) are among the known PGPR, with a notable
capability in solubilizing insoluble complexes of P in soil and making them available
to plants using various mechanisms [48,49]. Typically, PSB affect a soil’s biological and
physicochemical characteristics, particularly through the release of various organic acids
that lead to the chelation of mineral ions and decrease the environmental pH, providing
soluble forms of P into the soil [5]. Moreover, the secretion of some enzymes (e.g., phytases
and phosphatases) by PSB into the soil can lead to the breaking down of complex organic P
forms by catalyzing the mineralization process [49].

The application of potassium solubilizing bacteria (KSB) was proposed as one of
the sustainable efficient practices in plant production by transforming insoluble K from
feldspar and aluminosilicate minerals into available K and improving the K uptake by
plants [24,50]. Various mechanisms are used by KSB, such as the synthesis of organic acids
(e.g., oxalic acid, citric acid, succinic acid, tartaric acid, and α-ketogluconic acid), which can
affect the dissolution of K-containing minerals by decreasing the pH of the environment as
well as by attaching the polysaccharides to the mineral surface [51,52]. The complexation
of metal ions (e.g., Fe2+, Al3+, and Ca2+) and proton supply are other mechanisms of KSB
to enhance the dissolution of K compounds [52].

It has been reported that zinc (Zn) deficiency can be addressed by applying a type of PGPR
known as zinc solubilizing bacteria (ZSB), which can mobilize Zn complexes and solubilize
insoluble Zn forms in the soil, including ZnO, ZnCO3, and Zn3(PO4)2, through various mecha-
nisms [27]. These PGPR exude organic acids and phenolic and flavonoid compounds in the
rhizosphere, resulting in the sequestration of Zn cations, lowering the pH of the rhizosphere and,
consequently, increasing the soluble form of Zn and the ratio of Zn2+ to organic Zn ligands [53].
In fact, Zn absorption is mainly affected by soil pH, in which Zn easily adsorbs on cation
exchange places at high pH levels while being replaced by CaCl2 at low pH levels [27].

On the other hand, it has also been suggested that the high Zn mobilization in soils in
the presence of high levels of low molecular weight organic acids, phenolics, siderophores,
and other bacterial metabolites mostly depends on the complexing capacity of these metabo-
lites compared to their ability to acidify the rhizosphere [53,54]. Such complexing capacity
is raised at high levels of soil pH due to the high concentration of deprotonated carboxylic
and phenolic moieties, which are more potent Lewis bases in reacting with metal cations.
Moreover, some organic molecules possessing more than one acidic moiety (e.g., citric acid)
show a greater complexing capacity at high pH levels and, therefore, can form polydentate
complexes with cations possessing more than one positive charge, such as Fe3+ and Zn2+,
when all the acidic functional groups are consecutively deprotonated [17,54].

Several studies have clearly shown the favorable effects of PGPR on nutrient up-
take and plant production. For instance, Bakhshandeh et al. [52] reported an increment
in P and K uptake by rice plants, influenced by three PGPR strains (Pantoea ananatis,
Rahnella aquatilis, and Enterobacter sp.), of up to 35–77% in leaves, 17–53% in stems, and
25–75% in roots, as well as plant height (+11–15%) and biomass (+27–65%), depending
on the PGPR strain. Moreover, some researchers have documented that the application
of PGPR treatment promoted plant growth by improving leaf photosynthetic efficiency
by up to 19, 12, 12, 16, and 20% in durum wheat [55], rice [56], eggplant [57], cucumber,
and pepper [58], respectively, compared to nontreated control plants, which could lead to
higher CO2 assimilation [59] and enhanced grain yield [56].

