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A B S T R A C T

Malware detection is one of the most important tasks in cybersecurity. Recently, increasing interest
in Convolutional Neural Networks (CNN) and Machine Learning algorithms, which are widely used
in image analysis and predictive modelling, led to their use in static malware classification and to the
application of these powerful tools in computer industry and industrial internet of things.

Many studies claim that the static malware detection approach, under well-defined conditions,
can deliver fast and accurate malware classification results with relatively little human effort once the
framework is implemented, relying solely on the binary content of the file. This becomes evident if we
compare static malware detection to other techniques of dynamic nature. The focus of our research is
to highlight strengths and weaknesses of CNNs used for static malware detection, starting from images
obtained from byte-wise conversion of binary executable files to pixel images to critically analyze the
assumptions underlying the performance of this type of technique.

1. Introduction
Malware may have dramatic effects on both personal and

public digital assets, so the detection of malware is an area
of major concern both for the research community and for
private and public entities.

For this reason threats and vulnerabilities in the Indus-
trial Internet of Things (IIoT) context deserve particular con-
sideration where cybersecurity for Cyber-Physical Systems
(CPS) and for networked Industrial Control Systems (nICS)
become increasingly jeopardized by malware attacks. The
malware menace in such critical industrial environments
raises not only a demand of business impact assessment
[1, 2] due to cyber-attacks but also specific need of cyberse-
curity models, frameworks, architectures [3] which are able
to detect malware threats on the IIoT and promptly neutralize
them.

1.1. Preliminary notions
Due to the relevance of malware detection techniques

as a counter-response, it is necessary to understand their
strengths and limitations, in order to avoid their improper
adoption without appropriate knowledge of their modes of
action. This work attention focuses on the analysis of the
limits and opportunities offered by neural networks algo-
rithms in the improvement of malware detection systems and
provides new useful perspectives to find better practices in
order to build models and tools which comply to the modern
IIoT cybersecurity policies and needs.

For the sake of clarity, let us recall here the definitions
of the most important concepts addressed in this work.

Malware Malware, also known as malicious code and ma-
licious software, refers to a program that is inserted into a
system, usually covertly, with the intent of compromising the
confidentiality, integrity, or availability of the victim’s data,
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applications, or operating system, or otherwise annoying or
disrupting the victim. Malware has become the most signif-
icant external threat to most systems, causing widespread
damage [4].

Malware detection A malware detector is a program de-
signed to detect malicious programs or code [5]. In general,
a malware detector can be modeled as a function defined as
follows [6]:

𝐷(𝑝) =

⎧⎪⎨⎪⎩
malicious if 𝑝 contains malicious code;
benign if 𝑝 does not contain malicious code;
undecidable if 𝐷 fails to determine 𝑝;

(1)

where 𝐷 is the decision function that can check whether an
application or program 𝑝 is either a benign or a malicious
one.

From the above notation it can be seen that there are
cases for which 𝐷 cannot decide whether a program is harm-
ful or not, perhaps because the malware has been created
too recently or, more generally, because it does not provide
enough elements to output an accurate detection result.

Malware analysis is the process of understanding the
behavior and purpose of a suspicious file or piece of code,
and it is one of the first steps towards malware detection.
There are two fundamental approaches to malware analysis,
namely, Static and Dynamic [7, 8, 9]:

• Static (or Code) analysis is a process to analyze a malware
binary without actually running the code. It consists of
reverse-engineering the malware’s internals by loading
the executable into a disassembler and looking at the pro-
gram instructions, in order to discover what the program
does [10, 11, 12, 13].

• Dynamic (or Behavioural) analysis is performed through
the observation of the behavior of the malware while
it is actually running on a host system. This form of
analysis is often performed in a sandbox environment
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[10]. The malware may also be debugged while running,
using a dedicated program referred to as a debugger. This
approach lets one observe the behaviour and effects of
the malware on the host system, step by step, while its
instructions are being processed.

These two paradigms are not mutually exclusive, and
malware analysis techniques may be conducted also through
a hybrid approach.

