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Florence, July 09th 2019 

Dear Editor, 
 
Please find enclosed the manuscript by Pini et al., “Characterization of 

microbial community composition in Italian Cinta Senese dry-fermented 
sausages using natural extracts in place of sodium nitrite” submitted for 
publication on Food Microbiology.  
The manuscript here presented is an original work and it has not been submitted 
earlier to Food Microbiology.  
The consumers’ demand for products “free from” is constantly growing, opening 
several potential market opportunities. In particular, for meat products it is important 
to evaluate alternatives to nitrate and nitrite after World Health Organization has 
linked their consumption to increased cancer risk.  
This study aimed to explore the use of two natural extracts (grape seed and chestnut 
extracts) as potential alternatives to sodium nitrite in natural dry-fermented salami. 
High-throughput sequencing was used to analyze microbiota composition in salami 
treated with nitrite or with the two natural extracts. The use of the two natural 
extracts do not drastically alter salami microbiota composition, however some 
differences were observed and discussed. On the basis of microbiological, physical 
and chemical parameters grape seed and chestnut extracts may be then considered 
good alternatives to the use of nitrite for curing salami. 
Thank you for your consideration. 
Yours sincerely, 

Prof. Carlo Viti Ph.D 

 



Highlights

 Nitrite-free samples, treated with grape seed and chestnut extracts, were characterized by lower 
pH levels probably due to a higher activity of Lactobacillaceae.

 Dry-fermented sausages microbiota characterization using NGS technology. Staphylococcus 
xylosus and Lactobacillus sakei are the most represented species.

 Prokaryotic communities of dry-fermented sausages treated with grape seed extracts, chestnut 
extracts or sodium nitrite showed differences for both OTU composition and relative 
abundance.

 In nitrite-free samples a lower abundance of the Photobacterium genus was observed.
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13

14 Abstract

15 Nitrite is widely used in meat products as multifunctional additive, combining flavour and colour 

16 curing properties with antioxidant and antimicrobial effects. However, nitrite may form reaction 

17 products (i.e. nitrosamine) potentially carcinogenic for humans. Meat industry, accomplishing 

18 consumers’ demand of nitrite-free products, is seeking for natural alternatives to nitrite such as 

19 plant-based extracts.

20 Three types of dry-fermented sausages were manufactured: NIT, containing 30 ppm of sodium 

21 nitrite; GSE, replacing nitrite with grape seed extract and olive pomace hydroxytyrosol; CHE, 

22 replacing nitrite with chestnut extract and olive pomace hydroxytyrosol. High-throughput 

23 sequencing was used to analyse microbial consortia, which were correlated with physical and 

24 chemical parameters.

25 Prokaryotic community composition was similar among treatments with predominance of 

26 Staphylococcus xylosus and Lactobacillus sakei species, accounting together for 87% of the total 

27 community. However significant differences were observed for both OTUs presence/absence and 

28 relative abundance. Ten genera were differently abundant between treatments, a lower abundance 

29 of Photobacterium, a meat spoilage bacterium, was observed in nitrite-free samples. 

30 In conclusion, NGS analysis showed that prokaryotic community composition is similar in GSE and 

31 NIT dry-fermented sausages while CHE showed more differences in both composition and relative 

32 abundance of the different taxa. 

33 Keywords: Local breed, Nitrite, Prokaryotic community, Natural extracts, Pig

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120



3

34 1. Introduction

35 Meat and processed meat products are important constituent of most of western diets. Since 1970’s 

36 evidences for an association between meat consumption and the risk of some types of cancer began 

37 to emerge (Johnson, 2017), as well as for the onset of several cardiovascular diseases (Jiménez-

38 Colmenero, 2007). In October 2015, the International Agency for Research on Cancer (IARC) 

39 under World Health Organization (WHO) classified processed meat as carcinogen (Group I) and 

40 red meat as probable carcinogen (Group 2A) (Jiang and Xiong, 2016). In processed meat products, 

41 nitrite and nitrate are used as curing agents. Nitrite (and nitrate, which is reduced to nitrite along 

42 curing) play a pivotal role in flavour development, in controlling lipid oxidation and food safety 

