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Abstract

1 Network Intrusion Detection (NID) systems are one of the most powerful

forms of defense for protecting public and private networks. Most of the promi-

nent methods applied to NID problems consist of Deep Learning methods that

have achieved outstanding accuracy performance. However, even though they

are effective, these systems are still too complex to interpret and explain. In

recent years this lack of interpretability and explainability has begun to be a

major drawback of deep neural models, even in NID applications. With the aim

of filling this gap, we propose ROULETTE: a method based on a new neural

model with attention for an accurate, explainable multi-class classification of

network traffic data. In particular, attention is coupled with a multi-output

Deep Learning strategy that helps to discriminate better between network in-

trusion categories. We report the results of extensive experimentation on two

benchmark datasets, namely NSL-KDD and UNSW-NB15, which show the ben-

eficial effects of the proposed attention mechanism and multi-output learning
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strategy on both the accuracy and explainability of the decisions made by the

method.

Keywords: network intrusion detection, multi-class classification, deep

learning, attention, explainable artificial intelligence, multi-output learning

1. Introduction1

Over the past decade, the predominance of Deep Learning in intrusion de-2

tection has been repeatedly assessed in the cybersecurity literature (Berman3

et al. 2019, Naseer et al. 2018). In particular, several methods based on Deep4

Learning, such as Autoencoders (Naseer et al. 2018), Recurrent Neural Networks5

(Folino et al. 2021), Long Short-Term Memory networks (Sovilj et al. 2020, Yin6

et al. 2017), Generative Adversarial Networks (Yang et al. 2019, Andresini, Ap-7

pice, De Rose & Malerba 2021), Convolutional Neural Networks (Al-Turaiki &8

Altwaijry 2021, Andresini, Appice & Malerba 2021b), Siamese and Triplet net-9

works (Bedi et al. 2020b, Andresini, Appice & Malerba 2021a), have recently10

contributed to introducing advanced classification capabilities into Network In-11

trusion Detection (NID) systems, sustaining the resilience of the security line of12

private and public networks.13

However, Deep Learning techniques train classification models that are typ-14

ically “black-boxes”. Indeed, these models are implicitly represented in numer-15

ical form as synaptic weights in the network and, in general, it is difficult, if16

not impossible, to interpret these weights, due to the complexity of the net-17

work structure. The opacity of these black-boxes was acceptable as long as the18

dominant criterion for assessing the quality of NID systems was their accuracy,19

measured in terms of standard evaluation metrics (e.g., f-score and predictive20

accuracy). In some classification problems, accurate black-box models may be21

acceptable. However, even though the priority of modern NID systems today22

is still to provide accurate classifications of network traffic, easier-to-explain23

models are becoming increasingly desirable in NID applications. In fact, “ex-24

planations” can provide measurable factors on which characteristics influence25
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the prediction of a cyber-attack and to what extent (Mane & Rao 2021). These26

factors can give the security analyst much better insight into why an alert was27

reported. Furthermore, if the explanation corresponds to domain knowledge,28

the analyst can easily and confidently approve it. Therefore, translating the29

model outcome into feature contribution and analyzing the impact of certain30

traffic characteristics can increase stakeholder confidence (Wali & Khan 2021).31

The explainability of classifications refers partially to the human interpretabil-32

ity of the processes underlying the decisions given by a classification model.33

The more explainable a certain model is, the easier it will be for a human to34

understand or explain the underlying reasoning. Therefore, explaining intru-35

sion classifications can help turn predictions into actions to better achieve the36

resilience of the network defense security line. We note that this need for ex-37

plainable alerts also matches the emerging EU vision, which is extending the38

“right to explanation” formulated by the GDPR to solutions based on Artificial39

Intelligence, and especially Deep Learning (Sartor & Lagioia 2020).40

Attention is an increasingly popular Deep Learning technique, oriented to-41

wards the design of explainable deep neural models. This mechanism allows the42

adaptive selection of the input where the network “sees” the most important43

information. The attention mechanism was introduced to improve the accuracy44

performance of the encoder-decoder model for machine translation (Bahdanau45

et al. 2015). It has also been exploited in Computer Vision systems to improve46

their performance for a variety of tasks, ranging from image captioning to visual47

question answering (Guo et al. 2021, Komodakis & Zagoruyko 2017). However,48

analyzing the results of the network attention branches could also provide in-49

sight into how the black-box model works, by contributing to the enhancement50

of the explainability of its decisions. Despite this relationship between the at-51

tention mechanism and the challenge of explainability, recent network security52

studies that have tested attention in NID applications have focused solely on the53

gain in accuracy achieved (Liu et al. 2020, Tang et al. 2020, Zhao et al. 2022).54

In addition, these studies apply the attention mechanism with feature-vector55

representations of network traffic flow traces. On the other hand, based on hu-56
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man visual attention, attention mechanisms have recently proved very effective57

in image classification applications (Joshi et al. 2021).58

The present study is boosted by the interesting results recently presented59

in (Andresini, Appice, De Rose & Malerba 2021, Andresini, Appice & Malerba60

2021b), which assessed how imagery representations of network traffic data may61

be adopted to accurately separate intrusions from normal traffic. Using this idea62

as a springboard, we propose a new NID system, called ROULETTE (neuRal at-63

tentiOn MULti-Output ModEl for explainable InTrusion DeTEction), which64

applies a Convolutional Neural Network (CNN) with an attention mechanism65

to images converted from flow characteristics of network traffic data. The main66

contribution of this study is the evaluation of the effectiveness of the attention67

mechanism in the CNN classification of network flow traces. Furthermore, con-68

trary to (Andresini, Appice, De Rose & Malerba 2021, Andresini, Appice &69

Malerba 2021b), where the classification was binary, i.e. normal vs. intrusion, in70

this study the classification is multi-class, i.e. we separate intrusions from nor-71

mal samples, but we also recognize the attack category. The effectiveness of the72

proposed neural model with attention is quantified in terms of accuracy of the73

classifications, as well as transparency of the decisions. In fact, thanks to the at-74

tention mechanism, we are able to produce the attention map of a network flow75

trace classification, and this map is expected to specify the flow characteristics76

that are most relevant for classification. This distinction of input traffic data77

allows us to identify the specific flow characteristics of intrusion categories and78

can provide useful information for cyber-defenders with no prior knowledge. In79

particular, we can consider such information as a hint to reduce the workload80

in manual analysis.81

An additional contribution is the improvement of the performance of the82

classification model by using a multi-output architecture that is trained to si-83

multaneously predict both the binary output and the multi-class output of a84

network flow trace. The proposed multi-output architecture has two branches85

that produce fully-connected heads at the end of the network: the branch with86

the binary head allows us to learn features that are useful to separate normal87
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traffic from intrusions, which helps the branch with the multi-class head to88

recognize different categories of intrusions.89

In short, this paper provides the following contributions:90

• The definition of an innovative neural methodology for NID applications,91

which integrates the attention mechanism to achieve both accuracy and92

transparency in multi-class classifications.93

• The formulation of a multi-output architecture to predict the intrusion94

category of any new network flow trace by taking advantage of features95

learned from the binary classification of normal traffic data vs. intrusions.96

• The presentation of the results of an extensive evaluation that investigates97

the feasibility of the proposed learning components in the multi-class sce-98

nario, as well as the ability of our methodology to obtain accuracy com-99

parable to competitive, Deep Learning-based approaches taken from the100

recent literature on NID systems.101

• The exploration of the effect of several properties of explanations (i.e.,102

compactness, robustness and separability), produced through the atten-103

tion mechanism, on accuracy, and the analysis of particular information104

disclosed by the produced explanations on the flow characteristics of spe-105

cific attack categories.106

This paper is organized as follows. Related works are presented in Section 2.107

The proposed multi-output neural network with attention is described in Sec-108

tion 3. The experimental setup is described in detail in Section 4. The results109

of the evaluation of the proposed method are discussed in Sections 5 and 6,110

regarding accuracy and explainability, respectively. Finally, Section 7 refocuses111

on the purpose of our research, draws conclusions and illustrates possible future112

developments.113
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2. Related Work114