To improve the existing malware detection techniques
and to increase the efficiency in the detection process, ma-
chine learning and data mining methods may be combined
with traditional detection methods. In this context, we will
evaluate some of the recent advances in the use of CNN
(Convolutional Neural Networks) algorithms for malware
detection.

To this purpose, we have tested (section 5) the robustness
of a malware detector based on a CNN (section 3) against
polymorphic attacks (section 4). The research results support
the hypothesis that the efficiency of malware detectors using
neural networks follows from special assumptions on the
way the malware is designed. It will be seen that when these
assumptions are violated, as it happens for polymorphic
attacks, CNNs may be deceived, leading to misclassification
and drastic effects on performance.

The focus of the present paper is set on a particular type
of malware: that presenting itself as (or inside) Windows PE
or Linux ELF binary files. Several other classes of malware
recently gaining increasing attention are excluded from the
present analysis (e.g those based on Javascript code, see for
example BitM [14] and MinerAlert [15]).

2. State of the art
In the scope of the present research attention will be

devoted to the topics listed below:

• Static malware analysis techniques (defender side);
• Image-based analysis and CNN algorithms for malware

detection and classification (defender side);
• Adversarial Machine Learning (attacker side);
• Polymorphic malware (attacker side);

2.1. Static malware analysis techniques
As previously mentioned, static analysis examines the

file for signs of malicious intent, disassembling the software
and deciding whether it contains malicious code. There are
different tools that can be used to perform static analysis,
such as debuggers, disassemblers, decompilers and source
code analyzers. Methods that are used in static analysis
include File Format Inspection, String Extraction, Finger-
printing, AV scanning, and Disassembly [10].

2.2. Image-based analysis and CNN algorithms for
malware detection and classification

Different studies in static malware detection claim op-
timistic results regarding the use of CNN, where the clas-
sification is based on the transformation of malware binary

samples into pixels constituting the images to be analyzed.
The novel aspect of this approach resides in the shift of
perspective in the analysis, moving from the binary code to
graphical features extracted from it: in this way, it is expected
that the CNN, once trained on a dataset of images derived
from malware binary samples, can decide how to classify
a piece of software (using the function 𝐷 described in (1))
based on graphical features, rather than on the individual
blocks of code.

Hereafter, we briefly report a survey of the literature
that backs the potentialities of CNN technology for malware
detection. Among the first research studies in this context,
we mention [16] and [17], whose main idea is to transform
the byte values (ranging in [0, 255]) of the binary code into
grayscale images, with shades of gray from 0 to 255. Once
the corresponding images have been obtained, they are used
by the graphic pattern recognition algorithms. CNN in 2011
were not yet as popular as today, so in the first paper graphic
pattern recognition algorithms SIFT/GIST were used for
the classification tests, without relying on machine learning
techniques. On the other hand, the second paper envisages
TensorFlow to implement unsupervised machine learning
algorithms such as kNN and SVM.

Since then, several studies have adopted CNN as a sup-
port for classification of malware converted to images [18,
19, 20, 21, 22, 23, 24, 25]. The proposed techniques vary
in the type of algorithms supported, in the setting of the
hyper-parameters, in the type of malware detected, and in
the conversion techniques (binary-to-image) used.

All these works have contributed to define the base for
our analysis, providing a class of well-defined approaches
that we can test.

2.3. Adversarial Machine Learning
A typical example of an adversarial attack is the expo-

sition of inaccurate or misrepresentative data to a machine-
learning model with during its training, or the introduction
of maliciously designed data to deceive an already trained
model into making errors.

The term adversary is used in the field of computer se-
curity to describe agents (humans or machines) that attempt
to penetrate or corrupt a computer network or a program.
Adversaries can use a variety of attack methods to disrupt
a machine learning model, either during the training phase
(called a poisoning attack), or after the classifier has already
been trained (an “evasion” attack). There are a large variety
of different adversarial attacks that can be used against
machine learning systems. Many of these work on both deep
learning systems as well as traditional machine learning
models such as SVMs and linear regression [39, 40, 41].

