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Università degli Studi di Bari

Via Orabona, 4 - 70125 Bari (Italy)
annunziata.loiudice@uniba.it

Abstract
We determine the sharp asymptotic behavior at infinity of solutions to quasilinear

critical problems involving the p-sublaplacian operator ∆p,G on a Carnot group G,
1 < p < Q. As a remarkable consequence, we obtain the exact rate of decay of the
extremal functions for the subelliptic Sobolev inequality involving the Lp-norm of the
horizontal gradient.
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1 Introduction

In this paper we obtain the exact asymptotic behavior at infinity of finite energy solutions
to quasilinear subelliptic problems with critical growth nonlinearity on Carnot groups.
From this general result, we deduce the sharp rate of decay of the p-Sobolev extremals on
such groups.

Let us introduce our problem. Let G be a Carnot group of arbitrary step r ≥ 1, i.e. a
connected simply connected nilpotent Lie group whose Lie algebra G admits a stratification
G = V1 ⊕ V2 ⊕ . . .⊕ Vr, and it is generated via commutation by its first layer V1.

Given a basis {Xj}m
j=1 of V1, the associated p-Laplacian operator ∆p,G, where 1 < p <

Q and Q denotes the homogeneous dimension of G, is defined by

∆p,G :=
m∑

i=1

Xi(|Xu|p−2Xiu),

where Xu is the so-called horizontal gradient of u with length |Xu| = (
∑m

i=1 |Xiu|2)1/2.
We are interested in subelliptic problems of the type

{ −∆p,Gu = f(ξ, u) in G
u ∈ D1,p(G)

(1.1)
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where D1,p(G) is the completion of C∞
0 (G) with respect to the norm

‖u‖D1,p(G) := (
ˆ

G
|Xu|p dξ)1/p

and f : G× R→ R is a Carathéodory function such that

|f(ξ, s)| ≤ Λ|s|p∗−1, for all s ∈ R and a.e. ξ ∈ G, (1.2)

for some Λ > 0, where p∗ =
pQ

Q− p
is the critical Sobolev exponent in this context.

We shall deal with weak solutions of problem (1.1), i.e. functions u ∈ D1,p(G) such
that ˆ

G
|Xu|p−2 < Xu,Xφ > dξ =

ˆ

G
f(ξ, u) φdξ ∀φ ∈ C∞0 (G).

In the ordinary Euclidean setting the problem of determining the sharp rate of decay of
weak solutions to equations of the type (1.1) under critical growth assumptions on the
nonlinearity f was firstly addressed by Egnell in [10]. He pointed out that the difficulty
to treat the quasilinear case with respect to the semilinear one was due to the absence of
the Kelvin transform in the quasilinear setting and suggested the necessity to find a more
direct method to treat the p-Laplacian case.

The problem was firstly studied in the Euclidean elliptic setting by Vassilev [32], who
obtained an almost-sharp decay estimate for the solutions in the case of critical singular
nonlinearities, by mainly using their Lq-regularity.

Recently, by exploiting the sharp regularity of solutions in the framework of weak
Lebesgue spaces, the exact rate of decay of solutions to problem (1.1) in Rn has been
obtained by Vétois in [33]. We also quote the paper by Brasco-Mosconi-Squassina [4],
where the optimal decay of the p-Sobolev minimizers for the fractional Sobolev inequality
has been established, by using the sharp Lq-weak regularity of such extremals together
with their radial symmetry. We also refer to Xiang [34], where asymptotic estimates are
proved for the quasilinear problem with Hardy perturbation, without the use of weak
Lebesgue norms.

In the present paper, we generalize to the subelliptic context of Carnot groups the
general asymptotic results proved in [33].

Throughout the paper, d will indicate a fixed homogeneous norm on G. Then, our
main result can be stated as follows.