Recent trends in cybersecurity research have classified Deep Learning as a115

prominent Artificial Intelligence paradigm for addressing NID problems. In this116

paper we renew a Deep Learning-based approach that integrates a neural atten-117

tion mechanism for multi-class classification of network flow traces. Therefore,118

we mainly focus the literature overview on recent studies applying Deep Learn-119

ing (see Section 2.1) and eXplainable Artificial Intelligence - XAI (see Section120

2.2) to classify flow-based network traffic data.121

2.1. Deep Learning122

Several recent studies have investigated the performance of various deep123

neural network architectures for multi-class classification of network flow traces.124

Most of these studies conducted experimental studies using benchmark, network125

flow-based datasets such as NSL-KDD (Tavallaee et al. 2009) or UNSW-NB15126

(Moustafa & Slay 2015). In particular, the empirical study illustrated in (Ka-127

songo & Sun 2020) experimented various architectures, showing how deep neu-128

ral networks can gain accuracy over various traditional classifiers (e.g., SVM,129

KNN and Logistic Regression). Various deep neural network architectures were130

tested in (Vinayakumar et al. 2019) also in combination with feature selection131

analysis. Following this research direction, the accuracy performance of var-132

ious multi-class, fully-connected, recurrent and convolutional neural network133

architectures is compared in (Gao et al. 2020). Moreover, this study couples134

Deep Learning-based classification with association rule discovery. Specifically,135

the association rules with the “normal” class in the consequent are applied to136

match network flow traces classified as malicious, and (possibly) to filter out the137

misclassified normal network traffic. In (Gao et al. 2019) a multi-class NID ap-138

proach is formulated by combining Incremental-Extreme Learning Machine and139

Adaptive Principal Component Analysis. In (Al-Turaiki & Altwaijry 2021) a 2D140

representation of network flow traces is adopted, in order to train a multi-class141

CNN. As a variant of the proposed pipeline, a so-called Deep Feature Synthesis142

is also introduced, in order to complete a feature engineering step.143
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Furthermore, some recent studies have explored the performance of deep144

metric learning architectures (e.g., Siamese networks or Triplet networks) in145

multi-class NID applications. For example, the multi-class problem is studied146

in (Bedi et al. 2020b), where a Siamese network is trained both on pairs of similar147

samples (belonging to the same class) and pairs of dissimilar network flow traces148

(belonging to opposite classes), to classify the intrusion class trace. A testing149

network flow trace is classified according to a distance score computed for each150

class: the class with the best score is predicted. An ensemble consisting of a151

Siamese network, a classic deep network and an XGBoost binary classifier is de-152

scribed in (Bedi et al. 2020a), where the goal is to separate normal network flow153

traces from intrusions. A multi-class XGBoost classifier is then used to classify154

traces detected as intrusions into different attack classes. In (Andresini, Appice155

& Malerba 2021a) both the one-versus-all and the one-versus-one combination156

strategy are applied to Triplet networks originally trained for binary classifica-157

tion, in order to perform multi-class classification of network flow traces.158

Finally, the multi-class classification has recently attracted attention also159

in Adversarial Deep Learning. In this setting, the main objective is a classi-160

fier that makes mistakes by making small changes to the training data. This161

idea is investigated in (Caminero et al. 2019), where Variational Generative Au-162

toencoders are experimented in an Adversarial Deep Reinforcement Learning163

approach, formulated for multi-class classifications of network flow traces. A164

specific conditional Variational Autoencoder architecture is also described in165

(Lopez-Martin et al. 2017) for multi-class classification. This architecture in-166

tegrates intrusion labels within the decoder layers. In particular, this study167

classifies network flow traces according to the intuition that the autoencoder168

best learns how to recover the original features when it processes the correct169

label as input. Therefore, a testing network flow trace can be assigned to the170

label that yields the recovered features that are closest to those observed.171
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2.2. eXplainable Artificial Intelligence172

eXplainable Artificial Intelligence, or XAI, is a sub-field of Artificial Intel-173

ligence that aims to enable humans to understand the decisions of artificial174

systems by producing more explainable models, while maintaining a good level175

of predictive accuracy (Lakkaraju et al. 2019). Significant interest in the XAI176

research community has recently been observed in the development of “post-177

hoc” explanations, in which an XAI technique can be applied to already trained178

black-box Deep Learning models. Alternatively, an XAI technique can be incor-179

porated into the Deep Learning algorithm. Today, several XAI techniques have180

already been tested in many real-world applications such as business decision,181

process optimization, medical diagnosis and investment recommendation, in or-182

der to improve the reliability, transparency and fairness of Deep Learning-based183

decisions (Xu, Uszkoreit, Du, Fan, Zhao & Zhu 2019, Antwarg et al. 2021).184

Even in the cybersecurity field, security practitioners have begun to complain185

about the black-box nature of Deep Learning-based decisions. The recent study186

of Warnecke et al. (2020) started the investigation into how post-hoc XAI tech-187

niques can be applied to produce explanations for the decisions of deep neural188

networks, trained for both malware detection and vulnerability discovery ap-189

plications. Specifically, this study compares several post-hoc XAI techniques190

regarding the accuracy of explanations, as well as security-focused aspects, such191

as completeness, efficiency and robustness. Notably, this study led to very re-192

cent studies exploring the performance of various post-hoc XAI techniques also193

in NID applications of Deep Learning.194

In (Burkart et al. 2021) a surrogate model is trained to produce explanations195

of binary decisions produced in NID applications. The surrogate model is a de-196

cision tree, trained from network flow traces sampled around a counterfactual-197

based local decision boundary. A surrogate model is also coupled to a deep198

neural network in (Szczepański et al. 2020), in order to explain its black-box199

decision. In (Sarhan et al. 2021) the transparency of a NID system is im-200

proved by using SHAP (Lundberg & Lee 2017) to identify the input features201

that contribute most to binary decisions produced through a neural network202
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black-box. SHAP is also used in (Wang et al. 2020) to perform analyses of the203

most relevant features for detecting each category of intrusion. In (Andresini,204