As a high-level instance of these attack, we discuss an
adversarial example, namely, a specially crafted input that
is designed to look normal to humans, but leads a machine
learning model to misclassification. Often, an appropriate
form of noise is used to elicit the misclassifications. Adver-
sarial examples, which we can also call antagonistic exam-
ples, are a real problem for any machine learning technique:
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through changes that are imperceptible to the human eye, it is
possible to generate examples that can confuse any classifier
with very high probability, regardless of its accuracy during
training.

One of the most interesting methods developed to mis-
lead a CNN consists in finding and applying Universal
Adversarial Perturbations to image samples that need to be
classified [26, 27, 28].

This unintended behaviour of neural networks under
adversarial examples can be exploited by attackers to create
malicious software specifically designed to evade cyberse-
curity defenses based on neural network classifiers, not to
mention other critical consequences in the most diverse areas
of use of CNN in real life, where the classification and
recognition of images is a crucial point for the safety and
security of the users [29, 30, 31, 32].

2.4. Polymorphic malware
Polymorphic malware [33, 34, 35] is a type of malware

that constantly changes its identifiable features in order to
evade detection [36]. Polymorphic malware uses encryption
techniques, but in a more complex way than other malware
does: with encryption, the main body of the code (also
referred to as its payload) appears meaningless, and its func-
tionalities are restored through decryption. For the malicious
code, a decryption function is added to the code, so that,
when the code is executed, this function reads the payload
and decrypts it before its execution. Encryption alone is not
polymorphism: in order to gain polymorphic behaviour, the
encrypter/decrypter pair is mutated with each copy of the
code. This allows different versions of the code, all of which
work the same way, with no a priori bound on the number
of encrypted versions they can generate. For this reason,
antiviruses can hardly detect polymorphic malware [37].

3. CNN malware detector
The implementation of our malware detector is based on

design choices that are in line with most of the specifications
found in the previously cited works.

3.1. Architecture overview
The hereby illustrated malware detector is basically a

Convolutional Neural Network algorithm that solves a 2-
class binary image classification problem, where the two
classes are identified with the labels “malware” and “good-
ware”. Here, the term “goodware” refers to any harmless
program or executable that works without any intentional
(e.g. non-random) malicious effect.

The configuration is meant to prevent the occurrence
of false negatives during the prediction phase, adopting a
preventive and more cautious perspective.

In Figure1, the architecture of the malware detector is
illustrated.

The first phase is preprocessing, which converts binary
executables into pixel images.

Once the image samples are obtained, they are ready to
be fed as input into the trained CNN architecture, which will

return the classification scores used to determine the class
of the examined sample. In the figure 1 below, an example
shows what happens when a malware executable is correctly
detected.

3.2. Main properties
The proposed malware detector has the following key

properties:

• It uses static analysis: the executable files are exam-
ined without running them, the useful information that
drives the detector’s decision is extracted directly from
the binary file content.

• Signature detection: the detector bases its evalua-
tion on the experience gained in the machine learn-
ing training phase, where it learnt specific features
and signatures of the existing malware from a given
dataset.

• Similarities with anomaly detection: given a dataset,
this detector learns not only the signatures of the
malware samples, but also the features of the harmless
goodware, and makes its prediction accordingly. This
behaviour is analogous to several anomaly detection
methods.

• Uses images and not flat byte strings as input.

To avoid any misunderstanding, it is worth noting how
the present work fully acknowledges the novelty and the
usefulness of CNNs in the context of malware detection.
Far from denying it, the focus of the present work is the
assessment of the existence of a wide class of malware that,
through some of the countless way to obfuscate its code
might be able to escape the CNNs’ detection mechanisms. In
short, while CNNs are a certainly a strong aid in the struggle
against malware, one cannot rely exclusively on them in such
endeavour.

