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Quantifying high-order interdependencies in entangled quantum states
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We leverage recent advances in information theory to develop a method to characterize the dominant character
of the high-order dependencies of quantum systems. To this end, we introduce the Q-information: an information-
theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy. We illustrate
the measure by investigating the properties of paradigmatic entangled qubit states and find that—in contrast to
classical systems—quantum systems need at least four variables to exhibit high-order properties. Furthermore,
our results reveal that unitary evolution can radically affect the internal information organization in a way that
strongly depends on the corresponding Hamiltonian. Overall, the Q-information sheds light on aspects of the
internal organization of quantum systems and their time evolution, opening different avenues for studying several
quantum phenomena and related technologies.
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I. INTRODUCTION

Entropy connects the physics of a system with the infor-
mation it carries, being a fundamental quantity for describing
the relationships among the degrees of freedom in a sys-
tem. However, a fundamental open question is how to best
characterize the emergence of various collective modes of
interdependency among several degrees of freedom and, more
broadly, which are the laws describing the informational ar-
chitecture of complex systems. While physical systems and
processes can be effectively described (either from first prin-
ciples or as a modeling strategy) via pairwise interactions,
many-body interactions [1–4] are gathering the attention of
several communities—even beyond physics, including neuro-
science, economics, and many others [5–9]. Crucially, it has
been recently noticed that the link between the relationship
of the order (e.g., pairwise vs higher order) of mechanisms
modeled via Hamiltonians and the resulting activity patterns
can be highly nontrivial [10]. Therefore, a principled under-
standing of the informational structure of a physical system
cannot be based solely on determining its effective Hamilto-
nian but requires additional tools to investigate the resulting
phenomena that arise from it.

Information theory and statistical mechanics provide
an ideal toolbox to prove the informational relationships
within complex systems [11], benefiting from a solid
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mathematical formalism for describing multivariate informa-
tion and high-order interactions. For instance, the partial
information decomposition (PID) framework [12–14] and its
extension to time-series analysis [15] provide an encom-
passing and thorough approach to investigate the different
information modes—e.g., synergy and redundancy—within
a system, which can yield important scientific insights. .For
instance, recent investigations on brain dynamics uncovered
that synergy and redundancy [16,17] relate to the interplay
between brain segregation and integration [18], namely, re-
dundancy speaks to the robustness of input/output (I/O) in
sensory areas, whilst synergy dominates high-level networks
and ensures information integration.

Given the relevance of synergies and redundancies, cap-
turing their balance is a key summary marker of the
informational architecture of a system. Interestingly, while
the computation of the full PID of a system may be some-
times challenging, it was shown that the calculation of
the overall balance between synergy and redundancy can
be done in a relatively straightforward way via a quantity
named O-information [19]. Despite its recent inception, the
O-information has found numerous applications [20–22] and
has various theoretical extensions including pointwise [23],
spectral [24], and harmonic decompositions [25].

Motivated by the success of this measure and building
on the growing interest in studying quantum systems via
the lens of partial information decomposition [26,27], and in
quantum information [28], here, we investigate the feasibil-
ity of extending the O-information to quantum systems. To
reach this goal, we map the O-information to its quantum
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counterpart and perform a series of measures on relevant
qubit states, concentrating on four-qubit systems. As shown
later, this choice leads us to identify notable properties of
the quantum O-information and the way it can be changed
using suitable time evolution operators. The remainder of the
manuscript is organized as follows. In Sec. II, we provide a
general introduction to the O-information. Then, in Sec. III we
map the classical O-information to its quantum counterpart,
i.e., the Q-information, and measure it on various n-qubit
states. In Sec. IV, we focus on four-qubit states, and analyze
the Q-information on these states undergoing time evolution
in Sec. V. Finally, in Sec. VI, we end the manuscript by
summarizing the main findings and discussing potential de-
velopments.