Pendlebury, Pierazzi, Loglisci, Appice & Cavallaro 2021) the analysis of the205

feature relevance is conducted via DALEX (Biecek 2018). This explanation206

analysis aims to explain how a binary model changes over a stream of network207

flow traces to fit new attack categories. In (Marino et al. 2018) an adversar-208

ial learning approach is experimented in order to understand why some of the209

network flow traces are mis-classified by a deep neural network. The explana-210

tions are formulated in terms of the minimal modifications required to change211

the output of the black-box for any mis-classified network trace. Finally, in212

(Caforio et al. 2021) Grad-CAM (Selvaraju et al. 2020) is applied to produce213

gradient-based visual explanations of the CNN binary classification of imagery-214

represented network flow traces. The main innovation of this study is that it215

combines Grad-CAM explanations with the nearest-neighbour search, in order216

to improve the accuracy of the CNN decisions in a post-hoc way, as well as to217

increase the transparency of the CNN black-box decisions.218

On the other hand, a few recent NID studies have also begun to investigate219

the effect of intrinsic XAI techniques, such as the attention mechanism incorpo-220

rated into the neural architectures and used instead of post-hoc explanations.221

In (Liu et al. 2020) a Bidirectional Gated Recurrent Unit network with hierar-222

chical attention is trained for the binary classification of network flow traces,223

while a Temporal Convolutional Network is trained with the attention mecha-224

nism in (Zhao et al. 2022) for the multi-class classification. Finally, a pipeline225

with a Stacked Autoencoder and an attention mechanism is experimented in226

(Tang et al. 2020). The use of attention in current NID studies has so far relied227

only on feature vectors. Furthermore, although probing into the results of at-228

tention branches of a deep neural network should provide insight into how the229

black-box model works, current NID studies do not explore the improvement in230

explainability achieved with attention, since they are focused solely on the gain231

achieved in accuracy. The present work aims to address these issues.232
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3. Proposed Method233

We assume that a dataset D = {(xi, yi)}Ni=1 of N training samples is avail-234

able, where x ∈ Rd is a d-dimensional vector of features (such as the number235

of packets transmitted and the number of failed logins) that characterize flow236

traces of historical network traffic, whereas y ∈ {1, . . . ,K} is the target vari-237

able with K distinct classes: normal traffic data and various types of intrusion,238

depending on those historically detected and labeled. The proposed intrusion239

detection model, schematized in Fig. 1, is mainly based on three components:240

• The reformulation of the network traffic classification task as an image241

classification problem, which makes it possible to take advantage of con-242

volution filters to learn a new discriminating representation.243

• The use of an attention mechanism followed by an average layer, which244

allows the extraction of an easy-to-explain attention map of the classifica-245

tions.246

• A multi-output learning strategy that allows the network to solve a binary,247

auxiliary task, intended to improve the performance of the main multi-248

class classification task.249

In the pre-processing step image encoding is performed to transform the250

feature vector x of each network flow trace into a single-channel square image251

X ∈ Rm×m. This transformation is done by assigning each flow feature of x to a252

pixel frame ofX. Flow features are assigned to neighbouring pixels in the image,253

depending on their correlation, and are not simply stacked in an arbitrary order.254

A detailed description of how feature-pixel assignment is performed is reported255

in (Andresini, Appice, De Rose & Malerba 2021). Thanks to this encoding,256

we are able to reformulate the classical classification as an image classification257

problem. Note that this reformulation has already proved useful in (Andresini,258

Appice, De Rose & Malerba 2021, Caforio et al. 2021), although the previous259

studies handled the binary classification task (to separate normal flow traces260

from intrusions, regardless of the specific intrusion category). A convolution261
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Figure 1: Schema of ROULETTE. Abbreviations: CONV = convolution; FC = fully-connected.

layer is then used to learn filters aimed at minimizing the classification error262

made in a backpropagated way. It is worth noting that, since the resolution of263

the input image is relatively low, and its content lacks the complexity of real264

photo-realistic images, a hierarchy of learned features is not needed, so a single265

convolutional layer is sufficient. For the same reason, this convolutional layer is266

followed by a dropout layer, which is used to mitigate early overfitting.267

The conv + dropout block is then split into two branches. The first branch is268

responsible for the main multi-class classification task, aimed at discriminating269

network traffic data in multiple categories from a normal to a specific type of270

intrusion. Since we are interested in “explaining” the multi-class classifications271

made by the model, this branch includes a simple attention mechanism. This is272

analogous to the pixel-attention layer recently introduced in (Zhao et al. 2020),273

which is used to generate pixel-wise attention maps from the input volume.274

More precisely, given an input volume Xl−1 of size H × W × C (height ×275

width × channels), the pixel-attention layer convolves a 1× 1 convolution filter,276
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followed by a sigmoid activation. Formally:277

Xl = σ
(
CONV

(
Xl−1

))
⊙ Xl−1, (1)

where CONV is a 1 × 1 convolution, σ is the sigmoid function and Xl is the278

resulting output tensor at the new layer l. This mechanism basically serves to279

generate attention coefficients for all pixels in each feature map, thus “weight-280

ing” their contribution to the final classification. In fact, we first use C point-281

wise filters so that all pixels are weighted; the resulting feature maps are then282

squashed between 0 and 1 by the sigmoid function and multiplied element-wise283

with the input tensor, effectively producing a new tensor Xl of the same shape284

H ×W × C.285

Furthermore, in order to be able to produce a single attention map that286

explains the importance of the features in the original image, we propose using287

an average layer which basically averages corresponding pixels in the different288

feature maps. More precisely, given the tensor of shape H×W ×C produced by289

the pixel-attention, the average layer produces a single-channel matrix of size290

H ×W , for which each attention pixel αl
ij is equal to:291

αl
ij =

1

C

C∑
c=1

αl−1
ijc , (2)

where αl−1
ijc is the attention pixel at position ij in the c-th feature map from the292

preceding l−1 layer. The average layer directly provides a heatmap, highlighting293

the input image regions the model attended on to perform the classification. In294

other words, a “visual explanation” is obtained. It is worth noting that since295

the mechanism is learnable and embedded into an end-to-end trainable model,296

this is in contrast to “post-hoc” visual explanation methods, such as the popular297

Grad-CAM (Selvaraju et al. 2017), which can only be applied after the training298

process has ended. A learnable attention mechanism is desirable as it helps the299

model focus on key parts during training. Furthermore, it does not require an300

expensive two-step process to derive the heatmap. In addition, this layer acts301

as a simple regularizer, as the feature vector to propagate would be scaled by a302

factor of C, and it also reduces the computational cost.303
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The output of the average layer is finally flattened and fed into a fully-304

connected layer, plus an output layer with a softmax activation attached and305

as many units as there are classes to predict. This branch aims to minimize a306

cross-entropy loss function:307

Hm = −
K∑

k=1

yk log ŷk, (3)

where yk is the ground truth label, while ŷk is the network output for a single308

data sample.309

Inspired by multi-output learning (Xu, Shi, Tsang, Ong, Gong & Shen 2019),310

we propose the use of a second branch that aims to perform a simpler binary311

classification between normal traffic and intrusions, regardless of the specific312

type of attack. The second predicted output is intended as an auxiliary classi-313

fication objective, aimed at supporting the main multi-class classification task.314

In fact, since the two branches share the same first convolutional layer and their315

classification heads are optimized simultaneously by backpropagation, in this316

way the network is forced to learn features that are useful to separate normal317

traffic from attacks. This helps the main branch to focus on how to discrimi-318

nate better between different types of attack that can be very similar and have319

overlapping characteristics. Multi-output learning is not uncommon in neural320

networks and has proven effective in some other domains, e.g. (Cao et al. 2018,321

