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Abstract: Many studies have identified predictors of outcomes for inpatients with coronavirus
disease 2019 (COVID-19), especially in intensive care units. However, most retrospective studies
applied regression methods to evaluate the risk of death or worsening health. Recently, new studies
have based their conclusions on retrospective studies by applying machine learning methods. This
study applied a machine learning method based on decision tree methods to define predictors of
outcomes in an internal medicine unit with a prospective study design. The main result was that
the first variable to evaluate prediction was the international normalized ratio, a measure related
to prothrombin time, followed by immunoglobulin M response. The model allowed the threshold
determination for each continuous blood or haematological parameter and drew a path toward the
outcome. The model’s performance (accuracy, 75.93%; sensitivity, 99.61%; and specificity, 23.43%)
was validated with a k-fold repeated cross-validation. The results suggest that a machine learning
approach could help clinicians to obtain information that could be useful as an alert for disease
progression in patients with COVID-19. Further research should explore the acceptability of these
results to physicians in current practice and analyze the impact of machine learning-guided decisions
on patient outcomes.

Keywords: COVID-19; machine learning; clinical aspect; prognostic markers; haematochemical
parameters; prediction

1. Introduction

A new form of pneumonia spread in Wuhan, Hubei Province of the People’s Republic
of China, beginning in December 2019, from an unidentified microbiological agent [1] later
identified as a novel coronavirus called severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [2], and the resulting disease was named coronavirus disease 2019 (COVID-
19). Since the end of 2019, the outbreak of COVID-19 has spread worldwide. As of 1 January
2021, there had been 2,123,776 confirmed cases and 74,261 deaths.

The initial symptoms of SARS-CoV-2 infection are similar to those of influenza but
vary from person to person; they can be asymptomatic, paucisymptomatic, or symptomatic.
The symptoms are fever, tiredness, anorexia, headache, diarrhea, sore throat, mild dyspnea,
malaise, blocked nose, nausea, and vomiting [3]. People with pre-existing comorbidities
(chronic obstructive pulmonary disease (COPD), hypertension, obesity, diabetes, heart
disease, liver disease, acquired immunodeficiency syndrome (AIDS), renal disease, and
cancer) have an increased risk of death or more critical COVID-19 [4,5]. An increase
in the incidence and prevalence of COVID-19 has led to an increase in hospitalizations
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worldwide, and the most severe cases are characterized by acute respiratory syndrome,
requiring hospitalization in intensive care units (ICU) [6,7].

ICU resources in hospitals have been stressed, especially if they lack adequate facilities,
staff [8], and global health services for related and unrelated COVID-19 diseases [9]. The
mortality of patients with severe SARS-CoV-2 pneumonia has been and is still considerable,
especially in patients older than 65 years and with relevant comorbidities [6,8].

The need to create a model that would allow the detection of the main characteristics
of severe disease and identify features that could predict the outcome of COVID-19 to
better manage patients’ health as well as economic resources was soon felt [10].

Therefore, many studies have been conducted worldwide on patients with SARS-CoV-
2 that consider patients’ demographics, clinical symptoms and signs, and blood chemistry
data to predict the outcomes of death or ICU admission [10,11]. Different study designs
were used to evaluate predictors, as retrospective studies mainly focused on immunological
features [12] or clinical and laboratory values. Descriptive studies were also proposed in
the initial phase of the pandemic to define signs and symptoms in patients [13].

A meta-analysis published in 2020 summarized the main biomarkers to monitor
patients with COVID-19 [14]. Hematological biomarkers included white blood cells, neu-
trophils count, lymphocytes count, monocytes count, eosinophils count, platelet count,
cluster of differentiation (CD)4, CD8 percentages, and hemoglobin. Biochemical markers
were albumin, alanine aminotransferase, aspartate aminotransferase, total bilirubin, cre-
atinine, creatinine kinase, lactate dehydrogenase (LDH), cardiac troponin I, myoglobin,
and creatine kinase-MB. The coagulation markers were prothrombin time, activated partial
thromboplastin time (APTT), and D-dimer. The inflammatory biomarkers were C-reactive
protein (CRP), serum ferritin, procalcitonin (PCT), erythrocyte sedimentation rate, and
interleukin and tumor necrosis factor-alpha (TNFα) levels.

Another retrospective study proposed a clinical risk score for critically ill patients with
COVID-19, which was validated by including clinical symptoms, signs, and laboratory
tests [15]. Furthermore, the results of the studies have been valuable for blood chemistry
tests; white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, platelets, CRP,
D-dimer, and PCT were analyzed [16,17].