43 (Majou and Christieans, 2018; Perea-Sanz et al., 2018). Eventually, nitrite also positively affects 

44 colour. The reactive intermediate compounds derived from nitrite conversion, such as NO, bind to 

45 Fe2+ of myoglobin heme group, forming nitrosomyoglobin (Hammes, 2012). This compound is the 

46 characteristic red curing pigment and consumers consider it an essential organoleptic trait. Nitrite 

47 exerts its antioxidant activity in cured meat by forming the myoglobin-stable compounds and 

48 making the iron inaccessible for oxidation (Riazi et al., 2018). However, the main role of nitrite in 

49 processed meat products is linked to food safety, thanks to its bacteriostatic and bactericidal activity 

50 against pathogenic bacteria such as Salmonella enterica serovar typhimurium, Listeria spp., and 

51 Clostridium botulinum (Majou and Christieans, 2018). The mechanisms by which nitrite inhibits the 

52 growth of foodborne pathogens and food spoilage bacteria include oxygen uptake and oxidative 

53 phosphorylation interruption, formation of nitrous acid and NOs, and interruption of critical 

54 enzymes in bacterial metabolism such as aldolase (Lee et al., 2018). The major concern of 

55 nitrate/nitrite in food is related to the potential of nitrite to form cancerogenic N-nitroso compounds. 

56 Indeed, amines and amides are formed in the colon through bacterial metabolism of amino acids, 

57 and these can be N-nitrosated in the presence of nitrosylated haem derived from unabsorbed 

58 residues of red meat (Herrmann et al., 2015; Johnson, 2017; Meurillon and Engel, 2016). A 
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59 dramatic increase of consumer’s demand for natural, fresh and minimally processed foods with 

60 fewer artificial additives, including preservatives has been observed (Majou and Christieans, 2018).

61 Some attempts of curing without nitrite were made, but products resulted in very poor organoleptic 

62 and microbiological quality (Hammes, 2012). Recently, studies have focused on finding potential 

63 substitutes of nitrite and nitrate in plant extracts, that thanks to their high content of polyphenols can 

64 perform both antioxidant and antimicrobial activities (Jiang and Xiong, 2016; Shah et al., 2014; 

65 Shan et al., 2009). Several studies reported phenolic compounds diffuse into bacterial cells walls 

66 and interact with cytoplasmatic proteins, affecting Gram positive bacteria and, particularly, Gram 

67 positive cocci (Fasolato et al., 2016; Jayaprakasha et al., 2003; Riazi et al., 2018). 

68 Bacterial fermentation of raw meat is fundamental for dry-fermented sausages production: lactic 

69 acid bacteria (LAB) decrease dry-fermented sausages pH thanks to hexose sugars fermentation to 

70 lactic acid; coagulase-negative cocci (CNC) are fundamental for lipolysis, proteolysis and free 

71 amino acids decomposition (Aquilanti et al., 2016; Cardinali et al., 2018). Thus, it is particularly 

72 important that additives used for dry-fermented sausages production do not alter the overall 

73 microbiota and, in particular, LAB and CNC groups. LAB and CNC species could be indigenous of 

74 food or added as starters; LAB includes many different genera belonging to the order 

75 Lactobacillales: Lactobacillus, Lactococcus, Enterococcus, Oenococcus, Pediococcus, 

76 Streptococcus and Leuconostoc (Makarova et al., 2006). In dry-fermented salami generally 

77 Lactobacillus sakei and Lactobacillus curvatus are predominant within LAB, Staphylococcus 

78 xylosus within CNC.

79 The aim of this work was to evaluate the effects of two different plant extracts mixtures as nitrite 

80 replacement on the prokaryotic community of Cinta Senese pigs dry-fermented sausages. Grape 

81 seed extract, chestnut extract and hydroxytyrosol extracted by olive pomace were chosen in 

82 function of their antimicrobial and antioxidant activity, as well as they are important regional 

83 productions, whose by-products are easily available (Aquilani et al., 2018). Moreover, Cinta Senese 

84 meat, a local breed with PDO, was employed to manufacture the dry-fermented sausages, in order 
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85 to address consumer’s demand for high quality, regional-linked and healthier processed meat 

86 products. 