Theorem 1.1. Let 1 < p < Q, f : G × R → R be a Carathéodory function satisfying
condition (1.2) and let u ∈ D1,p(G) be a solution of pb. (1.1). Then, there exists a
constant C = C(Q, p,Λ, u) such that

|u(ξ)| ≤ Cd(ξ)
p−Q
p−1 , for d(ξ) large. (1.3)

If, moreover, u ≥ 0 in G and
´
G f(ξ, u) dξ > 0, then

u(ξ) ≥ C1d(ξ)
p−Q
p−1 , for d(ξ) large, (1.4)

for some constant C1 = C1(Q, p, λ, Λ, u), where λ is any fixed number such that 0 < λ <´
G f(ξ, u) dξ.
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The above result extends to the quasilinear case analogous asymptotic estimates ob-
tained for the case p = 2 by means of convolution representation techniques by Lanconelli-
Uguzzoni [22], [23], Bonfiglioli-Uguzzoni [3] and the author in [25]; see also [27] for a first
decay result in the case of sublaplacians with Hardy perturbation.

Our proof for the present quasilinear case relies on the sharp weak Lebesgue regularity
of solutions, the scale invariance of the critical equations and the application of Moser-
type estimates and Harnack inequality. In particular, a Moser-type estimate on annuli
involving the sharp Lq-weak norm of the solutions (see Theorem 4.2 below) is our key
ingredient to get the optimal decay result.

Our technique is mainly inspired to Vétois’ Euclidean proof, but it differs from it,
since it does not require any preliminary partial decay estimate on the solution of the type
|u(ξ)| ≤ Cd(ξ)

p−Q
p , which instead constitutes the most technical part of Vétois proof. In

our approach, also taking some ideas from [34], we can avoid this step and simplify the
proof, by restricting to suitable Moser-type estimates the functional tools needed to get
the optimal estimate from above.

We remark that the functional analytic background on quasilinear subelliptic equations
needed in the proof is based on the fundamental regularity results by Capogna-Danielli-
Garofalo [5].

Now, we point out that, as a remarkable consequence of Theorem 1.1, we obtain
the exact behavior at infinity of the extremal functions for the Sobolev inequality on
Carnot groups due to Folland [11], which we here recall: there exists a positive constant
Sp = Sp(G) > 0 such that

ˆ

G
|Xu|p dξ ≥ Sp

(ˆ

G
|u|p∗ dξ

)p/p∗

∀u ∈ C∞
0 (G). (1.5)

We know that the best constant in (1.5) is achieved. Indeed, the existence of Sobolev
minimizers was proved by concentration compactness arguments adapted to the Carnot
setting by Garofalo and Vassilev [15]. However, the explicit form of the extremal functions
is not known, except for the case when p = 2 and G is a group of Iwasawa type (see Jerison-
Lee [20], but also Frank-Lieb [13] for the Heisenberg case, Ivanov-Minchev-Vassilev [17]
and Christ-Liu-Zhang [7] for the remaining cases).

Now, since any extremal function U for inequality (1.5), up to multiplicative constant,
is a nonnegative nontrivial entire solution of the equation

−∆p,GU = Up∗−1 in G,

by means of Theorem 1.1 we immediately obtain for U the following sharp decay result.

Theorem 1.2. Let 1 < p < Q and let U ∈ D1,p(G) be an extremal function for Sobolev
inequality (1.5). Then, the following estimate holds

U(ξ) ∼ d(ξ)
p−Q
p−1 , as d(ξ) →∞.
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We conclude by observing that the knowledge of the exact asymptotic behavior at
infinity of Sobolev extremals turns out to be a crucial ingredient in order to obtain exi-
stence results for Brezis-Nirenberg type problems whenever the explicit form of Sobolev
minimizers is not known, as shown by the author in [24] for the semilinear Carnot case
p = 2 (see also [26], [18]; see, furthermore, [28] where different variational techniques not
involving the knowledge of minimizers are used to obtain existence results).

The plan of the paper is the following: Section 2 is devoted to introduce the main
notations and definitions about Carnot groups; in Section 3 we prove the sharp regularity
of solutions in the scale of weak-Lebesgue spaces; finally, in Section 4 we establish their
sharp asymptotic decay at infinity.

2 The functional setting

Let us briefly introduce the Carnot groups functional setting. For a complete treatment,
we refer the reader to the monograph [2] and the classical papers [11], [12].