II. O-INFORMATION

Shannon’s mutual information provides a reliable met-
ric of interdependence between two (groups of) variables,
capturing both linear and nonlinear components. Despite pro-
viding a foundation, the mutual information does not allow
assessing triple- or higher-order interdependencies, which can
play important roles even in systems governed by pairwise
mechanisms [10]. On the other hand, well-known nonnegative
multivariate extensions of the mutual information, namely, the
total correlation (TC) [29],

TC(X ) :=
N∑

i=1

H (Xi ) − H (X ), (1)

and the dual total correlation (DTC) [30],

DTC(X ) := H (X ) −
N∑

i=1

H (Xi | X−i ), (2)

allow assessing high-order interdependencies. Here, H (Y ) =
−∑

y pY (y) log2 pY (y) is Shannon’s entropy of the random
variable (or vector) Y with distribution pY (y), H (Y |Z ) =
H (Y, Z ) − H (Z ) is the conditional Shannon entropy, and
X−i = (X1, . . . , Xi−1, Xi+1, . . . , XN ). Importantly, both TC
and DTC are zero if and only if all variables X1, . . . , XN are
jointly statistically independent—i.e., if their joint distribution
can be factorized as pX (x) = ∏N

i=1 pXi (xi ).
Unfortunately, TC and DTC provide alternative metrics

for high-order interdependencies that are difficult to analyze
together. A recent approach, introduced in Ref. [19], pro-
poses to consider the sum and the difference of those two
metrics to obtain the O-information and the S-information,
which have more intuitive interpretations. Specifically, given
N random variables X = (X1, . . . , XN ), their O-information is
defined as

�(X ) := TC(X ) − DTC(X ), (3)

which reads

�(X ) = (N − 2)H (X ) +
N∑

i=1

[H (Xi ) − H (X−i )]. (4)

The O-information is a signed metric capturing the balance
between high- and low-order statistical constraints. Low-order
constraints impose strict restrictions on the system and allow

little shared information between variables, whereas high-
order constraints impose collective restrictions that enable
large amounts of shared randomness [19]. Crucially, high-
order constraints can generate global interdependencies that
do not impose corresponding pairwise dependencies, as ob-
served, for instance, in the XOR logic gates.

Consequently, �(X ) < 0 implies a predominance of high-
order constraints within the system, a condition usually
referred to as statistical synergy. Conversely, �(X ) > 0 in-
dicates that low-order constraints dominate the system and
implies redundancy of information. The adopted terminol-
ogy finds support in many properties of the O-information.
Firstly, the O-information is maximized by redundant dis-
tributions where the same information is copied in multiple
variables and is minimized by synergistic (“XOR-like”) dis-
tributions: e.g., for binary variables, � is maximized by the
“N-bit copy” where X1 is a Bernoulli random variable (r.v.)
with parameter p = 1/2 and X1 = · · · = XN , and is mini-
mized when X1, . . . , XN−1 are independent and identically
distributed (i.i.d). fair coins and XN = ∑N−1

j=1 Xj (mod 2). Ad-
ditional relevant properties are, in order:

(1) It captures genuine high-order effects, as it is zero
for systems with only pairwise interdependencies: if the joint
distribution of X (with an even number N of components)
can be factorized as pX (x) = ∏N/2

k=1 pX2k−1,X2k (x2k−1, x2k ), then
�(X ) = 0.

(2) The O-information characterizes the dominant ten-
dency, being additive over noninteractive subsystems: if the
system can be factorized as pX (x) = pX1,...,Xm (x1, . . . , xm) ×
pXm+1,...,XN (xm+1, . . . , xN ), then �(X ) = �(X1, . . . , Xm) +
�(Xm+1, XN ).

It is worth mentioning that for N = 3, � coincides with
the interaction information [31], a classical multivariate
information-theoretic measure [32] with interesting topo-
logical properties [33]. While the interaction information
represents the balance of synergy-vs-redundancy only for
three variables [34], the O-information has this capability for
any system size—see Ref. [19] for additional insights, prop-
erties, and mathematical proofs related to the O-information.

Summarizing, while the TC and DTC provide alternative
representations to the same construct, � qualitatively char-
acterizes their dominant nature. Eventually, notice that the
O-information finds an additional interpretation as a revision
of the classic measure of neural complexity proposed by
Tononi et al. in Ref. [35], which provides a mathematical
formulation with properties that are closer to their original
desiderata [19].