87

88 2. Materials and Methods

89 2.1. Antioxidant mixtures

90 The natural antioxidants employed in the present studies were provided by Phytolab (Sesto 

91 Fiorentino, Florence, Italy). They consisted of grape seed and chestnut extracts, tocopherol and 

92 hydroxytyrosol (extracted by defatted olive pomace). The manufacturer provided the phenolic 

93 profile, total phenolic content and antiradical scavenging activity (EC50) of each extract (Aquilani 

94 et al., 2018). The grape seed and chestnut extracts were combined with the same amount of 

95 hydroxytyrosol and tocopherol to form two different mixtures; grape seed (GSE) and chestnut 

96 (CHE) mixtures (Aquilani et al., 2018).

97 2.2. Dry-fermented sausages manufacturing

98 In an industrial plant (Azienda Agricola Savigni, Pistoia, Italy), three different types of pork dry-

99 fermented sausages were made. Sausage basis-mixture contained 20% of Cinta Senese backfat, 

100 80% of Cinta Senese pork lean, which were minced and mixed with salt (23 g/kg), sucrose (35 

101 g/kg) and black pepper (0.2 g/kg).  The control batch, according the traditional recipe used by the 

102 manufacturer, was added with thirty ppm of sodium nitrite (E250), (NIT). In the second batch, 10 

103 g/kg of GSE mixture were used to replace sodium nitrite, while 10 g/kg of CHE were added to the 

104 third batch. Sausages were weighed, dried at 28 °C and RH 85% for 4 days and then ripened 21 

105 days (T 13 °C, RH 70%). At the end of ripening, six samples of each type were collected; pH, 

106 colour and processing loss were immediately measured. Samples were vacuum packed and stored at 

107 −80 °C.

108 2.3. Physical parameters and chemical composition

109 Instrumental colour parameters (L*, a* and b*) were determined by a Minolta Chromameter CR-

110 200 (Tokyo, Japan) on cured samples, then Chroma (√(a*2+b*2)) and Hue (tan-1 (b*/a*)) were 
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111 calculated. Similarly, chemical analysis to determine moistur (AOAC, 2012, ref: 950.46), protein 

112 content (AOAC, 2012, ref: 976.05), ash (AOAC, 2012, ref: 920.153) and ether extract (AOAC, 

113 2012, ref: 991.36) were carried out. Fatty acids (FAs) of total lipids (Folch et al., 1957) were 

114 determined using a Varian GC-430 apparatus equipped with a flame ionization detector (FID) (Palo 

115 Alto, CA, USA) as reported by Sirtori et al. (2015). Methyl esters were identified by their retention 

116 time using an analytical standard (FAME Mix, C8-C22 Supelco 18,920-1AMP). Response factors 

117 based on the internal standard (C19:0) were used for quantification and results were expressed as 

118 mg/100g of sample.

119 2.4. Total DNA extraction from dry-fermented sausages

120 Total DNA was extracted using the DNeasy mericon Food Kit (Qiagen, Hilden, Germany) 

121 according to manufacturer instructions. Briefly, dry-fermented sausages samples were homogenized 

122 in a Waring blender three times for 1 min each at high speed with intermittent cooling on ice after 

123 each minute. DNA was extracted from 200 mg of homogenized sample. Extracted DNA was 

124 checked by agarose gel electrophoresis. DNA purity and quantity were measured using a ND-1000 

125 Spectrophotometer (NanoDrop Technologies, Labtech, Ringmer, UK) and standardized to a 

126 concentration of 10 ng/μl.