2.3. Bioprotection

Several enzymes synthesized by PGPR have a critical function in protecting a plant
from stress and pathogens [60]. Some of them, including chitinases, cellulases, and glu-
canases, could be labeled as biopesticides since they hinder plant pathogen growth by hy-
drolyzing polysaccharides and fibrillar materials of the cell wall of pathogenic fungi [60,61].
In this regard, Saraf et al. [62] reported that enzyme synthesis (e.g., proteases, chitinase,
and β-1,3-glucanase) by PGPR strains can be considered an important strategy to control
soil-borne pathogens through enzymatic degradation or deformation of their cell wall.
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Another effective mechanism of PGPR is the synthesis of volatile organic compounds
(VOCs), which makes them able to interact with plants and other soil microorganisms by caus-
ing systemic resistance to disease and pathogens and promoting plant development [63,64].
In fact, some characteristics of these secondary metabolites, such as low molecular weight
(<300 g mol−1), high vapor pressure (>0.01 kPa), and low boiling point, enable them to
volatilize and act as the agents of cell signaling [63,65]. Nearly 846 different potential VOCs
produced by soil bacteria have been identified [58], the most important of which is N,N-
dimethylhexadecylamine (DMHDA), a plant protector against pathogens (e.g., Botrytis cinerea
and Phytophthora cinnamomi), and dimethyl disulfide (DMSD), an elicitor of plant defense as
well as a plant growth stimulator by increasing the status of sulfur nutrition in plants [49,63].

Plants can usually produce enough vitamins (e.g., biotin, riboflavin, niacin, thiamin,
and pantothenate) for their development and provide them to soil microorganisms through
root exudates as main nutritive compounds for their survival and development; on the
other hand, unhealthy and stressed plants may suffer from vitamin deficiency [5,66]. In this
context, some PGPR, especially Bacillus sp. and Rhizobium sp., have great potential to syn-
thesize vitamins, such as pantothenic acid, thiamine, riboflavin, pyrroloquinoline quinone,
and biotin, and can contribute to their supply to plants [66,67]. The main functions of vita-
mins are (i) to act as cofactors in various metabolic pathways, (ii) to facilitate the synthesis
of vital metabolites for plants and microbes, (iii) to induce resistance to pathogens, (iv) to
promote plant growth and productivity, and (v) to participate in energy transformation in
the plant from reserved compounds [67].

Harnessing the antagonistic activity of PGPR has already been suggested as an effec-
tive approach to control plant pathogens and inhibit the metabolic activities of various
microorganisms through antibiotics [66,68]. In addition to the direct antipathogenic poten-
tial of PGPR, they also act as the determinative agents to trigger induced systemic resistance
(ISR) in plants and promote plant growth through antifeedant, anthelminthic, phytotoxic,
antioxidant, cytotoxic, and antitumor activities in insects and mammals [69]. Among them,
diacetylphloroglucinol (2,4-DAPG) synthesized by Pseudomonas sp. [70,71], phenazine by
Pseudomonas sp. [72], lipopeptides (e.g., iturin, fengycin, and bacillomycin) and polyketide
by Bacillus sp. [73], phenazione-1-carboxylic acid (PCA) by Pseudomonas fluorescens [74],
and circulin and colistin by Bacillus subtilis [75] are the most efficient low molecular weight
extracellular metabolites that have been extensively studied.

One of the potent biological approaches of PGPR strains is the ability to synthesize
1-aminocyclopropane-1-carboxylate deaminase (ACCD), which can regulate plant growth
and induce stress tolerance by decreasing ethylene levels [76]. ACCD, as one of the major
enzymes in the intermediate precursor of ethylene production in plants, is responsible for
the conversion of ACC to a-ketobutyrate and ammonium [77,78]. The interactions between
plants and ACCD-producing PGPR can modify plant defense reactions to a wide range of
environmental stresses (e.g., salinity, flooding, high temperature, drought, phytopathogens,
and heavy metal contamination) by the degradation of ACC enzymes and decreasing ACC
levels in root and leaf tissues [77,79].