The main objective of this study was to evaluate, in a prospective cohort of COVID-19
patients hospitalized in a non-ICU medicine ward, the application of a decision tree to
predict bad outcomes (death or transfer to an intensive care unit) and the relationships
between main demographic, clinical, blood chemistry, and immunological features. The
method chosen to determine valuable predictors is a machine learning approach based on a
decisional tree. This assesses an algorithm and finds a useful threshold, when appropriate
for continuous variables, that could guide clinicians in weighting the value of each feature
in the evaluation of the clinical course.

2. Materials and Methods
2.1. Participants and Procedures

A prospective observational study was performed during the pandemic period from
2 January to 30 April 2021, including 146 consecutive not-vaccinated patients admitted
to a dedicated internal medicine COVID unit (COVID-MI) in the large regional hospital
Policlinico of Bari, Apulia. One patient was removed from the analysis because of missing
data both on outcome and predictor variables; therefore, a total of 145 patients were
included in the final analysis. Patients arrived from the emergency room after a confirmed
diagnosis of infection with SARS-CoV2 by a positive rinopharyngeal swab. Data were
collected upon admission and after 10 days. The outcome was registered from clinical
documentation and was defined as the combined endpoint of death or transfer to ICU,
whichever was first.

The main clinical symptoms, anamnestic conditions, blood exams, and immunological
panels were taken: blood pressure, respiratory frequency, cardiac frequency, temperature,
O2 saturation, red blood cell count, hemoglobin, neutrophil count, lymphocyte count,
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platelet count, serum C-reactive protein, procalcitonin, lactic dehydrogenase (LDH), albu-
min, aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, alkaline
phosphatase (ALP), creatine kinase (CPK), serum sodium (Na), serum potassium (K),
serum chlorine (Cl), D-dimers, international normalized ratio (INR), interleukin-6 (IL-6),
immunoglobulin M, and G (IgM and IgG) against SARS-CoV-2.

Temperature was detected by a clinical ecologic axillary thermometer. Saturation
and other clinical parameters were detected by a modular multiparameter monitor (Life
Scope VS, Nihon Kohden, Japan). This study was approved by the Interregional Ethical
Committee of Azienda Ospedaliero Universitaria Consorziale Policlinico.

2.2. Statistical Analysis

Quantitative data are presented as median and interquartile range (IQR) because after
the evaluation of normal distribution by the Shapiro–Wilk test, data were found to be not
normally distributed. Comparison between independent groups was performed using the
Mann–Whitney test.

Categorical variables are summarized as counts and percentages, and comparisons
between independent groups were performed by the chi-square test or Fisher exact test
as appropriate.

Statistical significance was set at p-value < 0.05.
To identify variables that could be valuable predictors of the outcome, a machine

learning (ML) method based on the Quinlan boosting C5.0 algorithm that uses a confidence
factor (CF) set at 0.25 to assign an observation to a class was applied.

Other hyperparameters (winnowing, boosting, iteration) were chosen by the applica-
tion of the “one standard error rule” that consists of selecting variables that define a model
within one standard error of the minimum cross-validation error.

The variables used in the model for the training set were as follows: sex (male or
female); presence of symptoms of infection (nasal congestion, headache, tussis, pharyn-
godynia, dyspnea, fever, and myalgia); presence of chronic pulmonary disease, mainly
COPD; diabetes; hypertension; cardiovascular diseases; cerebrovascular diseases; hepatitis
B and C; tumors; chronic kidney diseases; and immunopathological diseases. Continuous
variables included age, cardiac frequency, oxygen saturation, blood pressure, fraction of
inspired oxygen (FiO2), temperature, neutrophils, lymphocytes, platelet, hemoglobin, C-
reactive protein (CRP), LDH, albumin, AST, ALT, ALP, bilirubin, creatinine, CPK, Na, K, Cl,
D-dimers, INR, and IgM and IgG antibodies against SARS-CoV-2. Data from the second
blood collection were analyzed separately using the same method.

To evaluate the accuracy, a k-fold cross validation method with repetition was applied.
The set was split in subsets as defined by the parameter “k”, and the procedure was then
repeated. We chose the default values k = 10 and repetition = 10.