127 2. 5. Illumina MiSeq sequencing and data processing

128 For each sample, the V3-V4 region of the 16S rRNA gene was amplified using primers Pro341f and 

129 Pro805R (Takahashi et al., 2014), barcodes were added to the forward primer. Amplicons for each 

130 library were purified and mixed in equal proportion. Illumina MiSeq v3 chemistry 300 base paired-

131 end (PE) amplification and sequencing were performed at BMR genomics (Padova, Italy). Primer 

132 sequences were removed using Cutadapt (Martin, 2011). Reads quality was evaluated using 

133 DADA2 (Callahan et al., 2016), reads (R1 and R2) were then trimmed and filtered using the 

134 following parameters: truncLen=c(265,220), maxN=0, maxEE=c(2,2), truncQ=2. Reads were 

135 merged with FLASh v1.2.11 (Magoc and Salzberg, 2011) using the following parameters: -m 20, -
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136 M 280, Phred score default of 33. Sequences shorter than 250 bp were filtered out with Prinseq-lite 

137 (Schmieder and Edwards, 2011). Chimeras were removed using USEARCH 6.1 (Edgar et al., 

138 2011). De novo OTU picking was performed using Swarm (Mahe et al., 2014) within QIIME 1.9.1 

139 (Caporaso et al., 2010) and Silva132 (Yilmaz et al., 2014) as the reference database. Representative 

140 sequences (most abundant) for each OTU were aligned, and an OTU table was constructed using 

141 sequences correctly aligned. Sequences identified as chloroplasts or mitochondria were removed. 

142 OTUs representing less than 0.005% of the total read abundance were discarded (Bokulich et al., 

143 2013). Alpha diversity measures (number of observed OTUs, Chao1 value and Shannon index) 

144 were calculated within QIIME 1.9.1. Statistical analysis including Shapiro-Wilk test for normality, 

145 ANOVA, Kruskal-Wallis group test with false discovery rate (“fdr”) p-value adjustment, Dunn test 

146 and Hellinger transformation were conducted in “R” version 3.5.1 (R Development Core Team, 

147 2011). Permutational multivariate analysis of variance (PERMANOVA) and principal component 

148 analysis were conducted on a Hellinger transformed OTU table using the Dice and Bray-Curtis 

149 indices, with 9999 permutations, within PAST (Hammer et al., 2001). The 16S rRNA gene 

150 amplicon sequence data are available at the National Centre for Biotechnology Information 

151 Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra), SRA accession PRJNA552846.

152

153 3. Results and discussion

154 3.1. Effects on physical and chemical parameters 

155 In the present study, pH scores (Table 1) are in line with those usually reported for natural dry-

156 fermented sausages (between 5.3 and 6.2) (Aquilanti et al. 2016). Sodium nitrite replacement 

157 resulted in significantly lower pH, especially for CHE samples that showed the lowest score. 

158 Likely, the highest relative abundance of Lactobacillaceae in CHE samples, observed by 

159 phylogenetic analysis, had increased meat acidification. Similarly, also Lorenzo et al. (2013), 

160 observed that, at 20 days of ripening, grape seed extract and chestnut extract added sausages had the 
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161 lowest pH if compared to control (without any curing agent) or BHT-added products. Concerning 

162 the colour parameters, Chroma resulted highest in NIT samples, this was expected considering that 

163 it results from the combination of a* and b* parameters. In nitrite-added meat products, nitrite is 

164 reduced to its reactive intermediate compounds, such as NO, which binds to Fe2+ of myoglobin 

165 heme group and forms the nitrosomyoglobin complex (Hammes, 2012). Nitrosomyoglobin is the 

166 main red curing pigment of processed meat products and constitute a central sensory trait. Chemical 

167 composition was only slightly modified by natural antioxidants usage, indeed only ash showed a 

168 significant difference among experimental groups, with GSE samples having the lower content. The 

169 major differences in FAs profile (Table 2) of experimental groups were related to unsaturated fatty 

170 acids, which were lower in GSE samples. Consequently, also PUFA, PUFA n3 and PUFA n6 total 

171 amounts followed the same pattern. Since PUFA double bonds are the preferred substrates for 

172 oxidative reactions (Pateiro et al., 2015), these results suggest a greater extension of lipid oxidation 

173 phenomena in GSE samples, consistent with the greater EC50 of GSE compared to CHE.  