Castellano et al. 2020). Specifically, the output of the conv + dropout block322

is directly flattened and given as input to a fully-connected layer followed by a323

single sigmoid-activated output neuron. This second output serves to minimize324

a binary cross-entropy:325

Hb = − (y log ŷ + (1− y) log (1− ŷ)) . (4)

Note that this branch does not include an attention mechanism, as the goal326

is to learn how to explain multi-class classification. Overall, the network learns327

to minimize, by backpropagation, the joint loss:328

L = λHm + (1− λ)Hb, (5)
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where λ ∈ [0, 1] is a hyper-parameter that balances the contribution of the329

individual losses.330

4. Experimental Setup331

In this section we describe the datasets used for evaluating the accuracy332

and explainability of ROULETTE, i.e. NSL-KDD (Tavallaee et al. 2009) and333

UNSW-NB15 (Moustafa & Slay 2015), and implementation details.334

4.1. Dataset Description335

The NSL-KDD dataset (Tavallaee et al. 2009)2 comprises normal network336

flow traces and four categories of attack: Denial of Service (DoS), User to Root337

(U2R), Remote to Local (R2L) and Probing attack. The training set is made338

up of 21 different attack sub-categories, while the test set is composed of 37339

different attack sub-categories. This means there are 16 novel attacks in the340

test set. Each trace in the NSL-KDD dataset has 41 features, and detailed341

descriptions of these features are provided in (Tavallaee et al. 2009). We note342

that both U2R and R2L are rare attacks. While this dataset may not represent343

perfectly existing real-world networks, recent, state-of-the-art studies still use it344

as an effective benchmark dataset to help researchers compare different multi-345

class classification NID methods.346

The UNSW-NB15 (Moustafa & Slay 2015),3 on the other hand, includes re-347

alistic modern normal activities and synthetic contemporary attack behaviours348

extracted from network traffic monitored in 2015. Both the training set and349

the testing set contain normal network flow traces and nine categories of at-350

tacks: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,351

Shellcode and Worms. Each trace in the UNSW-NB15 dataset has 49 features:352

detailed descriptions of these features are provided in (Moustafa & Slay 2015).353

2https://www.unb.ca/cic/datasets/nsl.html
3https://research.unsw.edu.au/projects/unsw-nb15-dataset
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The number of samples collected both in the training and testing set for354

each category per dataset is reported in Table 1. A complete description of the355

flow characteristics enclosed in both the NSL-KDD and UNSW-NB15 datasets356

is reported in (Choudhary & Kesswani 2020).357

Table 1: Number of network flow traces per class type in both the training set and testing set

of NSL-KDD and UNSW-NB15.

Class type
NSL-KDD UNSW-NB15

Train Test Train Test

Normal 67343 9711 56000 37000

DoS 45927 7458 12264 4089

Probe 11656 2421 - -

R2L 995 2754 - -

U2R 52 200 - -

Fuzzers - - 18184 6062

Analysis - - 2000 677

Backdoors - - 1746 583

Exploits - - 33393 11132

Generic - - 40000 18871

Reconaissance - - 10491 3496

Shellcode - - 1133 378

Worms - - 130 44

Total 125973 22544 175341 82332
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Table 2: Hyper-parameter search space

Hyper-parameter Values

Mini-batch size {25, 26, 27, 28, 29}

Learning rate [0.0001, 0.001]

Dropout rate [0, 1]

# of filters {25, 26, 27, 28, 29}

Kernel size [2, 4]

# of neurons per hidden layer {25, 26, 27, 28, 29}

λ [0.5, 1]

4.2. Implementation Details358

We developed ROULETTE in Python 3, using the high-level neural net-359

work API Keras 2.4 integrated in TensorFlow (Abadi et al. 2015).4 In the360

pre-processing step, the categorical input features were mapped into numeri-361

cal features using the one-hot-encoder strategy, and then the numerical features362

were scaled using the min-max normalization.363

For each dataset, we optimized the hyper-parameters of the architecture us-364

ing the tree-structured Parzen estimator algorithm (Bergstra et al. 2011) as im-365

plemented in the Hyperopt library (Bergstra et al. 2013). The hyper-parameter366

optimization was performed using a random stratified split of 20% of the en-367

tire training as a validation set, following the Pareto principle. We selected368

the hyper-parameter configuration that achieved the lowest validation loss. The369

hyper-parameter search space is reported in Table 2. The configuration was370

completed by the commonly used ReLU (Glorot et al. 2011) as the activation371

function for each hidden layer.372

We trained the network with mini-batches using back-propagation, and the373

gradient-based optimization was performed using the Adam update rule (Kingma374

4https://github.com/gsndr/ROULETTE.
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& Ba 2014). The weights were initialized following the Xavier scheme (Glorot375

& Bengio 2010). In addition, a maximum number of epochs equal to 150 was376

set, and an early stopping approach based on the lowest loss on the validation377

set (the same set used for the hyper-parameter optimization) was used, in order378

to retain the best classification models.379

5. Accuracy Performance Analysis380

In this section we show the results of an analysis aimed at evaluating the381

accuracy performance of ROULETTE, in order to answer the following questions:382

Q1 How does the accuracy of the proposed multi-output Deep Learning strat-383

egy change by varying a few dimensions of the neural network architecture,384

e.g. dropout layer, regularization penalty term and aggregation operation?385

Q2 Is the proposed multi-output Deep Learning strategy able to achieve higher386

accuracy than the single-output strategy?387

Q3 How does the attention mechanism help the accuracy performance of the388

predictive model?389

Q4 Does the defined neural attention multi-output model outperform state-390

of-the-art NID systems?391

The multi-class accuracy metrics measured for this analysis are described in392

Section 5.1. The results of the sensitivity study to answer Q1 are reported in393

Section 5.2. The results of the ablation study to answer Q2 and Q3 are illus-394

trated in Section 5.3. Finally, the results of the comparative analysis performed395

to answer Q4 are shown in Section 5.4.396

5.1. Performance Metrics397

We measured the predictive performance of the compared methods by com-398

puting standard multi-class classification metrics. All compared metrics were399

computed to evaluate performance on the classifications produced on the testing400

sets. Specifically, we considered the following metrics:401
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• Precision, which measures the precision of the classification per class type,402

i.e. how many network flow traces are correctly classified for a particular403

class type k, given all predictions of that class, i.e. Pk = tpk

tpk+fpk
.404

• Recall, which measures the recall of the classification per class type k,405

i.e. how many network flow traces are correctly classified for a particular406

class type k given all occurrences of that class type, i.e. Rk = tpk

tpk+fnk
.407

• F1, which measures the harmonic mean of Precision and Recall per class408

type k, i.e. F1k = 2Pk×Rk

Pk+Rk
. The higher the F1 score per class type k,409

the better the balance between the Precision and Recall achieved by the410

method in predicting network flow traces of class k.411

• Macro-F1, which measures the average F1 score per class type k, i.e. Macro-F1 =412

1
K

K∑
k=1

F1k.413

• Weighted-F1, which measures the weighted mean of the F1 score per class414

type k, i.e. Weighted-F1 =

K∑
k=1

wkF1k, where each weight wk is equal to415

the probability of class k in the testing set, i.e. wk = nk

N .416

• A, which measures the overall accuracy, i.e. the proportion of correctly417

classified network flow traces in all the classified traces, i.e. A = 1
N

K∑
k=1

tpk.418

In the above formulation: tpk is the number of network flow traces of class419

k that are correctly predicted as belonging to class k; fpk is the number of420

network flow traces that are incorrectly classified as belonging to k; tnk is the421

number of network flow traces that are correctly classified as not belonging to422

class k; fnk is the number of network flow traces that are incorrectly classified423

as not belonging to k; nk is the ground truth size of class k (i.e., the number of424

traces labeled with class k); N =
∑
k

Nk is the total size of the classifications; K425

is the number of distinct class types. In calculating the macro-metric reported426

above, we gave equal weights (i.e., 1
k ) to each class type. In this way, we avoided427

our evaluation offsetting the possible impact of unbalanced data learning. On428
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Table 3: Macro-F1, Weighted-F1 and A obtained using L1, L2 or DROPOUT. The best results

are in bold.