The measures of accuracy were based on the area under the ROC curve (AUC) and
on the indicators suggested by Iwendi [18] and Bottino [19], determining sensitivity (true
positive divided all events), specificity (true negative divided all non-events), positive pre-
dictive values (true positive divided all predicted as events), negative predictive value (true
negative divided all predicted as non-events), global accuracy (the sum of true positive and
true negative divided the whole sample), F1-score (the ratio of twice the product between
precision and recall divided the sum of precision and recall), Matthew correlation coefficient
(MCC), and balanced accuracy (the mean of sensitivity and specificity). Collinearity was
evaluated on variables entered in the model determining the VIF (variance inflation factor)
and tolerance, using as a threshold VIF > 5 and tolerance < 0.25.

2.3. Software

The model was run in R-Studio version 1.4.1106 [20] using, for data arrangement and
description of the output used, the following packages: C5.0 [21], caret [22] and pROC [23].
Data management and descriptive statistics were performed using SAS/STAT version 9.4
for PC (SAS Institute, Cary, NC, USA).
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3. Results

The median age of the patients was 71 years (IQR 58–82), and 54.8% were male. The
main characteristics of the patients are summarized in Tables 1 and 2. The outcome, as
a combined endpoint of death and transfer to the ICU, was observed in 22.1% (32/145)
of patients, and death occurred in 56.3% (18/32) with a median LOS (length of stay) of
13.5 days (IQR 9-18). Transfer to the ICU occurred in 43.7% (14/32), with a median LOS of
5.5 (IQR 3.25-12). There were 113 patients discharged alive with a median LOS of 9 days
(IQR 5-16) (Figure 1). There were statistically significant differences in the comparison
between dead vs. ICU transferred patients (p = 0.006).

Table 1. Main characteristics of the patients included in the study at baseline and results of comparison
of percentage between outcome using chi-square or Fisher exact test.

Death or Transferred to Intensive
Care Unit (n = 32) Discharged Alive (n = 113)

N % N % p-Value

Sex
Male 18 56.25% 61 53.98%

1.00Female 14 43.75% 52 46.02%
Symptoms
Dyspnea 12 37.50% 52 46.02% 0.999
Cough 5 15.63% 35 30.97% 1.00
Fatigue 7 21.88% 30 26.55% 1.00
Headache 2 6.25% 12 10.62% 1.00
Confusion 1 3.13% 9 7.96% 1.00
Nausea 1 3.13% 8 7.08% 1.00
Sick 1 3.13% 6 5.31% 1.00
Pharyngitis 1 3.13% 6 5.31% 1.00
Nasal congestion 1 3.13% 3 2.65% 0.999
Arthralgia 0 0.00% 3 2.65% 1.00
Myalgia 1 3.13% 2 1.77% 0.997
Arrhythmia 3 9.38% 12 10.62% 1.00
Comorbidity
Hypertension 12 37.50% 71 62.83% 0.356
Cardiovascular disease 12 37.50% 43 38.05% 1.00
Diabetes 11 34.38% 35 30.97% 1.00
Cerebrovascular disease 9 28.13% 19 16.81% 0.896
Chronic kidney disease 8 25.00% 14 12.39% 0.585
COPD 5 15.63% 14 12.39% 0.999
Tumors 5 15.63% 11 9.73% 0.986
Hepatitis B 0 0.00% 6 5.31% 0.974
Immunopathological disease 1 3.13% 5 4.42% 1.00

Table 2. Comparison between patients discharged alive and those who died or were transferred to an
intensive care unit by demographical, and baseline clinical, hematological, and biochemistry value.
The p-value refers to result of Wilcoxon test for independent groups.

Patients Deaths or
Transferred in ICU (n =32) Patients Alive (n = 113)

p-Value
Median Q1 Q3 Median Q1 Q3

Age (years) 78.0 67.0 85.75 70.0 57.0 82.0 0.011
Temperature (◦C) 36.5 36.0 36.6 36.4 36.2 36.67 0.715

Respiratory rate (rpm) 20.0 18.0 20.0 18.0 15.0 20.0 0.110
Cardiac frequency (bpm) 79.0 70.0 99.0 82.5 75.0 92.5 0.515

Systolic blood pressure (mmHg) 137.5 116.0 150.0 130.0 122.5 145.0 0.947
Diastolic blood pressure (mmHg) 77.of 5 65.0 82.5 77.0 70.0 85.75 0.643
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Table 2. Cont.