174 3.2. Metagenomic analysis of prokaryotic communities associated with dry-fermented sausages

175 The composition of the bacterial communities associated with dry-fermented sausages treated with 

176 nitrite or with two different natural extracts were analysed. Illumina MiSeq v3 sequencing, which 

177 was performed on the variable region V3-V4 of 16S rDNA, produced a total of 1,266,646 

178 sequences (ranging from around 50,270 to 106,165 sequences per library). Rarefaction curves 

179 showed a high sequencing coverage for all the samples (Fig. S1), allowing the identification of 131 

180 OTUs with a range from 81 to 123 per sample (Fig. S2). The α-diversity was calculated using the 

181 number of OTUs observed, Chao1 value and Shannon diversity index. ANOVA did not show 

182 significant differences for α-diversity values in the three groups (Fig. S2).

183 Principal component analysis of microbial community profiles showed differences between the 

184 three groups in terms of OTUs presence/absence (Dice index) and relative abundance (Bray-Curtis 

185 index) (Fig. 1A and B; Table S1). With Dice index the three groups are clearly distinct, while with 

186 Bray-Curtis index the separation was more evident between CHE group and the other two groups 
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187 (Fig. 1B). Differences with both indices were statistically evaluated using PERMANOVA, which 

188 confirmed a clear separation between the three groups (Table S1).

189 3.3. Phylogenetic analysis of identified OTUs 

190 Most of the sequences (99,53%) were identified at the genus level. The microbial communities 

191 associated with dry-fermented sausages were formed by at least 32 genera subdivided in 18 families 

192 (Fig. 1C), 10 orders, 4 classes and 4 different phyla (3 bacterial and 1 archaeal phylum). Bacterial 

193 communities were mostly represented by Firmicutes (96.2%) and in particular by two genera: 

194 Staphylococcus and Lactobacillus accounting for the 91.6% of the total prokaryotic community 

195 (63% and 28.6% respectively). OTUs denovo0 and denovo7 were the most represented OTUs 

196 (corresponding to 59.2 and 22.8% of total community respectively). Phylogenetic trees were 

197 constructed to ameliorate the classification of denovo0 and denovo7 OTUs (Fig. S3A and B). OTU 

198 denovo0 falls within Staphylococcus xylosus while denovo7 within Lactobacillus sakei (Fig. S3A 

199 and B). Lactobacillus sakei and Staphylococcus xylosus constituted the major part of LAB and CNC 

200 respectively and are commonly found in dry-fermented sausages manufactured in the 

201 Mediterranean area (Aquilanti et al., 2016). LAB and CNC are particularly important in natural 

202 fermented sausages as they drive the fermentation processes (Janssens et al., 2012). Lactic acid 

203 fermentation leads to meat acidification and protein coagulation (Aquilanti et al., 2016; Leroy and 

204 De Vuyst, 2005). CNS bacteria are required for the development of aroma thanks to their amino 

205 acid and lipid metabolism (Ravyts et al., 2009). Staphylococcaceae was the most represented family 

206 with values ranging from 58% to 67%; a high amount of Staphylococcaceae was not unexpected, 

207 indeed depending on the manufacturer has been already observed that the dominant group in dry 

208 fermented salami prokaryotic community could belong to Staphylococcaceae or Lactobacillaceae 

209 (Polka et al., 2015).

210 Within the order Lactobacillalles, five families showed significant variations among different 

211 treatments: Carnobacteriaceae, Enterococcaceae, Lactobacillaceae, Leuconostocaceae and 
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212 Streptococcaceae (Fig. 1C). For Lactobacillaceae the highest relative abundance was found in CHE 

213 sausages (37%), the lowest in GSE sausages (21%). For the other 4 LAB families, differences were 

214 observed also at genus level: Carnobacterium (Carnobacteriaceae; Fig. 2A), Enterococcus 

215 (Enterococcaceae; Fig. 2B), Lactococcus (Streptococcaceae; Fig. 2C), Leuconostoc and Weissella 

216 (Leuconostocaceae; Fig. 2D and E). No sequences belonging to Enterococcus genus were found in 

217 NIT sausages, in sausages treated with chestnut extracts (CHE) a small presence of Enterococcus 

218 was observed (0.001%), while GSE sausages contained the higher levels (0.02%). The presence of 

219 enterococci in raw meat could be due to intestinal or environmental colonisation. Indeed, these 