3.3. Implementation
For this work, we have chosen three among the most

popular CNN architectures, namely: VGG16, ResNet50v2,
and InceptionV3, and they have been implemented using
Keras and Tensorflow frameworks for Python 3.8.6 (64 bit).
The machine dedicated to training features a GTX 1080 GPU
(8 GB VRAM) and an Intel Core i7 2600 CPU with 32 GB
of RAM.

3.4. Dataset and training
The Linux (ELF files) and Windows (Win PE format)

malware executable samples have been downloaded and
selected from VirusShare.com, which holds a repository of
malware samples [38]. On the other hand, the goodware
samples collection for both platforms have been gathered by
dumping applications and regular program executables from
installed OS environments. At this point, our dataset samples
are binary files:
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Figure 1: CNN malware detector architecture overview

• 8674 samples for Linux (4544 malware and 4130
goodware)

• 15439 samples for Windows (7493 malware and 7946
goodware)

In order to generate a dataset that can be used by a CNN
learning algorithm, we need to convert the binary executable
samples into images, more precisely grayscale pixel images:
for this purpose, each byte from the binary file, which can
assume only unsigned values between 0 and 255, is mapped
to a pixel of a specific tone of gray, labelled from value 0
(black) to value 255 (white).

For the training task, we need to split the dataset into
training data and testing data. For both Windows and Linux,
datasets are split into three subsets: the training set (70%),
the validation set (15%), and the test set (15%).

The splitting for the two datasets is shown in Figure 2.

Figure 2: Dataset splitting

3.5. Preliminary test results on regular malware
The results assessing the prediction performance of

CNN models trained on the samples in the test sets are shown
in Tables 1 and 2.

Regarding Linux platform dataset, the results show very
good malware classification and detection performance for
all the three presented CNN architectures.

Each of the tested CNN reaches an accuracy above 99%
on the test set samples, indicating an outstanding capability
of generalization of the prediction on malware detection.

In this case, the best CNN is found to be VGG16, with its
accuracy of 99.77%, closely followed by the other two.

On Windows platform dataset, the results show lower,
but still appreciable malware classification and detection
performances for all the three tested CNN architectures.
Each of the CNN reaches an accuracy above 86% on the test
set samples. In this case, the best CNN is ResNet50v2, with
its accuracy of 89.25%. The other two, VGG16 and Inception
V3, offer similar performance in terms of accuracy, which is
slightly less than 87%.

In both platform cases, the CNNs generate interesting
results, confirming the claims of the literature papers [18,
19, 20, 21, 22, 23, 24, 25], presented earlier in the previous
section, that malware detection and classification based on
CNN-powered static image analysis represents a promising
and reliable method in this field of cybersecurity.

4. Polymorphic attack
Although the results obtained so far in terms of CNN

classification performance are remarkable, we have to check
them on a new attack method that exploits CNNs’ sensitiv-
ity to small perturbations in the datasets. The method we
propose may break malware detectors as they have been
implemented following the scientific literature, bringing to
light the limits of CNN technology in terms of effects on
the prediction results of the three CNN already trained
and tested in the previous section. We can define this new
method as an adversarial machine learning attack based on
the design of malware in the form of polymorphic binary
executables.

4.1. Proposed idea
The idea behind the attack is based on the difference

between the extraction of meaningful graphic features from
CNN architectures and the functionalities of the original
malware’s binary: this difference is exploited looking at
alterations of graphic features derived from the binary-to-
image conversion while preserving the functionalities of a
malware. This type of alterations is enabled by a polymor-
phic engine and we will focus on its effects compared to
the traditional signatures used by the standard antivirus and
malware detection systems.
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Linux dataset

CNN Classes # testset samples Precision Recall F1-score Accuracy
Malware 682 99.71% 99.85% 99.78%VGG16 Goodware 629 1302 99.84% 99.68% 99.76% 99.77%

Malware 682 99.85% 99.41% 99.63%ResNet50v2 Goodware 620 1302 99.36% 99.84% 99.60% 99.62%

Malware 682 99.85% 99.97% 99.41%InceptionV3 Goodware 620 1302 98.88% 99.84% 99.36% 99.39%