III. QUANTUM O-INFORMATION

Before delving into the quantum realm, it is important to
note that Eq. (4) relies solely on a linear combination of Shan-
non entropies computed on various collections of variables,
while it does not require any conditional entropy terms. By
leveraging this, one can identify a quantum counterpart to the
O-information by substituting the Shannon entropy H with the
von Neumann entropy S = −Tr[ρ log2 ρ], where ρ denotes
the density matrix of the quantum system under consideration.
Accordingly, we define the quantum O-information—or, more
succinctly, “Q-information”—of a quantum system composed
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of N parties as follows:

�Q(ρ) := (N − 2)S(ρ) +
N∑

i=1

[S(ρi ) − S(ρ−i )], (5)

where ρi is the density matrix of the ith component of the sys-
tem, obtained by tracing out all the other degrees of freedom,
whereas ρ−i denotes the density matrix obtained by tracing
out the ith component from ρ and corresponds to the rest of
the system. Note that (5) vanishes if N = 2, hence three is
the minimum number of parties that can yield a nonvanishing
Q-information.

Observe that, according to the definition (5), the Q-
information of pure states ρ = |ψ〉 〈ψ | is identically zero for
any N . Indeed, the von Neumann entropy of pure states is
zero and, from the Schmidt decomposition, each term in the
summation in (5) is zero, since S(ρi ) = S(ρ−i ) for all i. We
can nonetheless associate nonzero Q-information values to
pure states by making use of their reduced density matrices
[36], namely, by decomposing them into subsystems.

Therefore, we define the Q-information of an N-party pure
vector state |ψ〉 as the average Q-information of its (N − 1)-
party reduced density matrices, namely,

�Q(|�〉) := 1

N

N∑
j=1

�Q(ρ− j ), (6)

with ρ = |�〉 〈�|. Now, since ρ is a pure state, we get
S(ρ− j ) = S(ρ j ) and S(ρ− j,−i ) = S(ρ ji ), whence

�Q(ρ− j ) = (N − 3)S(ρ j ) +
N∑

i=1
i �= j

[S(ρi ) − S(ρi j )]

= (N − 4)S(ρ j ) +
N∑

i=1

S(ρi ) −
N∑

i=1
i �= j

S(ρi j ). (7)

Therefore, the Q-information for an N-party pure quantum
state (6) reads

�Q(|ψ〉) =
(

2 − 4

N

) ∑
j

S(ρ j ) − 1

N

∑
i �= j

S(ρi j ). (8)

By abusing notation, we will remove the bar in the definition
(6) and refer henceforth to �Q(|ψ〉) also for pure states, when-
ever confusion cannot arise.

The definition of the Q-information �Q, both for pure and
mixed states, is central in this work, and a few comments are
in order. First of all, notice that in a general (pure or mixed)
state, the von Neumann entropy depends on the jth compo-
nent one traces out. It is for this reason that average procedures
are necessary. This seemingly trivial comment will be useful
in the following. Second, in light of the above comment, an
alternative definition for pure states might be

�̃Q(|�〉) := �Q(ρred ) (9)

with

ρred = 1

N

N∑
j=1

ρ− j, (10)

but this expression is more difficult to analyze.

Third, it follows by direct calculation that a pure state of
N = 3 components yields a vanishing Q-information. There-
fore, N = 4 is the minimum number of components that may
lead to a nonvanishing Q-information, as one component has
to be traced out, leaving a mixed state of a tripartite system.
Finally, from the above observation, a remarkable difference
emerges between the classical O-information and its quantum
counterpart, namely, the minimum number of components
yielding a nonvanishing O-information is N = 3 in classical
systems and N = 4 in pure-state quantum systems.

Given this premise, to develop further insight about the
Q-information, let us apply it to some well-known qubit
states: the Greenberger–Horne–Zeilinger (GHZ) state [37],
the W state, and the maximally multipartite entangled states
(MMES) [38,39]. For each of these states, various sizes will
be considered. Additionally, we shall also evaluate states with
a fixed number of qubits: the Yeo-Chua (YC) state [40], the
“hyperdeterminant” (HD) state [41], and the Higuchi-Sudbery
(HS) state [42]. Interestingly, calculations on these (pure)
states suggest that the resulting Q-information does not rely
on the choice of the traced-out qubit—additional details on
this issue will be discussed later. For the sake of clarity, let us
recall the definition of the considered states. The GHZ state,
in its more general form (i.e., with N qubits), reads

|GHZ〉 = 1√
2

(|0〉⊗N + |1〉⊗N ). (11)