A Carnot group (G, ◦) is a connected, simply connected nilpotent Lie group, whose
Lie algebra g admits a stratification, namely a decomposition g =

⊕r
j=1 Gj , such that

[G1,Gj ] = Gj+1 for 1 ≤ j < r, and [G1,Gr] = {0}. The number r is called the step of
the group G and the integer Q =

∑r
i=1 i dim(Gi) is the homogeneous dimension of G.

We shall assume throughout that Q ≥ 3. Note that, if Q ≤ 3, then G is necessarily the
ordinary Euclidean space G = (RN , +).

By means of the natural identification of G with its Lie algebra via the exponential
map (which we shall assume throughout), it is not restrictive to suppose that G is a
homogeneous Lie group on RN = RN1 × RN2 × . . . × RNr , with Ni = dim(Gi), equipped
with a family of group automorphisms (called dilations) δλ of the form

δλ(ξ) = (λ ξ(1), λ2 ξ(2), · · · , λr ξ(r)),

where ξ(j) ∈ RNj for j = 1, . . . , r. Let m := N1 and let X1, . . . , Xm be the set of left
invariant vector fields of G1 that coincide at the origin with the first m partial derivatives.
We shall denote by

X = (X1, . . . , Xm)

such system of vector fields, which we shall refer to as the horizontal gradient. The
differential operator

∆p,G :=
m∑

i=1

Xi(|Xu|p−2Xiu),

is called the canonical p-sublaplacian on G. Note that for any c > 0 one has ∆p,G(cu) =
cp−1∆p,Gu and furthermore, since the Xj ’s are homogeneous of degree one with respect to
the dilations δλ, the operator ∆p,G is homogeneous of degree p with respect to δλ, namely

∆p,G(u ◦ δλ) = λp∆p,Gu ◦ δλ. (2.1)

By definition, a homogeneous norm on G is a continuous function d : G → [0, +∞),
smooth away from the origin, such that d(δλ(ξ)) = λ d(ξ), for every λ > 0 and ξ ∈ G,
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d(ξ−1) = d(ξ) and d(ξ) = 0 iff ξ = 0. Moreover, if we define d(ξ, η) := d(η−1 ◦ ξ), then d is
a pseudo-distance on G. We recall that any two homogeneous norms on a Carnot group
G are equivalent, as observed in [2, Prop. 5.1.4].

Throughout the paper, d will indicate a fixed homogeneous norm on G. We shall
denote by B(ξ, r) the d-ball with center at ξ and radius r, i.e.

B(ξ, r) = {η ∈ G | d(ξ−1 ◦ η) < r}.

For the main regularity results we shall use in our proof, i.e. Moser-type estimates
and Harnack-type inequality for quasilinear subelliptic equations, we refer to the seminal
papers by Capogna-Danielli-Garofalo [5], [6], where the classical results by Moser [29] and
Serrin [30] were generalized to quasilinear operators constructed by means of Hörmander
vector fields. We also quote the papers by D’Ambrosio and Mitidieri [8], [9], where further
functional tools related to quasilinear degenerate problems, such as Kato’s inequality for
subelliptic equations, have been obtained. Moreover, we indicate the paper [1] for an
overview on the main aspects of nonlinear potential theory on Carnot groups. Concerning
the variational formulation of nonlinear subelliptic problems and classical existence and
non-existence results, we refer to [14], [15], [22], [23], [31].

3 Lq-weak regularity of solutions

In this section, we determine the sharp regularity of solutions to problem (1.1) in the
framework of weak-Lebesgue spaces.

In the ordinary Euclidean space, the result for the case p = 2 goes back to Jannelli
and Solimini [19], where they stated that any weak solution of a semilinear critical growth
problem in Rn, whose model example is given by the equation −∆u = |u|2∗−2u in Rn,
belongs to the space L2∗/2,∞(Rn). A generalization of this result to the polyharmonic
Euclidean case can be found in [18]. The result of Jannelli and Solimini was then extended
to the case of Stratified Lie groups by the author in [25].