Table 1
Results of trained CNN models (Linux)

Windows dataset

CNN Classes # testset samples Precision Recall F1-score Accuracy
Malware 1124 85.64% 87.54% 86.58%VGG16 Goodware 1192 2316 99.84% 99.68% 99.76% 86.83%

Malware 1124 92.35% 84.88% 88.46%ResNet50v2 Goodware 1192 2316 86.75% 93.37% 89.94% 89.25%

Malware 1124 93.32% 78.29% 85.15%InceptionV3 Goodware 1192 2316 82.23% 94.71% 88.03% 86.74%

Table 2
Results of trained CNN models (Windows)

Our approach is to trigger a modification of scores for
both the two classes (malware and goodware) of the classi-
fiers, i.e. to lower the classification score for “malware” label
and to raise the “goodware” score as well. More precisely,
our objective is to invert the classification behavior of CNN-
based malware detectors, so that a polymorphic malware
makes the CNN recognizes it as a goodware, although it is
definitely not, hence tearing apart their effectiveness at this
task. This is shown in Figure 3 This line of attack is possible

Figure 3: Different working scenarios of binary classifiers.

by leveraging polymorphism: we manipulate or “spike” the
original malware samples by inserting typical goodware
graphic features into them, still retaining unchanged the orig-
inal code maliciousness. This step is expected to increase
the goodware class score. This practice is also accompanied
by layers of classic binary encryption that have the purpose
of preventing the detection of graphic malware signatures

and, as a consequence, lowering the “malware” class score
of the examined samples. When tested, CNNs analyze this
“spiked” malware, so they detect goodware graphic features
misclassify it as harmless goodware samples.

4.2. The bricks
The proposed polymorphic malware is composed of

three main blocks (Figure 4): an extractor (decrypter), a
goodware camouflage mask, and the encrypted malware
binary code.

Figure 4: Polymorphic malware architecture

Extractor The extractor code is implemented in C, which
allows to get a very lightweight and efficient binary once
compiled. Its job is to reverse the operation of malware
encryption done by the polymorphic engine: once the poly-
morphic malware has misled the CNN malware detector,
the extractor decrypts the malware binary and runs it in the
targeted system.

Camouflage mask The goodware samples that serve as
camouflage masks are picked from the goodware samples
of the respective Linux and Windows test sets.
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Encrypted malware The malware samples are taken by
the malware executables in both the Windows and Linux
training sets. The choice of the samples from the training
set gives the worst case scenario for the attacker side and
the best one for the CNN detector: in fact, it is assumed that
malware samples that belong to the training set on which the
models have been trained are easier to be correctly detected
by the classifiers themselves.

Implementation details In brief, the C extractor consid-
ers, at compile time, a set of descriptive parameters of the
mask and the encrypted malware blocks, e.g. sizes in bytes,
delimitation marker strings, padding sizes, and optional
switches. The parameters in the C source code file need
to be tuned appropriately: this task is automated by the
polymorphic engine script written in bash. Once launched,
the extractor performs the following sequence of tasks: it
reads itself byte-by-byte, until it finds the first of two pre-
determined marker strings that indicates the offset where
the goodware block begins. Then, it reads the bytes consti-
tuting the goodware block, stores them into an array, and
stops when the number of bytes read equals the size of the
goodware block.

Subsequently, the second marker is searched and an
analogous procedure is done in order to read and store the
sequence of bytes of the encrypted malware block into a
second array. Having both blocks been stored, the decryption
is carried out through bytewise subtraction mod 256 of the
two arrays.

Once the malware has been decrypted, it is written on a
file and executed on the fly on the target system. In order to
retrieve the right offset of the blocks inside the polymorphic
sample, the use of strings as markers becomes necessary due
to the difficulty to determine the blocks exact size a priori.
Optional steps may be performed during extraction, such as
XOR decryption or other logical techniques.