Dataset Architecture Macro-F1 Weighted-F1 A

NSL-KDD
L1 0.566 0.753 0.781

L2 0.562 0.747 0.777

DROPOUT 0.613 0.790 0.815

UNSW-NB15
L1 0.374 0.731 0.727

L2 0.414 0.760 0.751

DROPOUT 0.424 0.767 0.764

the contrary, when calculating the weighted metric, the highly populated classes429

had a higher weight compared to the smaller ones.430

5.2. Sensitivity Study431

This sensitivity analysis was performed on the specific neural network ar-432

chitecture trained by ROULETTE, in order to explore how the accuracy of the433

trained neural network can be influenced by:434

• The use of the dropout layer in place of the L1 or L2 regularization to435

prevent overfitting.436

• The addition of a regularization penalty term to the objective function.437

• The aggregation operation (i.e., AVG or MAX) adopted after the pixel at-438

tention layer; in other words, if it is better to take the maximum attention439

pixel per channel than to average all of the pixels.440

Table 3 collects the Macro-F1, Weighted-F1 and A achieved by replacing the441

dropout layer of ROULETTE with either the L1 regularization or the L2 reg-442

ularization. The results show that the dropout layer is able to gain accuracy443
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Table 4: Macro-F1, Weighted-F1 and A of ROULETTE with L1 Penalty, L2 Penalty and No

Penalty in the objective function. The best results are in bold.

Dataset Architecture Macro-F1 Weighted-F1 A

NSL-KDD
L1 Penalty 0.551 0.731 0.760

L2 Penalty 0.541 0.723 0.754

No Penalty 0.613 0.790 0.815

UNSW-NB15
L1 Penalty 0.353 0.721 0.711

L2 Penalty 0.390 0.735 0.717

No Penalty 0.424 0.767 0.764

when compared to its counterparts that use the L1 and L2 regularization, re-444

spectively. These results were expected as dropout has become the standard445

choice as a regularization technique in today’s architectures (Guo et al. 2019,446

Phaisangittisagul 2016). Studies have shown the effectiveness of dropout train-447

ing also in combination with convolutional layers (Alex Kendall & Cipolla 2017,448

Phaisangittisagul 2016, Srivastava et al. 2014).449

Table 4 collects the Macro-F1, Weighted-F1 and A achieved by adding the L1450

penalty, L2 penalty and No penalty to the objective functions of ROULETTE451

described in Equations 3 and 4. The results show that the introduction of452

a regularizer to apply a penalty on the layer outputs does not lead to any453

improvement in the accuracy in either NSL-KDD or in UNSW-NB15. This can454

be explained by considering that the aforementioned dropout is already effective455

in countering overfitting.456

Finally, Fig. 2 reports theMacro-F1,Weighted-F1 and A achieved by ROULETTE457

using attention with either an average layer (AVG) or a max layer (MAX). The458

AVG configuration, which is the baseline described in Equation 2, averages the459

pixels across all channels of the attention layer to produce a single attention460

map. The MAX configuration determines the maximum pixel on all channels.461
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Figure 2: Macro-F1, Weighted-F1 and A of ROULETTE using attention with either an average

layer (AVG) or a max layer (MAX).

The experimental results show that AVG outperforms MAX in both NSL-KDD462

and UNSW-NB15, although the difference between the performance is higher463

in UNSW-NB15 than in NSL-KDD. Our main intuition is that by averaging464

we can retain more pixel information across all the channels rather than simply465

selecting the maximum.466

5.3. Ablation Study467

The ablation study of ROULETTE was performed by evaluating the predic-468

tive performance of three architecture configurations identified as baselines of469

ROULETTE. These were in turn defined by discarding the branch with the bi-470

nary head or the attention mechanism from the training stage of ROULETTE.471

In particular, we considered the following baseline architectures:472

• SO, which discards both the branch with the binary head and the attention473

mechanism. The deep neural network produces a single, multi-class output474

by minimizing the cross-entropy loss function.475

• SO+A, which discards the branch with the binary head. The neural net-476

work produces a single, multi-class output with attention by minimizing477

the cross-entropy loss function.478

21



Table 5: Macro-F1, Weighted-F1 and A both of ROULETTE and its baseline configurations

SO, SO+A and MO. The best results are in bold.

Dataset Architecture Macro-F1 Weighted-F1 A

NSL-KDD

SO 0.503 0.701 0.741

SO+A 0.579 0.745 0.779

MO 0.558 0.749 0.778

ROULETTE 0.613 0.790 0.815

UNSW-NB15

SO 0.393 0.747 0.748

SO+A 0.391 0.753 0.754

MO 0.391 0.751 0.753

ROULETTE 0.424 0.767 0.764

• MO, which discards the attention mechanism. The deep neural network479

produces both a multi-class and a binary output by minimizing the joint480

loss function.481

The results ofMacro-F1,Weighted-F1 and A of SO, SO+A,MO and ROULETTE482

are reported in Table 5. They show that ROULETTE can take advantage of both483

the multi-output strategy and the attention mechanism achieving more accurate484

decisions than all its baselines.485

Figure 3 reports the F1 scores computed per each class. These detailed486

results show that ROULETTE performs better than (or equal to) its baseline487

architectures in predicting all class categories of the multi-class problems con-488

sidered. Notably, ROULETTE is capable of achieving a good level of accuracy489

on various rare classes, such as R2L and U2R of NSL-KDD, and Shellcode of490

UNSW-NB15.491

In general, this analysis shows the viability of our idea of exploiting the492

multi-output strategy, in order to obtain accuracy in the multi-class branch493

thanks to the knowledge learned in the auxiliary binary branch. In addition,494
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Figure 3: F1 score per class of both ROULETTE and its baseline configurations SO, SO+A

and MO.

the attention mechanism, which we have introduced in the neural network to495

see which input information is relevant for decisions, also allows ROULETTE to496

achieve higher levels of accuracy.497

5.4. Competitor Analysis498

The comparative analysis is performed to assess the significance of accuracy499

and novelty of ROULETTE compared to several competitors, selected from the500
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Table 6: A of ROULETTE vs. state-of-the-art, Deep Learning algorithms that perform multi-

class classification.