Recently, this type of result has been extended to the quasilinear elliptic case by Vétois
in [33, Lemma 2.2] (see also [4]) by a very direct approach; in what follows we adapt the
proof in [33] to the present subelliptic setting. A preliminary step is to establish the global
boundedness of the solutions, which we state in the following proposition.

Proposition 3.1. Let f : G × R → R be a Carathéodory function satisfying condition
(1.2). Then, any solution u ∈ D1,p(G) to (1.1) belongs to L∞(G).

Proof. The result can be proved by simply adapting the proof by Vassilev [31, Sect. 4],
where the model case f(ξ, u) = |u|p∗−2u is considered. We omit the details. ¤

Let us, now, recall the definition of weak Lebesgue spaces. For any s ∈ (0,∞) and
any open set Ω ⊂ G, we define the space Ls,∞(Ω) as the set of all measurable functions
u : Ω → R such that

[u]Ls,∞(Ω) := sup
h>0

h · µ({|u| > h})1/s < ∞,
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where µ({|u| > h}) denotes the Lebesgue measure of the set {ξ ∈ Ω : |u(ξ)| > h}. The
map [u]Ls,∞(Ω) is a quasi-norm on Ls,∞(Ω). For a complete treatment of such spaces we
refer to Grafakos [16].

The optimal regularity of solutions in the scale of weak Lebesgue spaces is the following:

Proposition 3.2. Let f : G × R → R be a Carathéodory function satisfying the growth
assumption (1.2). Then, any solution u ∈ D1,p(G) to problem (1.1) belongs to Lq0,∞(G),

with q0 =
p∗

p′
, p′ being the conjugate exponent of p. Hence, by interpolation, any solution

u of (1.1) belongs to Lq(G), for any q ∈
(

p∗

p′
,∞

]
.

Proof. Let u be a nontrivial weak solution of pb. (1.1). In order to estimate the distribu-
tion function of u, we consider the test function

Th(u) := sgn(u) ·min(|u|, h), h > 0.

By Sobolev inequality (1.5), we get that

hp∗µ({|u| > h}) ≤
ˆ

G
|Th(u)|p∗ dξ ≤ S

(ˆ

|u|≤h
|Xu|p dξ

) Q
Q−p

, (3.1)

where S = S(Q, p). On the other hand, by testing equation (1.1) with Th(u) and using
the growth assumption (1.2) on f we get

ˆ

|u|≤h
|Xu|pdξ =

ˆ

|u|≤h
f(ξ, u) · udξ + h

ˆ

|u|>h
f(ξ, u) · sgn(u) dξ

≤ Λ

(ˆ

|u|≤h
|u|p∗ dξ + h

ˆ

|u|>h
|u|p∗−1 dξ

)
.

(3.2)

Let us estimate the terms in the right hand side of (3.2). We have that
ˆ

|u|≤h
|u|p∗ dξ =

ˆ

G
|Th(u)|p∗ dξ − hp∗µ({|u| > h}) (3.3)

and
ˆ

|u|>h
|u|p∗−1 dξ = (p∗ − 1)

ˆ ∞

0
sp∗−2µ({|u| > max(s, h)}) ds

= hp∗−1µ({|u| > h}) + (p∗ − 1)
ˆ ∞

h
sp∗−2µ({|u| > s}) ds.

(3.4)

Hence, from (3.2), (3.3) and (3.4), we get
ˆ

|u|≤h
|Xu|p dξ ≤ Λ

(ˆ

G
|Th(u)|p∗ dξ + (p∗ − 1)h

ˆ ∞

h
sp∗−2µ({|u| > s}) ds

)
. (3.5)
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Then, by (3.1) and (3.5), and taking into account that
´
G |Th(u)|p∗ dξ = o(1) as h → 0,

we get the key estimate

hp∗µ({|u| > h}) ≤ C

(
h

ˆ ∞

h
sp∗−2µ({|u| > s}) ds

) Q
Q−p

, (3.6)

for small h > 0, for some constant C = C(Q, p, Λ). Now, in order to estimate the r.h.s. of
(3.6) and simplify notation, let us define

F (h) :=
(ˆ ∞

h
f(s) ds

)− p
Q−p

, where f(s) := sp∗−2µ({|u| > s}). (3.7)

Taking into account definition (3.7) and the fact that p∗− Q
Q−p = Q(p−1)

Q−p = p∗
p′ , the estimate

(3.6) can be rewritten as follows

hp∗/p′µ({|u| > h}) ≤ CF (h)−Q/p, for small h > 0.