4.3. The polymorphic nature of this approach
The polymorphic nature of this kind of approach is given

by the possibility to pick and use any of the wide range
of available goodware for a given target OS platform. This
allows keeping the encrypted malware, under polymorphic
disguise, reusable for several attacks. Indeed, even if a poly-
morphic malware is detected and added to database or the
training set of the known malware samples, one can choose a
new available goodware program, and use it as a camouflage
mask: in this way, a new polymorphic malware is produced
with the same functionality but with unknown signatures
This characteristic is enhanced by the XOR encryption layer,
which can increase the differences between different gener-
ations of polymorphic malware, enhancing polymorphism.

5. CNN under polymorphic attack
Polymorphic malware samples are created by stacking

together the three aforementioned blocks. The process of
stacking and binding correctly each of the blocks is carried
out by our polymorphic engine, which is a shell script written

for this purpose. Figure 5 shows the process of creating
malware samples through the polymorphic malware engine

Now we evaluate the effects and test the robustness of
the three CNN trained models against polymorphic malware.
Figure 6 shows how the test of the attack is carried out
in term of choice of samples from the dataset. The same
procedure is used for both Linux and Windows datasets.

The previously trained CNN models are now attacked
and the results are considered to assess the impact of the
polymorphic malware.

6. Attack results
Regarding Linux platform dataset, the results show dra-

matic consequences caused by the polymorphic samples on
classification detection performance for all the three CNN
architectures under examination. None of the tested CNN
has been able to correctly classify one single polymorphic
malware sample: all samples have been misclassified, result-
ing in an evasion rate of 100% for all the models (Tables 3
and 4).

On Windows platform dataset, the results show basically
the same situation as for Linux samples: also in this case,
almost all of the polymorphic samples have been misclassi-
fied. In the best case represented by ResNet50v2 model, the
lowest evasion rate exceeds 93% (Tables 3 and 4).

We note that the Linux dataset where the CNN per-
formed better under the original malware’s attack coincides
with the dataset where the worst results are attained under
the polymorphic attack. This behavior suggests that the
best results of CNN models in normal conditions, i.e. with
regular samples, may be less robust under ad hoc polymor-
phic malware attacks: a possible interpretation of this phe-
nomenon relies on a stronger dependence on the assumption
of “faithful” representation of malware’s functionalities, and
better results on the regular samples may be a hint of a
stronger alignment of CNN models with the standard encod-
ing of malware. This could lead to an unbalanced (worst)
performance on malware encoded in non-standard forms,
such as those obtained through the polymorphic engine.

7. Countermeasures
We now address the possibility to use adversarial train-

ing as a viable method to mitigate the consequences of
polymorphic malware attacks involving CNN classifiers.

7.1. Adversarial training
The adversarial training is one of the most effective ap-

proaches to defend deep learning models against adversarial
examples, since it aims to improve the inherent robustness
of the models.

The initial idea of adversarial training is first brought to
light by [Szegedy et al., 2014], where neural networks are
trained on a mixture of adversarial examples and clean ex-
amples. Goodfellow et al. (2015) went further and proposed
FGSM to produce adversarial examples during training.
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Figure 5: Polymorphic malware creation process

7.2. CNN hardening attempt by using adversarial
training technique

A straightforward strategy for training an adversarially
robust model is to create and, subsequently incorporate ad-
versarial examples into the training process. In other words,
knowing that “standard” training may generate models that
are prone to adversarial examples, we also train on a limited
number of adversarial examples.

A robust classifier is one that correctly labels adversari-
ally perturbed images, whichare derived from polymorphic
malware in our case.