Dataset Approach Description A

NSL-KDD

Al-Turaiki & Altwaijry (2021) CNN, Deep Feature Synthesis 0.814

Andresini, Appice & Malerba (2021a) Autoencoder, Triplet network, OVA 0.778

Andresini, Appice & Malerba (2021a) Autoencoder, Triplet network, OVO 0.766

Bedi et al. (2020a) Siamese network, Ensemble, XGBoost 0.79.9

Bedi et al. (2020b) Siamese network 0.769

Caminero et al. (2019) Variational Generative Autoencoder 0.801

Gao et al. (2019) I-ELM, PCA 0.812

Gao et al. (2020) DNN 0.773

Gao et al. (2020) RNN 0.713

Gao et al. (2020) CNN 0.735

Lopez-Martin et al. (2017) Conditional Variation Autoencoder 0.801

Tang et al. (2020) Autoencoder, Attention, DNN 0.821

Vinayakumar et al. (2019) DNN 0.778

Wang et al. (2020) DNN, SHAP 0.803

ROULETTE CNN, Attention, Multi-output 0.815

UNSW-NB15

Al-Turaiki & Altwaijry (2021) CNN, Deep Feature Synthesis 0.685

Gao et al. (2019) I-ELM, PCA 0.707

Kasongo & Sun (2020) DNN, Feature selection 0.756

Vinayakumar et al. (2019) DNN 0.660

Zhao et al. (2022) Temporal CNN, Attention 0.729

ROULETTE CNN, Attention, Multi-output 0.764

state of the art in NID literature. Note that the selected competitors differ501

in the deep neural network architecture tested. The results of the competitors502

are taken from the reference papers, as their code is not publicly available for503

repeating the experiments. However, the comparison is safe as all methods have504

been tested on the multi-class problem of the same training and testing sets505

described in Section 4.1.506

We point out that the competitors that integrate the attention mechanism507

(Tang et al. 2020, Zhao et al. 2022) are closest to ROULETTE. Specifically,508

the method described in (Tang et al. 2020), which has been tested on NSL-509

KDD, integrates the attention layer into a deep neural network, trained with510

the flow-based characteristics of the dataset encoded at the encoder level of an511
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autoencoder. On the other hand, the method described in (Zhao et al. 2022),512

which was tested on UNSW-NB15, integrates the attention layer into a Temporal513

CNN trained with the original flow-based characteristics of the dataset. Finally,514

we note that the method described in (Wang et al. 2020) also experiments an515

explanation mechanism. However, it uses post-hoc explanations based on SHAP,516

which allow the author to achieve transparency of the Deep Learning decisions,517

but it has no effect on the overall accuracy of these decisions.518

For all methods in this comparative study we collect the A as this metric is519

provided in all reference studies. The A results, reported in Table 6, show that520

ROULETTE outperforms its competitors, including the attention-based com-521

petitor evaluated on UNSW-NB15 (Zhao et al. 2022). The only exception is522

the attention-based competitor defined in (Tang et al. 2020) which outperforms523

ROULETTE on NSL-KDD. However, we note that the attention mechanism of524

this competitor is trained on the encoded features of the dataset, instead of525

the original input features. The encoded features commonly allow us to gain526

accuracy in classification. This positive effect of autoencoders is also proved527

in (Andresini, Appice & Malerba 2021b, Andresini et al. 2020) for binary for-528

mulations of NID problems. However, training attention on encoded features529

excludes the opportunity to explain the effect of input traffic features on deci-530

sions.531

6. Explanation Property Analysis532

This analysis aimed to explore which properties of the intrinsic explana-533

tions produced through the attention mechanism may be connected to their534

ability to outperform post-hoc constructed counterparts. As post-hoc explana-535

tions we considered the visual explanation maps produced through the popular536

Grad-CAM technique (Selvaraju et al. 2017), after the neural training process537

has been completed without attention. Moreover, we explored the relationship538

between the observed properties of attention explanations and the accuracy539

performance already investigated in Section 5. Specifically, this study explores540
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properties referred to as compactness (Section 6.2), robustness (Section 6.3) and541

separability (Section 6.4). The additional metrics considered to explore these542

explanation properties are introduced in Section 6.1.543

6.1. Explanation Metrics544

Two new metrics, namely Inertia and Average link distance, were measured for545

the analysis of compactness and robustness, respectively. The aforementioned546

Macro-F1, Weighted-F1 and A were measured for the analysis of separability.547

Inertia measures the similarities of visual explanation maps clustered by class548

type. The lower the Inertia, the higher the ability to make transparent the549

common, intrinsic factors of the signature that is beyond the decisions produced550

for the network flow traces of the same class type. We measured Inertia as the551

averaged squared Euclidean distance computed for each visual explanation map552

to the visual explanation map centroid of its ground truth class, i.e. Inertia =553

1

K

K∑
k=1

1

|Ck|
∑

Hj∈Ck

d
(
Hj , Ĥk

)
, where K is the number of classes, Hj is a visual554

explanation map in class Ck and Ĥk is the centroid of all visual explanation555

maps with class k.556

Average link distance measures the average distance between the visual ex-557

planation maps produced for the same class type on both the training set and558

the testing set, respectively. For each class type k, we determined the mean of559

the Euclidean distances between each pair made up of the visual explanation560

map of a network flow trace of class k from the training set and the testing561

set, respectively, i.e. d(k) = 1

|Nk||N ′
k|

∑
Hj∈Nk,H′

j∈N ′
k

d
(
Hj ,H

′
j

)
, where Hj and H′

j562

denote two network flow traces of class k belonging to the training set and test-563

ing set, while Nk and N ′
k indicate the number of network flow traces of class k564

recorded in both the training set and the testing set, respectively. The lower565

the distance d(k), the more robust the explanation of the learned classification566

model on the predictions produced for unseen network flow traces of class k.567
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Figure 4: Inertia of the visual explanation maps produced with decisions yielded on the network

flow traces of both the training set and the testing set, respectively.

6.2. Compactness568

In principle, we expect a good multi-class classification model to be able to569

learn the distinctive signature of each class type. This signature should allow570

us to trigger the same decision process on network flow traces of the same class571

type. In this study we explored this ability related to the “compactness” of the572

decision explanations.573

Moreover, we analyzed the Inertia of the visual explanation maps that were574

produced with attention in ROULETTE and SO+A, as well as with Grad-CAM575

in MO and SO. The results of Inertia, computed separately on the training and576

testing set of the performed experiments, are reported in Fig. 4. These re-577

sults show that the visual explanation maps produced through attention always578

achieve lower Inertia than their respective counterparts produced through Grad-579

CAM (i.e., the Inertia of ROULETTE is always lower than the Inertia of MO, just580

as the Inertia of SO+A is always lower than the Inertia of SO). This behaviour,581

which is observed equally in both the training set and the testing set, assesses582

that the explanations per class, produced with the intrinsic attention mecha-583

nism, are more compact than the explanations per class eventually produced584

post-hoc. In addition, we note that the attention mechanism, coupled with the585

multi-output Deep Learning strategy, commonly achieves the lowest Inertia in586

our study. The only exception is observed with the UNSW-NB15 testing set.587
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However, the difference between the best Inertia of SO+A and the runner-up588

Inertia of ROULETTE is small (1159.94 vs. 1168.04). Therefore, this empirical589

study suggests that a relationship may exist between the higher compactness590

of the decision explanations produced by ROULETTE and the higher accuracy591

(assessed in Section 5) of these decisions.592

Table 7: Average link distance between pairs of visual explanation maps consisting of a network

flow trace of the same class from the training set and the testing set, respectively. The best

results are in bold.