2.4. Soil Bioremediation

Recently, PGPR have come to the forefront because of their environmental cleanup
ability (bioremediation) as a substitute approach to chemical and physical traditional
techniques in eliminating (or controlling) pollutants in soils [80]. Although some organic
compounds can endure in soil for a long time, they can be degraded by aerobic PGPR or
even dechlorinated and mineralized by anaerobic bacteria [81,82]. For instance, polychlori-
nated biphenyls (PCBs), as a group of well-known organic contaminants, can be oxidized in
aerobic bioremediation processes, where some genera of PGPR (e.g., Bacillus, Pseudomonas,
Rhodococcus, and Achromobacter) can utilize the biphenyl (a vital primary substrate that sup-
ports PCB cometabolism) using several enzymes, such as dehydrogenases, dioxygenases,
hydrolases, hydratases, and aldolases [82,83].
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In anaerobic degradation processes, organic compounds are broken down by anaerobic
bacterial strains to release the energy required for their metabolic processes. In this process,
reductive dechlorination or dehalorespiration in contaminated soils replaces the normal
bacterial respiration using aryl halides as electron acceptors for their respiration, resulting
in the formation of less toxic and more biodegradable compounds [84].

Soil microbes serve various mechanisms for reducing the toxicity for plants and them-
selves, including intracellular retention, extracellular sequestration, biosorption, biotransforma-
tion, bioaccumulation, complexation reaction, precipitation, and enzymatic detoxification (oxi-
dation and reduction) of toxic metals [85–87], whose efficiency depends on the great variability
among the toxicity levels of heavy metals. Among them, the most effective mechanism of PGPR
strains is the decline in ROS production through the production of some specific enzymatic
and nonenzymatic antioxidants (e.g., hydrolases, dioxygenases, hydratases, dehydrogenases,
and aldolases), which can preserve plants from ROS-induced oxidative damage [49,60].

3. Lactic Acid Bacteria (LAB): An Emerging Group of PGPR
3.1. Soil- and Plant-Associated LAB

Diverse genera of beneficial rhizobacteria have already been proposed as PGPR, with
Bacillus and Pseudomonas being the predominant genera [88]. Nevertheless, metagenomic
analyses of plant and rhizosphere microbiomes have resulted in the identification of an
emerging group of PGPR, namely, lactic acid bacteria (LAB), which are barely detectable
in the plant–soil ecosystem due to their low abundance [18,89]. LAB are known as mi-
croaerophilic, Gram-positive, cytochrome-deficient, and nonsporulating bacteria that are
also involved in food and silage fermentation as well as soil health; however, some of
them are recognized as human pathogens [90,91]. Despite intensive investigations into
the conventional function of LAB in the food processing industry, too little attention has
been given to their other functions, such as acting as biofertilizers, biocontrol agents, and
biostimulants in plant growth. Furthermore, little is known about LAB due to the difficulty
of isolating them by plating serial dilutions of rhizospheric soil samples since enrichment
methods using selective culture media have been largely ignored [18,92,93]. Despite their
low relative abundances, LAB have been isolated from the rhizosphere in some studies,
which has consequently led to their introduction as a crucial component of sustainable
agricultural approaches as environmentally sustainable and efficient strategies to control
pests and diseases and enhance crop yield [93–95].

It has been stated that root exudates, including amino acids, carbohydrates, enzymes,
organic acids, phenols, and flavonoids, account for a considerable proportion (5–21%) of photo-
synthetically fixed carbon in plants, which can change the soil environment and, consequently,
shape microbial communities [96]. Although such a carbohydrate-rich rhizosphere is ideal for
LAB, a quick breakdown of organic acids in the rhizosphere has been proposed as a limiting
factor in the capability of LAB to acidify soil to their benefit, thus preventing LAB from being
the predominant taxon in agricultural soils [97]. Moreover, recent research on the efficient
transfer of LAB from the rhizosphere and phyllosphere to the plant endosphere [98] provided
an interesting strategy to assess their roles in plant growth and production. In fact, LAB also
constitute a small fraction of the epiphyte [99,100] and endophyte populations of plant micro-
biota [100,101]. Among the plant-associated LAB, there are some well-known generalist taxa,
including Lactiplantibacillus plantarum, Lactococcus lactis, Leuconostoc spp., Weissella spp., and
Enterococcus spp., and some specialist taxa, such as Fructilactobacillus florum and Fructobacillus
spp., that have been discovered relatively recently [102]. However, the consequences of LAB
on plant physiology still need to be fully deciphered. Overall, the genomic diversity in LAB is
mainly due to the particular pressure applied by each plant niche [103,104].