220 bacteria are able to survive and grow during fermentation and in absence of a competitive starter 

221 culture. In traditionally manufactured dry-fermented sausages, it is more likely to observe an 

222 increase of this genus (Giraffa, 2002; Hugas et al., 2003). Moreover, their fermentation activity may 

223 contribute to enrich dry-fermented sausages sensory traits (Hanchi et al., 2018). Enterococcus 

224 belongs to LAB, but its presence in dry-fermented sausages could be considered unacceptable 

225 (Holley et al., 1988). Enterococcus species are not among those bacteria classified as generally 

226 recognized as safe (GRAS) (Huys et al., 2013; Ogier and Serror, 2008) or recommended for the 

227 quality presumption of safety (QPS) list (Hazards et al., 2017). However, in the past years 

228 commensal and pathogenic enterococci strains have been clearly differentiated (Bonacina et al., 

229 2017). Furthermore, several enterococci strains produce bacteriocins and other antimicrobial 

230 compounds, which may help in food preservation (Yang et al., 2014). Similarly, to Enterococcus, a 

231 higher relative abundance of Lactococcus and Weissella genera were observed in GSE dry-

232 fermented sausages (Fig. 2H and I). In contrast Carnobacterium and Leuconostoc relative 

233 abundance was higher in NIT dry-fermented sausages (Fig. 2E and G). These bacteria are all LAB, 

234 Weissella and Leuconostoc are both obligate heterofermative Leuconostocaceae. The increased 

235 amount of different LAB in GSE and NIT could be due to the lower relative abundance of 

236 Lactobacillaceae in these two groups. The presence of these taxa is limited accounting between 

237 0.06% (Leuconostoc) to 0.37% (Lactococcus). Weissella strains have been used for 
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238 biotechnological applications; anyway, it would be preferable to keep low their presence because 

239 some strains may act as opportunistic pathogens (Abriouel et al., 2015). Weissella sequences were 

240 classified in two species: W. cibaria (0.007%) and W. hellenica (0.12%), only W. hellenica showed 

241 significant variation in its relative abundance (data not shown). W. hellenica has probiotic activity 

242 thanks to the production of bacteriocin (Abriouel et al., 2015); e.g. strain D1501 is able to inhibit 

243 the growth of Kurthia gibsonii, Staphylococcus aureus and Escherichia coli and enhance safety and 

244 shelf-life of foods like tofu (Chen et al., 2014).

245 In 15 samples was observed the presence (below 0.01%) of Archaea sequences, all belonging to the 

246 genus Halorubrum (Fig. 3A). This is a red-pigmented Archaea able to thrive with high salt 

247 concentrations and it may be found in salt-fermented or salt-preserved food (Gibtan et al., 2018). 

248 Three different genera within Gammaproteobacteria were different: Cobetia, Photobacterium and 

249 Pluralibacter (Fig. 3C, D and E). No sequences belonging to Pluralibacter (Enterobacteriaceae) 

250 were detected in NIT samples while a low relative abundance of was observed in CHE and GSE 

251 samples (0.001 and 0.006% respectively). A higher relative abundance of the genus Photobacterium 

252 was encounter in NIT dry-fermented sausages (Fig. 2F). Photobacterium belongs to the 

253 Vibrionaceae family (Fig. 1C), several species within this genus are psychrophilic marine bacteria 

254 but could be also related with meat spoilage: Photobacterium carnosum, Photobacterium 

255 phosphoreum and Photobacterium iliopiscarium have been found in modified-atmosphere packages 

256 (MAP) unspoiled and spoiled meat (Hilgarth et al., 2018). In particular, high levels of P. 

257 phosphoreum were found associated to spoiled MAP raw pork meat (Nieminen et al., 2016). In dry-

258 fermented sausages treated with natural extracts the relative abundance of Photobacterium genus 

259 was more than thirty times lower than in NIT ones, therefore the use of these additives may be 

260 interesting to reduce the potential spoilage bacteria amount. Among bacteria that may spoil dry-

261 fermented sausages there is Brochotrix thermosphacta, a Gram-positive fermentative bacterium. It 

262 belongs to Listeriaceae family and it’s phylogenetically close to Listeria monocytogenes 
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263 (Stanborough et al., 2017). The presence of Brochotrix was observed in all the three treatments 

264 ranging from 2.96% (NIT) to 3.45% (GSE), but no significant differences were found. 