Now, it is not difficult to verify that F is a non-decreasing function and that F (0) > 0.
So, we can conclude that

hp∗/p′µ({|u| > h}) ≤ CF (0)−Q/p

for small h, which implies, together with Proposition 3.1, that [u]Lp∗/p′,∞(G) < ∞. ¤

4 Asymptotic behavior of solutions

This section is devoted to the proof of the main Theorem 1.1, which will provide the
optimal decay estimates on the solutions to the critical problem (1.1). As an immediate
consequence, we shall obtain the asymptotic behavior of the p-Sobolev minimizers.

The proof of Theorem 1.1 will be divided into two parts: the proof of the estimate
from above (1.3) and that of the estimate from below (1.4). Each of the two parts will
require some preliminary lemmas.

Let us begin with the upper bound estimate, which will follow as a direct consequence
of Theorem 4.2 below. The first step of the proof is the following preliminary Moser-type
estimate inspired to Xiang [34, Lemma 2.3].

In what follows, denoted by BR the d-ball with center at 0 and radius R, we let

AR = B5R \B2R and ÃR = B6R \BR, R > 0. (4.1)

The following uniform estimate with respect to R holds.

Lemma 4.1. Let V ∈ LQ/p(G) and let u ∈ D1,p(G) be a nonnegative solution to

−∆p,Gu ≤ V up−1 in G. (4.2)

Let t > p∗. Then, there exists R0 > 0 depending on t such that for any R ≥ R0, it holds
( 

AR

ut

)1/t

≤ C

( 
eAR

up∗
)1/p∗

, (4.3)

where
ffl
AR

ut = 1
|AR|

´
AR

ut and C is a positive constant depending on t, but not on R.
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Proof. Adapting the proof in [34, Lemma 2.3], for any R > 0 and ξ ∈ G, we define

v(ξ) := u(δRξ).

By (4.2) and (2.1), v satisfies

−∆p,Gv ≤ VRvp−1 in G, (4.4)

where VR(ξ) = RpV (δRξ), for any ξ ∈ G. We shall prove estimate (4.3) for v on Ã1.
Let vm = min(v, m), for m ≥ 1. For any η ∈ C∞

0 (Ã1), η ≥ 0 and s ≥ 1, the test
function ϕ = ηpv

p(s−1)
m v into (4.4) gives

ˆ
eA1

|Xv|p−2Xv ·Xϕ ≤
ˆ
eA1

VRvp−1 ϕ. (4.5)

Concerning the l.h.s. of (4.5), it is easy to see that for any sufficiently small δ > 0, there
exists Cδ > 0 such that
ˆ
eA1

|Xv|p−2Xv·Xϕ ≥ (1−δ)
p(s− 1) + 1

sp

ˆ
eA1

|X(ηvs−1
m v)|p−Cδ

ˆ
eA1

|Xη|pvp(s−1)
m vp. (4.6)

So, by choosing δ = 1/2 in (4.6) and using Sobolev inequality (1.5), we obtain

ˆ
eA1

|Xv|p−2Xv ·Xϕ ≥ C1

(ˆ
eA1

|ηvs−1
m v|pχ

)1/χ

− C2

ˆ
eA1

|Xη|pvp(s−1)
m vp, (4.7)

for some constants C1, C2 > 0 depending on Q, p, s, where χ = p∗/p. On the other hand,
by Hölder’s inequality

ˆ
eA1

VRvp−1ϕ ≤ ‖VR‖Q
p

, eA1

(ˆ
eA1

|ηvs−1
m v|pχ

)1/χ

= ‖V ‖Q
p

, eAR

(ˆ
eA1

|ηvs−1
m v|pχ

)1/χ

. (4.8)