3.2. Biofertilization and Bioremediation Effects of LAB

The ability of LAB to synthesize metabolites, including organic acids, phenolic acids
and their flavonoid derivatives, phytohormones, and antimicrobial substrates, has already
been reported [19,105–107]. LAB have been reported to have a high capacity to solubilize



Appl. Sci. 2024, 14, 1798 9 of 18

insoluble forms of phosphate [19,108,109] and potassium [18], to biologically fix nitro-
gen [110], and to produce iron-chelating compounds [111] and siderophores [112]. They
are also involved in soil biochemical cycles through regulating soil organic matter content
and detoxifying hazardous chemicals [111]. Heavy metal biosorption mechanisms of LAB
have been previously reported, involving bacterial surface-associated functional groups, in-
cluding carboxyl, hydroxyl, and phosphate [111,113]. Previous studies on food technology
outlined the critical role of LAB in breaking down organic macromolecules and indigestible
polysaccharides and converting disfavored flavor compounds [114].

In addition, it has already been suggested that shifts in the microbiome in response
to environmental changes may imply the plasticity of the available microbial genetic pool
in aiding plant adaptation to environmental stress [115,116]. Accordingly, the finding of a
rich diversity of LAB in the rhizosphere of plants grown in deserts [93,97] can confirm the
role of LAB in improving the tolerance of associated plants. It can also be assumed that
LAB conferring a specific stress tolerance can be derived from holobionts thriving under
similar stress conditions. Improved tolerance of LAB-treated plants to abiotic stresses
has been correlated with changes in plant metabolic responses related to proline content,
phenolic acids, and antioxidant enzymes [97,117]. Such reported findings can support the
assumption that LAB are effective as biofertilizers by increasing nutrient bioavailability
and as biostimulants to stimulate plant growth or seed germination by alleviating diverse
environmental stresses [97,118,119]. The beneficial outcomes of the application of LAB
treatment in several plant species have been summarized in Table 2. A scheme of the
biofertilization, bioprotection, and biodegradation potential of LAB is shown in Figure 2.

Table 2. Beneficial effects of lactic acid bacteria in agroecosystems.

LAB Species Experimental
Condition Summary of Results Reference

Lactiplantibacillus plantarum

Pot

Commercial inoculants of L. plantarum reduced eight
potato pathogen infestations, including Pectobacterium
carotovorum, Streptomyces scabiei, Alternaria solani,
A. tenuissima, A. alternata, Phoma exigua,
Rhizoctonia solani, and Colletotrichum coccode.

Steglińska et al.
[120]

Improving cucumber plant growth indirectly through
organic acid (succinic and lactic acid) production and
increasing the bioavailability of mineral nutrients in the
soil in comparison with the commercial inoculants of
L. plantarum.

Kang et al. [121]

Field

Reducing the Fusarium head blight index in wheat
plants via the synthesis of organic acids and plantaricin
in response to L. plantarum SLG17 application.

Baffoni et al.
[122]

Increasing the percentage of germination rate and
improving the length of shoot and roots of tomato in
response to inoculation with L. plantarum ONU12.

Limanska et al.
[123]

L. plantarum JCM1149 showed antibacterial activity and
suppressed soft rot caused by Pectobacterium carotovorum
subsp. carotovorum in cabbage, onion, potato, tomato,
and radish.