7.3. Second attack
The adversarial samples of the first generation of poly-

morphic malware, which have produced the results dis-
cussed above, are inserted in both Linux and Windows
train sets. Then, the same datasets are augmented with
the first generation polymorphic malware samples, and the
CNN models are trained on these extended datasets. After
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Figure 6: CNN attack

Table 3
Attack results for polymorphic malware samples designed for Linux

CNN Classes # testset samples Mean Class. Margin Well Classified Misclassified Evasion rate
Malware 591 -0.999995 0 591 100%VGG16 Goodware 0 591 NA 0 0 NA
Malware 591 -0.999816 0 591 100%ResNet50v2 Goodware 0 591 NA 0 0 NA
Malware 591 -0.996308 0 591 100%InceptionV3 Goodware 0 591 NA 0 0 NA

Table 4
Attack results for polymorphic malware samples designed for Windows

CNN Classes # testset samples Mean Class. Margin Well Classified Misclassified Evasion rate
Malware 487 -0.717704 2 485 99.59%VGG16 Goodware 0 487 NA 0 0 NA
Malware 487 -0.827743 32 455 93.42%ResNet50v2 Goodware 0 487 NA 0 0 NA
Malware 487 -0.712381 12 475 97.53%InceptionV3 Goodware 0 487 NA 0 0 NA
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Figure 7: Diagram of CNN adversarial training and 2nd generation attack.

adversarial training, a new attack against the adversarial-
trained models is perpetrated through the second generation
malware. The objective is to evaluate to what extent this
adversarial training countermeasure is able to harden CNN
malware classification models against polymorphic malware
of different subsequent generations.

Polymorphism vs CNN adversarial training CNN mod-
els, trained on adversarial train set, are tested for classifica-
tion on the second generation polymorphic samples. From
the results, we can also get an insight of how much ad-
versarial trained CNN models can effectively automatically
learn to achieve some level of robustness against malware
polymorphism technique.

Figure 7 gives an illustration of the second generation
polymorphic malware attack to CNN models trained with
first generation polymorphic malware samples.

8. Results after hardening
After CNN models hardening using adversarial train-

ing techniques, some improvements under specific circum-
stances are observed in the classification performance re-
sults.

For the Linux samples (Table 5), we can see that the
InceptionV3 model benefited from the adversarial training
countermeasure the most. In fact, its evasion rate dropped of
more than 30% starting from 100% down to less than 69%.
The other two architectures had little or no improvements
at all, with an evasion rate steady to 100% for VGG16 and
above 95% in the case of ResNet50v2.

For the Windows samples (6), the results show some-
thing different, at least for two out of three architectures.
After hardening, VGG16 shows an evasion rate drop of
about 90%, going down to the only 9% of misclassified
polymorphic malware samples. InceptionV3 shows signifi-
cant classification improvements over polymorphic samples,
with an evasion rate down to less than 32% and a reduction
of more than 67% of the original value. On the other hand,
ResNet50v2 is the only tested architecture that did not get
any improvement after adversarial training, with an evasion
rate over 99%.

These results confirm the goodness of CNN-based clas-
sification under the assumption of a “standard” malware
encoding, in line with the discussion of the previous section,
here generated by first-generation polymorphic attacks and
mitigated by adversarial training. In fact, the polymorphic
adversarial attacks exhibit the best malicious effectiveness
against those models (either unhardened and hardened CNN)
that performed better under the original malware samples.

Despite the positive effects of the adversarial training,
the issues that polymorphism poses on CNN-based mal-
ware detection are far from solved. In fact, even after the
adversarial training and in almost any tested architecture,
the evasion rate on polymorphic malware is still too high to
consider CNN-powered malware detectors reliable, without
essential and effective countermeasures and architectural
adjustments.

Furthermore, the marked difference in classification
performance between different architectures with the same
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Table 5
Attack results for polymorphic malware samples designed for Linux.

CNN Classes # testset samples Mean Class. Margin Well Classified Misclassified Evasion rate
Malware 591 -0.980454% 0 591 100%VGG16 Goodware 0 591 NA 0 0 NA
Malware 591 -0.771529% 27 564 95.53%ResNet50v2 Goodware 0 591 NA 0 0 NA
Malware 591 -0.266261% 184 407 68.87%InceptionV3 Goodware 600 591 NA 0 0 NA

Table 6
Attack results for polymorphic malware samples designed for Windows.