So, by (4.5), (4.7) and (4.8), we get

(ˆ
eA1

|ηvs−1
m v|pχ

)1/χ

≤ C3

ˆ
eA1

|Xη|pvp(s−1)
m vp + C3‖V ‖Q

p
, eAR

(ˆ
eA1

|ηvs−1
m v|pχ

)1/χ

(4.9)

for some constant C3 = C3(Q, p, s) > 0.
Now, fix t > p∗ and let k ∈ N such that pχk ≤ t ≤ pχk+1. Then, there exists a positive

constant C3 = C3(Q, p, t) such that (4.9) holds for all 1 ≤ s ≤ χk.
Since V ∈ LQ/p(G), there exists R0 > 0 such that

C3‖V ‖Q
p

, eAR
≤ 1/2 for any R ≥ R0. (4.10)

Therefore, for all R ≥ R0, it holds
(ˆ

eA1

|ηvs−1
m v|pχ

)1/χ

≤ C

ˆ
eA1

|Xη|pvp(s−1)
m vp,
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for all 1 ≤ s ≤ χk, where C > 0 depends only on Q, p, t.
Now, by choosing an appropriate cut-off function η and applying Moser’s iteration

technique, after finitely many iterations we can conclude that

(ˆ

A1

vt

)1/t

≤ C

(ˆ
eA1

vp∗
)1/p∗

(4.11)

for R ≥ R0, where we recall that v(ξ) = u(δRξ) and C does not depend on R. By a simple
change of variable, (4.3) follows from (4.11). ¤

We are now able to state our main Theorem, which gives an estimate of the L∞-norm
of the solutions to (1.1) on annuli by means of the sharp Lq0-weak norm on larger annuli,
thus providing the sharp decay of solutions at ∞.

In what follows, we shall indicate by

DR = B4R \B3R, R > 0, (4.12)

and AR will denote, as before, the larger annulus B5R \B2R.

Theorem 4.2. Let u ∈ D1,p(G) be a solution to (1.1) under the assumption (1.2). Let
q0 = p∗

p′ be the sharp Lq-weak summability exponent found in Prop. 3.2. Then, there exist
constants R0, C > 0, such that for any R ≥ R0

sup
DR

|u| ≤ C

|AR|
1
q0

[u]Lq0,∞(AR) (4.13)

where C does not depend on R.

Proof. Firstly, notice that, if u ∈ D1,p(G) is a solution to (1.1) under the assumption (1.2),
then by Kato’s inequality [21] adapted to the Stratified context (see [9]), |u| satisfies

−∆p,G|u| ≤ |f(ξ, u)| ≤ Λ|u|p∗−1 in G,

from which
−∆p,G|u| ≤ V |u|p−1, where V := Λ|u|p∗−p. (4.14)

Obviously, V ∈ Lq(G) for any q ≥ Q/p, being u ∈ Lt(G) for any t ≥ p∗.
Let us set, as before,

v(ξ) := |u(δRξ)|, R > 0, ξ ∈ G.

Then, in particular, v weakly satisfies the inequality

−∆p,Gv ≤ VRvp−1 in A1, (4.15)

where VR(ξ) = Rp V (δRξ), with V as in (4.14).
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Let t > p∗ be fixed. Thus, in particular, VR ∈ Lt0(G), for t0 = t
p∗−p > Q

p . So, by the
subelliptic Moser-type estimates by Capogna et al. in [5] (see [5, Theorem 3.4 and Lemma
3.29]) applied to (4.15), we get that, for any q > 0 the following estimate holds

sup
B

v ≤ C

( 

2B
vq

)1/q

, (4.16)

for any ball B = B(ξ, r) such that 2B = B(ξ, 2r) ⊂ A1, where C = C(Q, q, ‖VR‖Lt0 (A1)) .
Reasoning as in [34, proof of Proposition 2.1], the crucial observation, here, is that

the norm ‖VR‖Lt0 (A1) is uniformly bounded with respect to R, for sufficiently large R.
Precisely, if we choose R0 > 0 so that (4.10) holds for V = Λ|u|p∗−p, there exists a
constant C > 0 depending on Q, p, t0, Λ such that