Similarly, the W state, which constitutes a specific case of
Dicke states [43], can be written in a generic form as

|W 〉 = 1√
N

(|10 . . . 0〉 + |01 . . . 0〉 + · · · + |00 . . . 1〉). (12)

Considering N = 4, the states YC, HD, and HS read

|YC〉 = 1

2
√

2
(|0000〉 − |0011〉 − |0101〉 + |0110〉

+ |1001〉 + |1010〉 + |1100〉) + |1111〉),

|HD〉 = 1√
6

(|1000〉 + |0100〉 + |0001〉 +
√

2 |1111〉),

|HS〉 = 1√
6

[|0011〉 + |1100〉 + e
2iπ
3 (|0101〉 + |1010〉)

+ e
4iπ
3 (|0110〉 + |1001〉)]. (13)

Finally, uniform MMES states are defined as

|MMES〉 = 1

N

∑
k∈ZN

2

eiφk |k〉 , (14)

where the φk are suitable phases. For instance, a five-qubit
MMES state can be obtained by using the following entries
for the term φk in (14):

φ = (0, 0, 0, 0, 0, π, π, 0, 0, π, π, 0, 0, 0, 0, 0,

0, 0, π, π, 0, π, 0, π, π, 0, π, 0, π, π, 0, 0); (15)

see Ref. [38] for additional details. The analysis of the Q-
information of these states shows that subsystems of the GHZ
and the W states are redundancy dominated and the value of
the Q-information scales with N , i.e., the number of qubits.
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FIG. 1. Q-information�Q vs number of qubits N for different
pure quantum states. The calculation of �Q is performed differently
for random states, see text.

In contrast, MMES are synergy dominated, with the absolute
value of the Q-information also increasing with the number
of qubits — see Fig. 1. Additionally, results show that the
HS state is redundancy dominated, while the HD and the YC
states are synergy dominated.

We note in passing that, in the states above considered, the
contributions �Q(ρ− j ) in (6) do not rely on the jth traced out
qubit. Yet, such independence comes from the symmetries of
the analyzed states and is certainly not a general feature of the
Q-information.

To build intuition on these results, let us recall that the
GHZ state is the ground state of the ferromagnetic quantum
Ising model described by the Hamiltonian H = −J

∑
σ z

j σ
z
j+1,

with interaction strength J > 0 and σ z being the third Pauli
matrix. Hence, the fact that GHZ is redundancy dominated
is consistent with previous works in classical spin systems
[23,44], where the connection between synergy and frustra-
tion (i.e., when J < 0) has been stressed. Finally, all the
above-described properties suggest that �Q departs from
separableness, with a redundant character (�Q > 0) for en-
tanglement typical of the GHZ-like states, and a synergistic
character (�Q < 0) for MMES-like states.

IV. FOUR-QUBIT PURE STATES

Let us remark that a nonvanishing Q-information in pure
states can be obtained considering at least four qubits. Inter-
estingly, that connects with the concept of interaction infor-
mation [31] of classical variables. Also, we remark that many
open problems concern four-qubit states [45], such as their
classification [46–48], and are crucial for the efficiency of
quantum protocols. Therefore, here, we concentrate on four-
qubit pure states |�〉, whose decomposition leads to identify-
ing four components (subsystems), say, A, B, C, and D.

Tracing out A from ρABCD = |�〉 〈�|, we obtain the
reduced density matrix ρBCD. The Q-information derived
through the reduced density matrix ρBCD reads

�Q(ρBCD) = SBCD − SBC − SBD − SCD + SB + SC + SD.

(16)

Notice that Eq. (16) corresponds to the well-known topo-
logical entanglement entropy [49]. It is easy to prove that
�Q(ρBCD) does not depend on the choice of the traced-out
subsystem A (the same property does not generally hold for
N > 4, however, as previously reported, it does hold for the
states considered in the previous section). In this respect,
it can be shown that, exploiting Schmidt’s decomposition,
�Q(ρBCD) can be written in the symmetrical form

�Q(ρBCD) =
∑

X

SX − 1

4

∑
X �=Y

SXY , (17)

where X and Y take value in {A, B,C, D}.
This coincides with expression (8). Therefore, we can un-

ambiguously associate the quantity

�Q(|�〉) = �Q(ρBCD) (18)

for all four-party pure states (and in particular for four qubits),
measuring the high-order informational character of |�〉.