Dataset Class Type SO SO+A MA ROULETTE

NSL-KDD

Normal 1696.76 1775.18 2056.15 967.72

DoS 2684.77 2512.99 2287.34 1263.12

Probe 3157.55 2193.46 2075.19 1416.23

U2R 2206.23 2211.46 3248.76 936.60

R2L 2014.20 2433.27 2901.02 1038.04

Average 2351.90 2225.28 2513.69 1124.34

UNSW-NB15

Normal 2645.61 2119.41 2660.66 2051.93

Analysis 2361.67 2147.85 2306.63 2101.82

Backdoors 1600.91 1442.60 1822.27 1343.21

DoS 2500.13 2262.99 2421.57 2150.49

Exploits 2259.04 2155.58 2496.73 1955.91

Fuzzers 2492.79 1536.99 2140.86 1642.90

Generic 2691.97 2492.47 2253.04 1997.52

Reconnaissance 1608.62 1558.29 1807.41 1608.31

Shellcode 1979.01 1704.12 2004.33 1571.44

Worms 2320.29 1921.21 2571.25 2069.88

Average 2246.00 1934.15 2248.48 1849.34
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6.3. Robustness593

As a further property, we explored the robustness of decision explanations594

in relation to their ability to learn a classification model whose decisions are595

still accurate on new attacks (e.g., variants of existing attacks). The robustness596

of a classification model is commonly evaluated in terms of the accuracy of597

classifications produced on unseen (test) data. In particular, our expectation598

regarding the robustness of the decision explanations is that the explanations599

of the decisions learned on the training network flow traces are roughly similar600

to the explanations produced on unseen traces, which may be zero-day attacks.601

We feel that this property of explanation robustness, if verified, helps predict602

the correct class of unseen data.603

Table 7 reports the results of the Average link distance computed for each604

single class, as well as the mean of the Average link distance computed on all605

the classes. The mean results highlight that the overall robustness of the ex-606

planations produced with the trainable attention mechanism (ROULETTE and607

SO+A) is better than the robustness of the counterpart explanations produced608

with the post-hoc Grad-CAM technique (MO and SO). The lowest Average link609

distance is measured again with ROULETTE, which also achieves the highest ac-610

curacy performance in Section 5. In these results we can see empirical evidence611

that the increased robustness of decision explanations may be responsible for612

the increased accuracy of the decisions.613

The same conclusions can also be drawn by analyzing the results of Aver-614

age link distance computed per class type. Indeed, ROULETTE produces the615

most robust decision explanations in almost any class. The only exceptions616

are observed for the Fuzzer and Worm classes of UNSW-NB15. However, the617

differences between the best Average link distance of SO+A and the runner-up618

Average link distance of ROULETTE are small in both of these classes (1536.99619

vs. 1642.90 in Fuzzers and 1921.21 vs. 2069.88 in Worms). In addition, this620

difference has negligible impact on accuracy. ROULETTE slightly outperforms621

SO+A on Fuzzers (F1 = 0.38 in ROULETTE vs. F1 = 0.37 in SO+A in Fig. 3),622

while both ROULETTE and SO+A (as well as SO and MO) fail to recognize all623
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Worm testing traces (F1 = 0.0 in Fig. 3).624

6.4. Separability625

Table 8: Macro-F1, Weighted-F1 and A of cluster-based classifications produced on both the

training set and testing set. Clusters are computed with k-means on the training set populated

with the original images of network flow traffic traces, as well as on the training set populated

with the images of the visual explanation maps determined with the attention mechanism.

Image k Macro-F1 Weighted-F1 A

NSL-KDD

Train
Attention 18 0.55 0.94 0.95

Original 17 0.52 0.92 0.93

Test
Attention 18 0.41 0.64 0.68

Original 17 0.35 0.60 0.66

UNSW-NB15

Train
Attention 29 0.35 0.70 0.73

Original 27 0.30 0.67 0.71

Test
Attention 29 0.31 0.69 0.68

Original 27 0.25 0.64 0.63

Finally, we explored how the explanation information synthesized through626

the attention mechanism can actually help achieve accuracy in separating the627

network flow traces of different class types. To this end, we compared the effect628

of information enclosed in:629

• The set of visual explanation maps that are intrinsically produced by the630

neural model with attention for the training network flow traces.631

• The original images of the training network flow traces.632

Since the previous analyses had already assessed the performance of the633

multi-output Deep Learning strategy, we considered here the visual explanation634

maps produced through the attention mechanism of ROULETTE. We first per-635

formed a clustering to isolate distinct prototypes hidden in both the original636
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images and the visual explanations that populate the training set. We used637

the Elbow method with Inertia to determine the optimal value of k for k-means638

(Ketchen & Shook 1996). Then, we assigned each cluster centroid to the ma-639

jority class of the training network flow traces grouped in the cluster. Finally,640

we measured the accuracy of cluster centroid-based decisions, in order to eval-641

uate how the information contained in both the original images and the visual642

explanation maps is actually useful for properly separating network flow traces643

belonging to multiple classes. This evaluation was done on both the training644

set and the testing set by classifying each network flow trace in the class type645

associated with the nearest centroid.646

The results ofMacro-F1, Weighted-F1 and A computed on the decisions based647

on the cluster centroids are collected in Table 8. These results show empirical648

evidence that attention can actually gain accuracy as it is able to capture in-649

formation that separate network flow traces better than the original data.650

6.5. Insights into the Classification Explanation651

We completed this study by exploring how the attention mechanism of652

ROULETTE can help reveal important relationships between the flow charac-653

teristics of the processed network traffic and the observed categories of the654

observed intrusions. To this end, we analyzed the information contained in the655

visual explanation maps produced for both the NSL-KDD and UNSW-NB15656

datasets.657

The heatmaps in Figs. 5 and 6 depict the ranked average feature relevance of658

the flow characteristics that “drew” the attention of the neural models learned659

from both NSL-KDD and UNSW-NB15, respectively. For each dataset, two660

heatmaps report the top 15 flow characteristics ranked by class on both the661

training set and the testing set, respectively. Notably, the set of the top-ranked662

flow characteristics that the neural model mostly attended on in the training663

set largely overlaps the set of the top-ranked flow characteristics attended on664

in the testing set. In particular, 21 flow characteristics are enclosed in the665

top 15 characteristics highlighted both in the training set and the testing set666
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Figure 5: NSL-KDD: feature ranking map of the classification model learned with ROULETTE.