‖VR‖Lt0 (A1) ≤ C‖u‖p∗−p

Lp∗ (G)
∀R ≥ R0. (4.17)

Indeed, by the definition of VR and by Lemma 4.1 applied to (4.14), we get that, for any
R ≥ R0

‖VR‖Lt0(A1) = R
p− Q

t0 ‖V ‖Lt0(AR)

= ΛR
p− Q

t0 ‖u‖p∗−p
Lt(AR)

≤ CR
p− Q

t0
−( Q

p∗−
Q
t
)(p∗−p)‖u‖p∗−p

Lp∗ ( eAR)

≤ C‖u‖p∗−p

Lp∗ (G)
,

with C > 0 not depending on R, where we have used that p− Q
t0
− ( Q

p∗ − Q
t )(p∗ − p) = 0.

Therefore, the constant C in (4.16) does not depend on R, for R ≥ R0.
Finally, by a covering argument on the inner annulus D1 ⊂⊂ A1, we deduce from

(4.16) that

sup
D1

v ≤ C

( 

A1

vq

)1/q

,

that is, by rescaling

sup
DR

|u| ≤ C

( 

AR

|u|q
)1/q

, (4.18)

for R ≥ R0, where C depends on q, but not on R.
Now, let us choose q in (4.18) so that 0 < q < q0 = p∗/p′. By Hölder’s inequality for

weak Lebesgue norms (see Grafakos [16], Ex. 1.1.11) we have

(ˆ

AR

|u|q
)1/q

≤ Cq,q0 |AR|1/q−1/q0 [u]Lq0,∞(AR). (4.19)

Henceforth, by (4.18) and (4.19), estimate (4.13) follows. ¤
We are now able to prove the estimate from above (1.3) of Theorem 1.1.
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Proof of Theorem 1.1 - estimate (1.3). From Theorem 4.2, by taking into account
that |AR| ∼ RQ and that, by Proposition 3.2, u ∈ Lq0,∞(G), the asymptotic estimate (1.3)
follows by letting R = 2

7d(ξ) in (4.13), for d(ξ) ≥ 7
2 R0. ¤

To complete the proof of Theorem 1.1 with the estimate from below (1.4), we follow
the outline in [33]. We shall need the following Lemmas, which will be proved by means
of the regularity results in [5].

In what follows, we shall use the same notation for annuli as before (see (4.1) and
(4.12)).

Lemma 4.3. Let f : G×R→ R be a Carathéodory function such that (1.2) holds and let
u be a nonnegative solution of (1.1). Then, there exists a constant C > 0, not depending
on R, such that

sup
AR

u ≤ C inf
AR

u (4.20)

for sufficiently large R.

Proof. Reasoning as in the previous proofs, we prove estimate (4.20) for the linear trans-
formation v(ξ) = u(δRξ) on the annulus A1. Consider the equation (4.15) for v in the
larger annulus Ã1. Since VR ∈ Lt0(Ã1), for any fixed t0 > Q/p, by the subelliptic Harnack
inequality in [5, Theorem 3.1], there exists a constant C1 = C1(Q, p, ‖VR‖Lt0 ( eA1)

) > 0 such
that

sup
B(η,1/4)

v ≤ C1 inf
B(η,1/4)

v, (4.21)

for all points η in the annulus A1. Reasoning as in the proof of Theorem 4.2, we can
recognize that the constant C1 in (4.21) can be made independent of R, for sufficiently
large R. Moreover, since every two points in A1 can be jointed by a finite number of
connected balls of radius 1/4 and center in A1, by a covering argument we get from (4.21)
that

sup
A1

v ≤ C inf
A1

v,

where C does not depend on R, for R sufficiently large. Thus, estimate (4.20) holds. ¤

Lemma 4.4. Let f : G×R→ R be a Carathéodory function such that (1.2) holds and let
u be a nonnegative solution of (1.1). Then, there exists a constant C > 0, not depending
on R, such that

‖Xu‖Lp(DR) ≤ CR−1‖u‖Lp(AR) (4.22)

for sufficiently large R.