We also remark that, for N = 4, there is only one way to
obtain four subsystems.

The following bounds can be proven by using subadditivity
[50] and strong subadditivity inequalities [51]:

−2 min
X

SX � �Q(ρBCD) � 2 min
X

SX , (19)

where X is one of the four subsystems A, B, C, and D. To
prove the upper bound, note that strong subadditivity inequal-
ity implies that SBCD + SB − SBC − SBD � 0, and substituting
in Eq. (16) yields �Q(ρBCD) � SC + SD − SCD; now, assum-
ing that SC � SD, subadditivity implies that SC − SD − SCD �
0, hence �Q(ρBCD) � 2 SD. Since D is arbitrary, the upper
bound follows. Similarly, to prove the lower bound, first sub-
stitute SB + SC − SBC � 0 in Eq. (16), obtaining �Q(ρBCD) �
SBCD + SD − SCD − SBD; using twice the subadditivity prop-
erty implies �Q(ρBCD) � −2 SC . Since C is arbitrary, the
lower bound follows. Note that, if the qubit state is factor-
izable with respect to a single qubit X , the two bounds of
Eq. (19) vanish. This is a general property; if a pure state of
N qubits (with arbitrary N) is factorizable, with respect to a
single qubit, then after tracing out that qubit, the resulting state
remains pure, therefore the �Q associated to that state is zero.
Finally, this observation shows that the property that a pure
state of N = 3 components yields a vanishing Q-information,
discussed after Eq. (10), is, in fact, a consequence of the fact
that in a four-qubit system �Q(ρBCD) does not depend on
the choice of the subsystem A that is traced out. Eventually,
Eq. (19) entails −2 � �Q � 2.

We now turn to consider states that are “random” in some
respect. First, we look at all pure states of four qubits that are
obtained by assigning 1 or 0 to the coefficients of the 16 basis
states: the distribution of the �Q of these states, displayed in
Fig. 2, shows that negative values are very numerous, signal-
ing synergy.

On the other hand, in Fig. 3 we consider the distribution of
the Q-information �Q on mixed states of three qubits (8 × 8
density matrices), obtained as reduced states of uniformly
distributed random pure states of four, five, six, and seven
qubits. This is shown in Fig. 3. In all cases, the distribution
of �Q peaks at negative values, i.e., we typically observe
synergy. Observe that, by virtue of their typicality, for these
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FIG. 2. Distribution of the Q-information �Q evaluated on all
65 536 pure states that can be built by assigning 1 or 0 to the
coefficients of the 16 basis states. �Q ranges in [−1, 1].

states �Q shows (almost) no dependence on the particular
subsystem that is traced out, but only on its dimension.

Thus, we conclude that the random generation of pure
states shows that it is easier to produce synergistic (qubit)
configurations than redundant ones. Moreover, the case N = 4
of Fig. 3 suggests that the bounds (19) are too loose. As
discussed later, finding better bounds represents a valuable
goal, requiring additional work.

V. HAMILTONIAN TIME EVOLUTION

Now we use the Q-information to address a fundamental
question: how does the structure of high-order interdepen-
dencies change due to the unitary time evolution of a closed
quantum system? As the unitary time evolution alters the state
vector, the quantum system can experience variations in the
internal organization of information as captured by Eq. (5).

The time evolution operator U = e−itH for a time t is
generated by the Hamiltonian H of the system of interest.
The specific form of the Hamiltonian H depends on how the

FIG. 3. Distribution of the Q-information �Q, evaluated on three-qubit mixed states (8 × 8 density matrices) randomly sampled as follows:
10 000 uniformly distributed random pure states of n qubits (n = 4,5,6, and 7) are sampled by normalizing a vector of n i.i.d. complex Gaussian
random variables. Then, the 8 × 8 density matrices are obtained by tracing out n − 3 qubits. In the first case (n = 4), �Q ranges in [−1.1, 033];
as n increases, the measure of the reduced three-qubit density matrices becomes more and concentrated, see Ref. [36] for a similar concentration
phenomenon in induced measure on mixed states.
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FIG. 4. Time evolution of the Q-information for the Hamiltonians defined in the main text, made of two-body interactions H2 (top left),
three-body interactions H3 (top right), and four-body interaction H4 (bottom). The initial states are YC (black dotted line), GHZ (blue dashed
line), W (red dash-dotted line), and |0000〉 (green solid line).