265

266 4. Conclusion

267 Two different natural extracts (grape seed and chestnut extracts) have been used in place of nitrites 

268 in dry-fermented natural sausages. Nitrite-free products showed lower pH and differences in 

269 Chroma, being less red and darker than nitrite-added samples. Moreover, fatty acids profile 

270 suggested that GSE extract had a lower antioxidant potential than sodium nitrite. Lactobacillaceae 

271 relative abundance was significantly higher in CHE than NIT and GSE, agreeing with the lower pH 

272 levels observed in these samples. Although the three groups showed significant differences, natural 

273 extract did not drastically alter the prokaryotic community and the other chemical/physical 

274 parameters indicating that these two extracts may be used as replacement for nitrites in dry-

275 fermented sausages.

276
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429 Tables
430
431 Table 1. Physical and chemical parameter of dry-fermented sausages with grape seed extract (GSE) 

432 chestnut extract (CHE) or sodium nitrite (NIT). Different letters (a, b, c) within the same row 

433 indicate significant differences between treatments (p < 0.05).

GSE CHE NIT RMSEc Pd

Curing loss (%) 40.09 43.57 45.73 6.36 0.3283

pH 5.74 b 5.58 c 5.85 a 0.07 <0.0001

Chroma 15.45 b 14.70 b 17.37 a 2.31 0.0005

Hue 15.55 15.43 17.20 4.219 0.2743

Moisture 30.04 30.712 29.376 1.78 0.4486

Protein (g/100 g dm*) 45.32 46.26 46.26 1.09 0.2515

Fat (g/100 g dm) 45.97 44.93 44.73 1.00 0.1040

Ash (g/100 g dm) 7.83 b 8.25 a 8.24 a 0.27 0.0227

434 * dry matter
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445 Table 2. Fatty acids profile (mg/100g) of dry-fermented sausages added with grape seed extract 

446 (GSE) chestnut extract (CHE) or sodium nitrite (NIT). Different letters (a, b, c) within the same row 

447 indicate significant differences between treatments (p < 0.05).

GSE CHE NIT RMSEc Pd

C 16:0 4.959 4.919 5.131 0.08 0.655

C 16:1 0.400 0.369 0.392 0.03 0.147

C 17:0 0.067 c 0.082 b 0.093 a 0.001 0.0001

C 17:1 0.05 b 0.056 a 0.06 a 0.005 0.0007

C 18:0 2.91 b 3.08 ab 3.24 a 0.264 0.125

C 18:1 n9 8.227 8.209 8.420 0.669 0.834

C 18:1 n7 0.615 0.571 0.589 0.043 0.242

C 18:2 n6 2.94 b 3.36 a 3.62 a 0.317 0.008

C 18:3 n3 0.17 c 0.23 b 0.27 a 0.22 <0.0001

C 20:0 0.04 0.044 0.046 0.005 0.488

C 20:1 0.009 a 0.008 ab 0.007 b 0.001 0.040

C 20:2 n6 0.139 0.158 0.154 0.017 0.137

C 20:3 n6 0.024 0.0241 0.025 0.003 0.523

C 20:3 n3 0.027 b 0.035 a 0.035 a 0.003 0.001

C 20:4 n6 0.101 0.102 0.104 0.006 0.791

C 22:4 n6 0.036 a 0.029 b 0.028 b 0.003 0.0001

C 22:5 n3 0.018 b 0.018 b 0.026 a 0.006 0.043

SFA 8.27 8.42 8.83 0.716 0.404

MUFA 9.52 9.44 9.69 0.763 0.851

PUFA n3 0.218 c 0.292 b 0.332 a 0.03 <0.0001

PUFA n6 3.245 b 3.672 a 3.927 a 0.341 0.011

PUFA 3.469 b 3.967 a 4.268 a 0.366 0.006
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449 Figure legends

450 Figure 1. Dry-fermented sausages prokaryotic community. Prokaryotic communities are labelled 

451 respective to the treatment used (GSE = grape seed extract; CHE = chestnut extract; NIT = nitrite). 