Proof. First of all, let us notice that an estimate of the type (4.22) can be found in Serrin
[30, Theorem 1]. Reasoning as in the preceding lemmas, we prove that, for sufficiently
large R, the following estimate holds

‖Xv‖Lp(D1) ≤ C‖v‖Lp(A1) (4.23)
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for the linear transformation v(ξ) = u(δRξ), where the constant C does not depend on R,
that is equivalent to (4.22).

We give a sketch of the proof. Let us test the inequality −∆p,Gv ≤ VRvp−1 with
ϕ = ηpv, where η ∈ C∞

0 (A1) is a suitable nonnegative cut-off function to be specified
later. We get ˆ

A1

|Xv|p−2Xv ·X(ηpv) dξ ≤
ˆ

A1

VR(ηv)p dξ,

which leads to ˆ

A1

ηp|Xv|p dξ ≤ p

ˆ

A1

|vXη||ηXv|p−1 dξ +
ˆ

A1

VR(ηv)p dξ. (4.24)

By estimating the terms in the r.h.s. of (4.24) as in [5, Theorem 3.4], after some standard
computations we obtain

‖ηXv‖Lp(A1) ≤ C
(‖ηv‖Lp(A1) + ‖vXη‖Lp(A1)

)
(4.25)

(see [5], formula (3.12)) where C only depends on Q, p and ‖VR‖Lt0 (A1), which is uniformly
bounded with respect to R for sufficiently large R, due to (4.17).

So, by choosing η ∈ C∞
0 (A1) so that 0 ≤ η ≤ 1, η ≡ 1 on the inner annulus D1 ⊂⊂ A1,

from (4.25) we easily deduce (4.23). ¤

Proof of Theorem 1.1 - estimate (1.4). Let u be a nonnegative solution of (1.1) such
that

´
G f(ξ, u) dξ > 0. Then, by taking into account (1.2), it follows that u 6≡ 0. By virtue

of Lemma 4.3, in order to prove estimate (1.4), it is sufficient to prove a lower bound

for ‖u‖L∞(AR) in terms of R
p−Q
p−1 , for large R. First of all, by Lemma 4.4 and Hölder’s

inequality, we get that
‖Xu‖Lp(DR) ≤ CR

Q−p
p ‖u‖L∞(AR). (4.26)

On the other hand, if
´
G f(ξ, u) dξ > λ for some λ > 0, we claim that

C ′R
p−Q

p(p−1) ≤ ‖Xu‖Lp(DR) (4.27)

for large R, for some constant C ′ depending on Q, p, λ. Indeed, if we test equation (1.1)
with a cut-off function ηR(ξ) = η(d(ξ)/R), where η ∈ C∞(0,∞) is such that η ≡ 1 on
[0, 3], η ≡ 0 on [4,∞), 0 ≤ η ≤ 1 on (3,4), we have that

ˆ

G
f(ξ, u) ηRdξ =

ˆ

G
|Xu|p−2Xu ·XηR dξ

≤ ‖Xu‖p−1
Lp(supp(XηR)) · ‖XηR‖Lp(supp(XηR))

≤ CR
Q−p

p ‖Xu‖p−1
Lp(DR),

(4.28)

where we have used thatˆ

DR

|XηR|p dξ =
1

Rp

ˆ

DR

|X(η ◦ d)(δ 1
R
ξ)|p dξ =

1
Rp

ˆ

DR

|η′(d(δ 1
R
ξ))|p|Xd(δ 1

R
ξ)|p dξ

≤ C

Rp
|DR| = CRQ−p.
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Hence, by choosing R sufficiently large so that
´
G f(ξ, u) ηRdξ > λ, estimate (4.27) follows

by (4.28) with C ′ = (λ/C)
1

p−1 . Finally, by (4.20), (4.26) and (4.27), we get

CR
p−Q
p−1 ≤ inf

AR

u for largeR,

from which estimate (1.4) follows. ¤
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