system is organized. For instance, by considering a quantum
register with the qubits in a chain, a relevant choice is given by
the Heisenberg model [52]. According to this model, we con-
sider three local Hamiltonians corresponding to systems with
different interactions. Starting with two-body interactions, the
Hamiltonian reads

H2 = −1

2

4∑
i=1

(
Jxσ

x
i σ x

i+1 + Jyσ
y
i σ

y
i+1 + Jzσ

z
i σ z

i+1

)
, (20)

where σi+1=σ1 if i = 4 to implement periodic boundary condi-
tions. Then, for three- and four-body interactions we have

H3 = −1

3

3∑
i=1

(
Jxσ

x
i σ x

i+1σ
x
i+2 + Jyσ

y
i σ

y
i+1σ

y
i+2 + Jzσ

z
i σ z

i+1σ
z
i+2

)
,

(21)

H4 = − 1
4

(
Jxσ

x
1 σ x

2 σ x
3 σ x

4 + Jyσ
y
1 σ

y
2 σ

y
3 σ

y
4 + Jzσ

z
1σ z

2σ z
3σ z

4

)
,

(22)

where, in H3, σi+2=σ1 if i = 3 for the boundary conditions
above mentioned.

We used the above Hamiltonians to investigate what types
of interactions allow dynamical reconfigurations of high-order
phenomena—notice that the relationship between the order
of the interaction and the order of the resulting patterns can
be highly nontrivial [10]. In particular, many-body interac-
tions are necessary for the Hamiltonian to have multipartite
entangled eigenstates [37,53]. Also, multipartite high-order

correlations have been shown to detect quantum phase
transitions [54]

For this purpose, we measured the Q-information of
U (t ) |�〉 as a function of time t , considering U arising from
Hamiltonians of different orders. In the plots in Fig. 4 we
set Jx = Jy = Jz = 1, and considered the initial states |0000〉,
|GHZ〉, |W 〉, and |YC〉.

The time evolution induced by the two-body Hamiltonian
H2 [Eq. (20)] leads to significant reorganization of high-order
interdependencies [see Fig. 4(b)]. Remarkably, under suitable
Hamiltonians, all states can evolve by alternating synergy-
with redundancy-dominated configurations and vice versa.
Similar observations apply for the three-body Hamiltonian H3

as well as for H4; note that GHZ and W states are eigenvec-
tors of H4, so their action leaves their internal organization
unaltered.

Alternations observed through these Hamiltonians show an
oscillatory behavior of Q-information, which can be limited
to a small range or even turn a synergistic configuration into a
redundant one (and vice versa). In summary, results show how
unitary time evolution can deeply affect the internal organi-
zation of information in entangled qubit states. In particular,
two-body interactions are shown to be enough to completely
rearrange the overall information organization.

VI. CONCLUSION

We have extended the concept of O-information, success-
fully applied so far in a variety of complex macroscopic
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systems (e.g., see Refs. [20,21,23,55]), to the quantum case,
showing its usefulness in grasping the informational character
of the internal dependencies among the components of pure
quantum states. The GHZ states represent the prototype of
redundant dependency, while the MMES represent the syn-
ergistic prototypes. After analyzing the four-qubit case, we
have found that random pure states are typically synergistic.
Furthermore, we have observed that unitary time evolution
generated by suitable local Hamiltonians affects the internal
organization of entangled states. In other words, we have
observed that two-body interactions, beyond increasing the
quantum complexity of a state (see Refs. [56–59]), can drasti-
cally change the internal information organization of quantum
systems.

To conclude, the Q-information deserves many develop-
ments as we deem may shed light on relevant quantum
phenomena. For instance, to cite a few, future works could
aim to understand the relationship between the quantum com-
plexity and the Q-information, the effects of the time evolution
on this quantity, and potential connections with the entangle-
ment monogamy [60]. Also, it is relevant to generalize the

properties of Q-information to collections with N > 4 qubits.
Eventually, because the Q-information is a combination of
quantum entropies, reaching a deeper comprehension of its
operational meaning is far from trivial, yet it represents a
fundamental aim to develop in future investigations.
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