Tsuda et al. [124]

In vitro

The L. plantarum MF042018 strain’s ability as a
reassuring biosorbent for removing heavy metals from
industrial wastewater is approved.

Ameen et al.
[113]

Adopting an energy-efficient defense strategy and
efficient partitioning of carbon fluxes between primary
and secondary metabolites to relieve salt-caused
oxidative damage in plants treated with L. plantarum
ATCC 9019.

Phoboo et al.
[117]
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Table 2. Cont.

LAB Species Experimental
Condition Summary of Results Reference

Lactococcus lactis (Genome
accession No.
JADBCD000000000),
Enterococcus faecium (Genome
accession No. JADBCB000000000)

In vitro
Showing a high level of antifungal activity and
solubilization efficiency of phosphate and potassium
despite no ability of phytohormone production.

Strafella et al.
[18]

Lacticaseibacillus paracasei Field and pot
Improving seed germination rate and growth of tomato.
Inducing tolerance against infection by pathogen
(Ralstonia solanacearum) in seedlings.

Konappa et al.
[125]

Lactococcus lactis Field Improving the basil plants’ tolerance against a pathogen
(Alternaria sp.). Ghosh et al. [126]

Lactobacillus amylovorus FST 2.11;
DSM 20522 (-) Field and pot

Revealing the favorable effect on the expression of some
defense-related marker genes and transcription factors
in barley plants upon Fusarium head blight.

Byrne et al. [127]

Enterococcus sp. CL2 (accession
No. KJ124182.1),
Enterococcus casseliflavus ZZUA83
(accession No. LC119138.1)

In vitro Showing high ability in phosphate solubilization and
IAA production. Mussa et al. [109]

Weissella paramesenteroides CE.3.6
Liquorilactobacillus sucicola
BGGO7-28

In vitro Inhibiting the growth of Penicillium digitatum as a
pathogen agent in citrus fruits. Ma et al. [128]

Lactobacillus spp. Pot
Causing systemic acquired resistance (SAR) in tomato
plants by changing the morphology, resulting in
resistance to fungal pathogens.

Hamed et al.
[129]

Lactobacillus spp.
Sporolactobacillus sp.

Field and
in vitro

Showing antifungal activities and controlling some
important plant pathogenic fungi, such as Fusarium
verticillioides, Penicillium sp., and Verticillium dahlia in
maize.

Kharazian et al.
[130]

Levilactobacillus brevis JJ2P,
Lactobacillus reuteri R2 In vitro Inhibition of Zymoseptoria tritici in wheat seedlings and

reducing the growth of wheat leaf blotch. Lynch et al. [131]

Pediococcus pentosaceus LB44,
Weissella confusa LM85 In vitro Effective antibacterial potential against a broad

spectrum of Gram-positive and Gram-negative bacteria.
Kaur and Tiwari

[132]