Patients Deaths or
Transferred in ICU (n =32) Patients Alive (n = 113)

p-Value
Median Q1 Q3 Median Q1 Q3

Temperature at admission (◦C) 36.5 36.0 36.6 36.4 36.2 36.67 0.715
Percentage of O2 saturation 97.0 94.75 97.25 97.0 96.0 99.0 0.017

FiO2 (%) 50.0 28.0 80.0 37.5 21.0 60.0 0.227
Neutrophil count (×103%µL) 79.8 74.525 85.32 77.4 69.25 84.4 0.124

Lymphocyte count (×103%µL) 13.4 8.9 16.35 14.95 9.4 21.3 0.115
Platelet count (×103%µL) 202,000 147,250 272,250 222,500 168,500 292,000 0.212
Hemoglobin level (g%dL) 127.0 116.75 143.0 123.0 108.0 137.0 0.162

Procalcitonin levels (ng%mL) 0.11 0.09 0.27 0.12 0.06 0.23 0.712
CRP (mg%mL) 79.7 30.6 105.5 37.6 14.0 97.6 0.066
LDH (mg%mL) 307.0 258.75 368.0 256.0 207.0 309.0 0.007

Albumin (mg%mL) 27.0 24.0 30.5 28.0 25.0 31.0 0.098
ALT (mg%mL) 23.0 14.75 52.0 27.0 20.0 47.0 0.413
AST (mg%mL) 30.0 22.0 48.0 28.5 21.0 38.5 0.371
ALP (mg%mL) 72.0 58.5 87.0 64.0 53.0 83.0 0.441

Direct bilirubin (mg%mL) 0.01 0.009 0.0168 0.01 0.007 0.0139 0.041
Indirect bilirubin (mg%mL) 0.015 0.012 0.022 0.015 0.01 0.02 0.900

Total bilirubin (mg%mL) 0.027 0.022 0.037 0.027 0.02 0.034 0.586
Creatinine (mg%mL) 1.063 0.76 1.637 0.83 0.695 1.16 0.019

CPK (mg%mL) 92.0 46.0 165.5 72.5 41 145.0 0.406
Sodium (mg%mL) 140.0 138.0 142.0 139.0 137 141.0 0.014

Potassium (mg%mL) 4.0 3.6 4.275 4.1 3.8 4.5 0.104
D-dimers (mg%L) 0.771 0.528 2.265 0.908 0.502 1.962 0.882

INR 1.12 1.052 1.202 1.04 1.0 1.09 <0.001
IL-6 (pg%mL) 38.3 17.3 123.0 29.2 7.05 83.5 0.183

IgM(g%L) AU/mL 0.68 0.07 8.842 4.19 0.473 13.303 0.032
IgG(g%L) AU/mL 0.3 0.065 3.955 2.51 0.185 5.74 0.023

Length of stay (days) 11.0 5.75 15 9.0 5.0 16.0 0.837
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The comparison of blood analysis and other main clinical characteristics measured
after the admission in the COVID-MI ward between patients discharged alive and those
with negative outcomes (deaths or transferred in ICU) are shown in Table 2.

The variables used in the model are shown in Figure 2. The most important predictors
in the model’s training were the IgG and IgM values that reached 100% attribute usage.
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Age was a predictor of 100% attribute usage. Sex, CPK, CRP, platelet count, LDH, K, NA,
INR, D-dimers, ALT, AST, creatinine, hemoglobin, and neutrophil and lymphocyte counts
had an attribute usage of 90–99%.
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Figure 2. Variables’ importance (attribute usage) for the training decision tree model C5.0.

To predict the outcome (Figure 3), the decision tree started with the value of INR, and
a cut-off was defined as equal to or lower than 1.11 and greater than 1.11. Thus, we had
two branches to classify patients: the first uses lymphocytes, IgM, and oxygen saturation;
the second uses IgG, IgM, CRP, and creatinine.

The outcome D-ICU for patients with INR ≤ 1.11 was predicted after three consecutive
steps: lymphocyte ≤ 16.8 × 103, IgM ≤ 0.08 AU/mL, and oxygen saturation ≤ 97%. The
prediction for patients with INR > 1.11 was achieved after four steps with IgG ≤ 4.43 AU/mL,
IgM ≤ 0.04 AU/mL, CRP ≤ 115 mg%mL and creatinine ≤ 1.17 mg%mL. The error on the
training set for all previous classifications was 0%, indicating that the decision tree correctly
classified all patients who died of ICU transfer.

The variables entered in the model should not be affected by collinearity; they have
all shown a VIF < 5 (the higher was 1.28 for IgG) and tolerance >0.25 (the lower was 0.78
for IgG).