452 A) ß-diversity, Principal coordinates analysis (PCoA) plot using the Dice index. B) ß-diversity, 

453 PCoA plot using the Bray-Curtis index. C). Prokaryotic community composition of dry-fermented 

454 sausages at family level. Stars indicate significant differences between treatments (Kruskal-Wallis, 

455 p (FDR) < 0.05).

456 Figure 2. Effect of the different treatments on lactic acid bacteria at genus level. Each bar is 

457 labelled respective to the treatment used (GSE = grape seed extract; CHE = chestnut extract; NIT = 

458 nitrite). A) Carnobacterium, B) Enterococcus, C) Lactococcus, D) Leuconostoc and E) Weissella 

459 (Kruskal-Wallis, p (FDR) < 0.05). Means sharing the same letter are not significantly different 

460 (Dunn test).

461 Figure 3. Prokaryotic genera influenced by treatment. Each bar is labelled respective to the 

462 treatment used (GSE = grape seed extract; CHE = chestnut extract; NIT = nitrite). A) Halorubrum, 

463 B) Bacillus, C) Cobetia, D) Photobacterium and E) Pluralibacter (Kruskal-Wallis, p (FDR) < 

464 0.05). Means sharing the same letter are not significantly different (Dunn test).
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Table S1. QIIME taxa table of salami microbiota composition for each sample at phylum 

level.

Table S2. QIIME taxa table of salami microbiota composition for each sample at class level.

Table S3. QIIME taxa table of salami microbiota composition for each sample at order level.

Table S4. QIIME taxa table of salami microbiota composition for each sample at family 

level.

Table S5. QIIME taxa table of salami microbiota composition for each sample at genus level.

Figure S1. Sample-based rarefaction curves representing the number of observed OTUs at 

different sequencing depths (each point is the average of 10 iterations). Salami microbiota are 

labelled respective to the treatment used (GSE = grape seed extract; CHE = chestnut extract; 

NIT = nitrite).

Figure S2. Box-plots of bacterial α-diversity based on: A) Observed OTUs, B) Chao 1 value 

and C) Shannon index. Each box is labelled respect to the salami microbiota treatment used 

(GSE = grape seed extract; CHE = chestnut extract; NIT = nitrite). 

Figure S3. Evolutionary relationships of the two most abundant OTUs. The evolutionary 

history was inferred using the Neighbor-Joining method. The percentage of replicate trees in 

which the associated taxa clustered together in the bootstrap test (10000 replicates) are shown 

next to the branches. The evolutionary distances were computed using the Maximum 

Composite Likelihood method. A) denovo0. B) denovo7.



Supporting methods 

Evolutionary relationships of taxa

The evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 

1987). Bootstrap test (10000 replicates) was performed (Felsenstein, 1985). The evolutionary 

distances were computed using the Maximum Composite Likelihood method (Tamura et al., 

2004) and are in the units of the number of base substitutions per site. All ambiguous 

positions were removed for each sequence pair (pairwise deletion option). Evolutionary 

analyses were conducted in MEGA X (Kumar et al., 2018).
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Figure S1. Sample-based rarefaction curves representing the number of observed OTUs at 

different sequencing depths (each point is the average of 10 iterations). Salami microbiota are 

labelled respective to the treatment used (GSE = grape seed extract; CHE = chestnut extract; 

NIT = nitrite).



Figure S2. Box-plots of bacterial α-diversity based on: A) Observed OTUs, B) Chao 1 value 

and C) Shannon index. Each box is labelled respect to the salami microbiota treatment used 

(GSE = grape seed extract; CHE = chestnut extract; NIT = nitrite). 





Figure S3. Evolutionary relationships of the two most abundant OTUs. The evolutionary 

history was inferred using the Neighbor-Joining method. The percentage of replicate trees in 

which the associated taxa clustered together in the bootstrap test (10000 replicates) are shown 

next to the branches. The evolutionary distances were computed using the Maximum 

Composite Likelihood method. A) denovo0 B) denovo7.