3.3. Bioprotection Effects of LAB

LAB have also received considerable attention for their capability to synthesize anti-
fungal metabolites (e.g., diketopiperazines, hydroxy derivatives of unsaturated fatty acids,
and 3-phenyllactic acid), antibacterial (e.g., bacteriocins and bacteriocin-like substances),
and general antimicrobial metabolites (e.g., hydrogen peroxide, organic acids, pyrrolidone-
5-carboxylic acid, diacetyl, and reuterin) [133–135]. In addition to direct antagonism against
pathogens, LAB can affect the plant response to pathogens by causing systemic acquired
resistance (SAR) and enhancing plant innate immunity [97]. Mao et al. [136] observed that
the antibacterial activity of Lacti plantarum DY-6 was dependent on the production of acetic
acid, lactic acid, caprylic acid, propionic acid, and decyl acid. On the other hand, Mag-
nusson et al. [137] observed that the ability to synthesize lactic acid in the bacterial strains
without antimicrobial activity was in the same range or even higher than those possessing
antimicrobial activity, while the amount of acetic acid corresponded to that normally de-
tected in the culture medium used for assessment tests. Therefore, they concluded that the
antimicrobial activity of Lacti. plantarum, Latilactobacillus sakei, Loigolactobacillus coryniformis,
and Pediococcus. pentosaceus against Aspergillus sp., Fusarium sp., and Penicillium sp. was
due to the synthesis of other metabolites [137]. Through an HPLC analysis of antagonistic
bacteria supernatants, they detected two antifungal cyclic dipeptides, cyclo (Phe-Pro) and
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cyclo (Phe-4-OH-Pro), whose structures were similar to those found in Lacti. plantarum by
Ström et al. [138]. Axel et al. [139] found that chemical acidification has no effect on mold
inhibition in food, so it is more plausible that the antagonistic activity of LAB depends
on the synergistic action between organic acids and other active compounds [140]. The
production of bacteriocins by soil- and plant-associated LAB is rare but not excluded,
as it was observed that the treatments of cell-free supernatants with organic solvents,
surfactants, H2O2, high temperature, and different pH do not affect their antimicrobial
activity [132]. Yanagida et al. [141] were the first to report the production of bacteriocins by
Ligilactobacillus animalis C060203 and Enterococcus durans C102901, which exhibited strong
antibacterial activity against Lati. sakei JCM 1157T. The defeat of antibacterial potential
in response to proteinase K treatment confirmed the proteinaceous nature of antimicro-
bial compounds. A comparative genomic analysis between LAB isolated from plant/soil
ecosystems and those isolated from dairy products, nondomestic animals, and human iso-
lates revealed that plant/soil LAB are enriched in genes involved in bacteriocin synthesis,
suggesting a probable role in plant fitness [18]. This finding confirms that LAB are a natural
farm of antimicrobial metabolites [133] and can be used in agronomic fields to prevent or
relieve disease sustainably.
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4. Concluding Remarks and Future Perspectives

This review updates the eco-friendly approaches of PGPR application in sustainable
agroecosystems as well as provides new insights into the direct or indirect mechanisms
of action of these beneficial rhizobacteria involved in biological nitrogen fixation, the sol-
ubilization of insoluble minerals, biological control of soil-borne pathogens, stimulation
of phytohormone synthesis (e.g., auxins, cytokinins, gibberellins, etc.) in plants, the pro-
motion of enzyme activity involved in reactive oxygen species (ROS)-scavenging, and the
biosynthesis of 1-amino cyclopropane-1-carboxylate deaminase (ACC deaminase), hydro-
gen cyanide, antibiotics, siderophore, and volatile organic compounds. Consequently, these
mechanisms provide a bridge between PGPR, mainly LAB, and environmentally friendly
crop productivity, which leads to sustainable production systems by reducing agrochemical
use, improving soil quality, and minimizing environmental pollution. All these beneficial
aspects of LAB need to be addressed in future research to plan methodologies to utilize
them and/or to combine the use of these PGPR along with other organic or inorganic
inputs in sustainable production systems.

Further work is needed to investigate the environmental sensitivity of LAB to de-
termine how limiting they can be in widespread use. Moreover, a research question that
could be asked includes how the competition of LAB with indigenous microorganisms
can affect their survival in soils after inoculation. Satisfactory results can be achieved by
keeping the bacterial load of the inoculum constant over time. Therefore, future research
should focus on the development of efficient microbial formulations that are compatible
with conventional techniques, including seed disinfection and pesticide use, to be efficient
under various field conditions and soil types and be safe for humans, animals, and plants.
Solid and liquid carriers that support the growth and longer viability of microorganisms as
alternatives to expensive lyophilization processes have been identified, but each microor-
ganism requires specific growth conditions, and the path to a solution that suits each of
them is still a long one.
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