The fitting of the model was evaluated on the validation set which showed a total
accuracy of 75.93%, balanced accuracy of 61.52%, and sensitivity and specificity of 99.61%
and 23.43%, respectively (Table 3). The value of the F1-score to evaluate the fitting of the
model was 89.17, and the MCC was 17.94%; both were low as the area under the ROC
curve (Figure 4) was 0.61.

The follow-up values of biochemical and hematological variables were available for
only 28 patients, but neither the difference between the first and second data collection nor
the value of the second data collection allowed a model that could predict the outcome.
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Table 3. Fitting parameters of our decision tree model verified on the validation dataset.

Parameter Value (%)

Accuracy 75.93%
Sensitivity 99.61%
Specificity 23.43%

PPV 82.18%
NPV 40.07%

F1-score 89.17%
MCC 17.94%

Balanced accuracy 61.52%

4. Discussion

This prospective study, conducted during the pandemic wave in a COVID-19 medicine
ward, has allowed us to identify predictors of outcome using a machine learning algorithm.
The decision tree model showed the sequence and threshold for each variable to predict
unfavorable outcomes.

Various artificial intelligence algorithms have been used to predict death or hospi-
talization in the ICU following COVID-19 [24,25]. Among the various machine learning
models, the most widely used for classification are XGBoost, linear regression, support
vector machine, decision tree, random forest, and neural network convolution. For an
easier understanding and representation of our study, we used a C5.0 decision tree model
as an algorithm. This algorithm is one of the most commonly used approaches for repre-
senting recursive classifiers [26]. The choice of method has a consequence on the accuracy.
The study by De Souza [25] compared the accuracy among models, and the decision tree
had the same results with respect to XGBoost, naive Bayes, and support vector machine.
Interestingly, machine learning based on logistic regression is more accurate. The decision
tree algorithm split sets of data recursively, considering the symptoms; however, many
other parameters predict SARS-CoV-2 infection until the procedure reaches its maximum
depth [25,27].

The values of the indicators to evaluate the validity of the model have appeared as
promising, given the 99.61% sensitivity and the 75.93% global accuracy. The AUC from the
ROC analysis resulted in a small value of 0.61. This suggests that our variable could have a
low prediction accuracy, even if we detected all clinical parameters at the entrance of the
patients into the medicine unit. The clinical condition at the beginning of hospitalization
could not be enough to predict the outcome. The search for a model considering clinical
characteristics at the entrance to the non-intensive medical unit is an important issue. Our
data show that changes in patients happen quickly given that the median of transfer to
ICU was 5 days and the median of days to death was 13 days. Therefore, the search for
conditions that could help to understand the course of the disease is a critical issue.

Comparing our model with other decision tree models, it can be observed that our
model has an accuracy similar to that of Migriño (81.5%) [28], but lower than that of Altini
et al. [29] and Naseem et al. [30], which were both higher than 85%. It is noteworthy that
our model specificity was low when compared to other research [29,30]. On the other hand,
the model has a 89,16% F-score, which is higher than another machine learning model that
predicted outcomes in patients with COVID-19 [28]. Souza [25] has shown that this score is
the lowest among the algorithms, and it was 52% in the training and 38% in the test set.

According to our model, the INR value is the first criterion used to classify patients.
The INR is a parameter that more accurately evaluates the prothrombin time (PT) to
eliminate the inherent variability in the calculation between various laboratories. It is
calculated by dividing the PT of each patient by a standard laboratory parameter [31].
The INR value was lower among participants who survived during hospitalization than
those who died or were transferred to the ICU. The difference was statistically significant
(p < 0.001). Other studies have shown an increase in the INR value in participants with poor
outcomes during hospitalization compared to those who survive [30,32,33]. INR assumes
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an important prognostic value as it is representative of the activation of coagulation, and
it is now well known that COVID-19 is associated with coagulopathy [34]. Infection with
SARS-CoV-2 can damage the vascular endothelium (typically at the pulmonary level and
then in the subsequent phases at the systemic level) and initiate an inflammatory process
that can alter the normal homeostatic procoagulant pathways and anticoagulants [35]. Our
cohort had a high percentage of patients older than 70 years with cardiac or cerebrovascular
disease who could be treated with anticoagulation therapy. In a practical application of
the results of this model, the information coming from INR should be evaluated in light
of previous therapies, even though the model did not consider age and comorbidities as
valuable help.