Hardened CNN with adversarial training on 1st gen polymorphic attack (2nd gen attack)
CNN Classes # testset samples Mean Class. Margin Well Classified Misclassified Evasion rate

Malware 487 0.580322 443 44 9.03%VGG16 Goodware 0 487 NA 0 0 NA
Malware 487 -0.925513 2 485 99.56%ResNet50v2 Goodware 0 487 NA 0 0 NA
Malware 487 0.215359 332 155 31.83%InceptionV3 Goodware 0 487 NA 0 0 NA

dataset suggests a severe unpredictability of the benefits re-
sulting from the adversarial training, based on the operating
conditions. This unpredictability and the lack of control over
the performance of classifiers may arise among different
architectures and furthermore, between different generations
of polymorphic malware. This makes it difficult to find
attributes and features for an objective evaluation of the
reliability of the models.

9. Future work
Future works on CNN-powered malware detection should

concentrate on the exploration of possible techniques ca-
pable of counteracting the effects of adversarial machine
learning. This is critical in light of the ongoing exploita-
tion of machine learning technologies for static malware
analysis, since currently, unhardened CNN architectures are
inadequate to address security issues such as the detection
of polymorphic malware and adversarial samples.

Based on the work we have done, we can argue that
the research on CNN and ML algorithms for static malware
analysis and signature-based detection has to be integrated
by other complementary approaches: indeed, the combina-
tion of ML and static analysis, provides several opportunities
for relevant improvements, with special regard to adversarial
training technique; on the other hand, it has to take into
account the sensitivity of CNNs and the opportunity (for
the attacker) to mislead them, with little effort. These issues
represent a valid starting point for the design of better mal-
ware detection systems based on static analysis and signature
detection.

10. Conclusions
So far, we have addressed some issues and challenges

that malware poses to cybersecurity. To face these issues

and to accomplish the task of building reliable malware
detectors, we explored some possibility offered by machine
learning technologies, such as CNN architectures, namely
malware and goodware classifiers.

The focus of the present research is set on the effec-
tiveness of CNNs in the field of malware detection, when
malware files are preprocessed, statically transformed into
image samples, and fed into CNN for classification. The ex-
periments we conducted focused on 2-classes binary classi-
fication (malware and goodware) and three of the best CNN
architectures available were considered. After collecting all
the necessary samples of malware and harmless programs,
two separate datasets were formed for two OS platforms,
Linux and Windows. After the training phase, the models
were evaluated on the samples in test sets and, then, the
encouraging results that came from them were discussed.

Our main contribution focused on the problems involved
by the use adversarial machine learning with CNN-based
classifiers designed for malware detection. To this purpose
a polymorphic engine capable of generating polymorphic
malware aimed at attacking and deceiving CNN classifiers
was designed and implemented experimentally. The pro-
posed polymorphic malware design was able to deceive,
evade a malware detector and ultimately to render it useless,
in case no kind of hardening against adversarial polymorphic
malware samples is performed.

It must be emphasized that the hardening approach here
used assumes the defender’s knowledge of the proposed
polymorphic attack (i.e. the defender is aware of the set of
adversarial samples designed and used by the attacker and
knows which are the samples it must be able to block). In
turn, this implies the analyzed scenario is the best for the
defender (and consequently the worst for the attacker). In
conclusion, the present evidence supports the statement that,
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even after hardening, a CNN-based malware detector, man-
ifests significant malware misclassification issues against
polymorphic samples.

After showing countermeasures are required, adversarial
training on the considered CNN models was introduced,
which led to a mitigation of the deleterious effects on the
CNN classification performances caused by the polymor-
phic malware attack. Unfortunately, the high cost of generat-
ing strong adversarial examples makes standard adversarial
training impractical on large-scale problems. Furthermore,
this measure proves not sufficient to make these applications
of CNN classifiers reasonably reliable for malware detection.
In conclusion, the use of adversarial training to quash the
described attacks deserves further study and it is a starting
point for improving cybersecurity and malware detection in
the computer industry and in the era of industrial internet of
things.
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