We plot the ranking (1–15) of the flow characteristics (Y axis), which are ranked in the top

15 positions of the feature ranking determined with the attention mechanism over the various

network flow traces grouped by class type (X axis) of both the training set (Fig. 5a) and the

testing set (Fig. 5b). A star denotes the features that appear in the top 15 ranking of both

the training set and testing set.

of NSL-KDD, while 20 flow characteristics are enclosed in the top 15 charac-667

teristics highlighted both in the training set and testing set of UNSW-NB15.668

Further considerations can be made by analyzing the meaning of the specific669

flow characteristics mostly attended on in both datasets.670

6.5.1. NSL-KDD671

Figure 5 shows that both protocol type udp and dst host serror rate are rel-672

evant for classifying every class type in NSL-KDD, while the remaining flow673

characteristics are considered more or less relevant, depending on the specific674

type of intrusion to be classified.675
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Figure 6: UNSW-NB15: feature ranking map of the classification model learned with

ROULETTE. We plot the rank (1–15) of the flow characteristics (Y axis), which are ranked in

the top 15 positions of the feature ranking determined with the attention mechanism over the

various network flow traces grouped by class type (X axis) of both the training set (Fig. 6a)

and the testing set (Fig. 6b). A star denotes the features that appear in the top 15 ranking

of both the training set and testing set.

For example, count (i.e., “the number of connections to the same host as676

the current connection in the past two seconds”) is seen as one of the most rele-677

vant flow characteristics that the neural model takes into account to detect DoS678

attacks, while it is less important when detecting other types of attacks. This679

prominent role of count for DoS intrusion detection is consistent with the target680

of a DoS attack which is to make a computer or network resource unavailable681

(temporarily or indefinitely) to users by flooding the targeted machine with var-682
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ious connection requests. Similar considerations can be made on dst host count .683

This flow characteristic, which counts “the number of connections having the684

same destination host”, also conveys relevant information to detect DoS intru-685

sions. In fact, a DoS attack can be in progress when a server is flooded by686

sending numerous service requests to the target host.687

Further considerations concern the attention paid to service ecr i to detect688

DoS intrusions. In (Wang et al. 2020), service ecr i is recognized as a relevant689

flow characteristic for the detection of Smurf attacks (a subcategory of DoS690

intrusions) since, in this type of DoS, the targets are flooded with ECHO RE-691

PLAY packets from each host on the broadcast address. Our study reveals that692

the neural model attends on service ecr i to detect DoS intrusions. In addition,693

root shell (which equals 1 if the root shell is obtained; 0 otherwise) contains694

relevant information for detecting U2R intrusions. U2R is a type of attack in695

which the attacker tries to access network resources as a normal user, in order to696

gain full access to the system. A U2R strategy might attempt to gain access to a697

shell with administrator privilege (root shell). Finally, dst host srv rerror rate698

and diff srv rate were considered relevant by the attention mechanism to de-699

tect Probe attacks. The relationship between these two flow characteristics and700

Probe has recently been discussed in (Wang et al. 2020).701

6.5.2. UNSW-NB15702

Figure 6 shows that various proto and service-based flow characteristics “at-703

tracted” the attention of the neural model in UNSW-NB15. These flow char-704

acteristics correspond to the transaction protocol (e.g., RDP, CRTP) used in705

the network flow trace and the type of connection service (e.g., FTP, HTTP),706

respectively. While these flow characteristics appear relevant for the detection707

of several class types, their relevance changes with the class type. For exam-708

ple, service pop3 , which is the most relevant flow characteristic for detecting709

network flow traces in the categories Normal, DoS, Exploits, Fuzzers, Generic710

and Worms, is slightly relevant for detecting traces in the categories Analysis,711

Backdoors, Reconnaissance and Shellcode.712
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In addition, ackdat , which refers to the TCP connection setup time (i.e., “the713

time between the SYN ACK and the ACK response”) is relevant for detecting714

shellcode intrusions, while it becomes less important when detecting other types715

of attacks. Shellcode, in fact, is an exploiting attack in which the attacker716

penetrates a piece of code from a shell to control a target machine using the717

standard TCP/IP socket connections.718

Finally, dpkts, i.e., “the count of the number of packets from source to desti-719

nation”, is relevant for recognizing worm attacks. We recall that worm attacks720

are self-replicating computer programs that spread automatically and can flood721

the Internet in a very short time (Chen et al. 2003).722

7. Conclusions723

In this paper, we have presented ROULETTE: a system for multi-class clas-724

sification of network traffic data. The proposed method learns a neural classifi-725

cation model through a multi-output Deep Learning strategy that encompasses726

both convolution and attention. Extensive experimentation was performed to727

show the effectiveness of the proposed neural model with attention, quantified728

in terms of accuracy of classifications, as well as transparency of decisions. In729

particular, the results obtained indicate that ROULETTE is able to produce730

decisions that are comparable to (or even more accurate than) decisions pro-731

duced with competitive, Deep Learning-based approaches. Furthermore, the732

results of the experimentation highlighted how the good accuracy performance733

of ROULETTE can also be attributed to specific properties, such as the compact-734

ness, robustness, and separability of the produced attention-based explanations.735

Finally, the attention mechanism helps us to see particular characteristics of736

network traffic that mainly help to recognize specific intrusion categories. This737

may support the dissemination of useful information to cyber-defenders, thus738

reducing the workload in manual analysis.739

One limitation of the proposed method is the absence of a specific mech-740

anism for dealing with rare classes. A research direction is to explore data741
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augmentation techniques, in order to reach a balancing condition in the learn-742

ing stage. For example, GANs have recently helped to increase accuracy in the743

binary classification of images of network traffic (Andresini, Appice, De Rose &744

Malerba 2021).745

Another limitation is that the proposed method performs the learning stage746

in a batch fashion, without integrating any concept drift detection mechanism747

to properly fit the learned model to an evolving streaming environment. This748

is an issue for all adversary-facing security systems. Recent studies have begun749

to investigate this problem both in NID applications (Andresini, Pendlebury,750

Pierazzi, Loglisci, Appice & Cavallaro 2021) and malware detection problems751

(Pendlebury et al. 2019). These studies propose incremental, semi-supervised752

security systems to process cyber-data streams by reducing labeling overhead753

and continuously updating the underlying model as the data characteristics are754

affected by concept drift.755

Finally, recent studies in Computer Vision have achieved amazing results756

with transformer-based architectures, such as the increasingly popular ViT757

(Dosovitskiy et al. 2020). The idea behind transformers is to define the lay-758

ers of the neural network entirely on the attention mechanism. At each layer759

a new hidden representation is generated for each position in the input data760

by using multiple attention heads that calculate attention weights for all pairs761

of positions in the input. Although the image encoding adopted in this study762

is already robust to arbitrary permutations of features, it is still constrained763

by the inductive “locality” bias of standard convolutions. The multi-headed764

self-attention strategy of vision transformers could further improve the general-765

izability of the model.766

CRediT Authorship Contribution Statement767

Giuseppina Andresini: Conceptualization, Methodology, Software, Data768

curation, Investigation, Validation, Visualization, Writing - original draft, Writ-769

ing - review & editing. Annalisa Appice: Conceptualization, Methodology,770

36



Investigation, Validation, Supervision, Writing - original draft, Writing - review771

& editing. Francesco Paolo Caforio: Conceptualization, Software, Investiga-772

tion. Donato Malerba: Conceptualization, Project administration, Writing -773

review & editing. Gennaro Vessio: Conceptualization, Methodology, Valida-774

tion, Writing - original draft, Writing - review & editing, Supervision.775

Acknowledgments776

We acknowledge the support of the Italian Ministry of University and Re-777

search through the project “TALIsMan - Tecnologie di Assistenza personALiz-778
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