A significant difference in lymphocyte and neutrophil counts was not found in our
study between patients who survived and those who died or were transferred to the
ICU; however, it resulted in an important variable in the decision tree model. Peripheral
lymphocyte count is an early indicator of severe or critical COVID-19 patients [36], and in a
previous study conducted by Naseem et al. [30] using a Cox regression model, an increased
risk of death was associated with lymphocyte count reduction.

Serum creatinine was found as a significant variable to predict a bad outcome, and
that parameter was found to be a significant variable to predict mortality in a meta-analysis
of 19 studies on COVID-19 patients [37]. This sign of kidney damage should be given more
attention because it is associated with worse outcomes in older and younger patients [38].

The comparison of IgM values, IgG levels and age between the patients who died
or were transferred to the ICU and the surviving patients showed significantly different
median values (p = 0.032 for IgM; p = 0.023 for IgG). Moreover, they are the parameters
most used by the machine learning C5.0 algorithm for the construction of the decision tree.
To the best of our knowledge, only a few other authors have used blood immunoglobulin
levels to predict patient outcomes. In a retrospective study, Suryawanshi et al. [39] found
that IgG concentration was different in three groups of patients classified according to
severity. No difference was found in IgM concentration. In parallel, Yuan et al. [40] found a
difference in IgG-only concentrations between non-serious patients and those with severe
or critical conditions.

In a recent paper, some of us showed a reduced mortality in patients affected by
COVID-19 infection linked with early antibodies against SARS-CoV-2, irrespective of
age [41]. The authors actually demonstrate that an efficient immunological response
during the early phase of COVID-19 protects from mortality, irrespective of age, even
if advanced age is a critical risk factor for a poor outcome in infected subjects. These
results are consistent with the data of the present work, since the levels of both IgM and
IgG anti-SARS-CoV-2 in our model have a critical role in the prediction of the evolution
of the disease. Possible therapeutic interventions able to enhance humoral immunity in
elderly patients with weak antibody response during the early stage of COVID-19 infection
are warranted.

5. Study Limitation

A limitation of this study is the intrinsic fault of the decision tree model related to
overfitting, which often occurs in complex models for relatively simple data [42]. This
could affect our results in which we have found low values of false negatives.

The decision tree model does not generate explicit coefficients, such as those generated
using a logistic regression model. Therefore, it is difficult to estimate the impact of each
variable on the outcome in terms of risk, but it is possible to have information on useful
variables and their decisional values in a way that could be familiar to a clinical audience.

Finally, our model was trained on the data of a single cohort; therefore, if it is to
be used outside of this, it is advisable to carry out independent validation and possible
requalification of the model.

The unknown effect of sample size on the effectiveness of results: the study was
planned for a larger sample size, but difficulties related to hospitalization overload de-



Int. J. Environ. Res. Public Health 2022, 19, 13016 10 of 12

termined the uneasy dialogue with clinicians to collect data. A simulation to determine
sample size and power for a logistic regression to evaluate the effect of a single variable
with an odds ratio of 2, and the probability of the event given the presence of the risk factor,
requires a sample size of 178 subjects. However, there are still debatably reliable methods
to determine sample size for machine learning methods that work with reliable results on
so called “big data”, and sample size determination for decision trees or other algorithms
require proper methods.

6. Conclusions

A machine learning approach, the decision tree model, was used to analyze the clinical
data of hospitalized COVID-19 patients to establish an efficient prognosis [29]. In this
study, we used the clinical, demographic, and blood chemistry parameters of the patients
in order to predict two possible outcomes: discharged alive, or transferred to ICU or death,
whichever was first.

The results suggest that a machine learning approach could help clinicians evaluate
disease conditions in patients with COVID-19, and it could be useful in guiding decisions
for therapies or diagnostic procedures. Further research should explore the acceptabil-
ity of these results to physicians in current practice and analyze the impact of machine
learning-guided decisions on patient outcomes, such as the feasibility of using the selected
information and cut-offs.

We say that the study is prospective, but the machine learning model is a post hoc
theoretical application. Therefore, we believe that in future studies, it could be introduced
in the management of patients affected by COVID-19 to see how it affects the decision
process of clinics in real practice.

We also believe it is necessary that further studies be conducted to evaluate ma-
chine learning models to better understand the identified predictors, especially those of
an immunological nature, which are still poorly analyzed. Furthermore, more complex
models, such as artificial neural networks and deep learning models, should be imple-
mented together with an easier system to interpret whether the result is useful for clinical
decisions [43].
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