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We present a comprehensive numerical study of the phase behavior and dynamics of a three-
dimensional active dumbbell system with attractive interactions. We demonstrate that attraction
is essential for the system to exhibit nontrivial phases. We construct a detailed phase diagram by
exploring the effects of the system’s activity, density, and attraction strength. We identify several
distinct phases, including a disordered, a gel, and a completely phase-separated phase. Additionally,
we discover a novel dynamical phase, that we name percolating network, which is characterized by
the presence of a spanning network of connected dumbbells. In the phase-separated phase we
characterize numerically and describe analytically the helical motion of the dense cluster.

I. INTRODUCTION

Active systems are a striking class of soft matter which
employs internal energy stored in some kind of reservoir
and converts it into motion [1–4]. Active systems greatly
vary in their extension, ranging from macroscopic to mi-
croscopic assemblies of active constituents, and a mul-
titude of different realizations. Focusing on the micro-
scopic world, active systems can either have synthetic
origin (e.g. Janus particles [5–7]) or biological origin. In
this latter case, cytoskeletal suspensions [8] and cellular
cultures [9–12] are examples of in vitro systems which are
often employed to study active behaviors in a controlled
environment, but more complex living organisms, such as
developing embryos or living tissues [13–15] have recently
been considered for their promising implications in un-
derstanding a variety of different biological phenomena
from morphogenesis to cancer progression and spreading
of infections in living organisms. Regardless of their par-
ticular realization, active systems can exploit energy to
interact with the surrounding environment and perform
autonomous motion, leading to a plethora of collective
behaviors.

In the past two decades much effort has been spent to
identify the physical rules underlying the behavior of liv-
ing and active systems [1, 16–18], with important reper-
cussions on our understanding of their non-equilibrium
dynamics. Among others, bacteria have gained the atten-
tion of the physics community as they represent a simple
natural realization of self-propelled particles, by virtue of
their biological simplicity and limited ability in interact-
ing with both the environment and other units. There-
fore, bacterial systems provide an elementary yet relevant
example of how the dynamics of active constituents may
lead to self-assembly [19–21]. Indeed bacteria exhibit
noteworthy chemotactic properties which allow them to
respond to external stimuli such as variations of temper-
ature, nutrient availability, oxygen concentration, etc. to
develop different kinds of colonies, ranging from biofilms
to fluidic suspensions, often characterized by the emer-

gence of elaborate patterns, even in absence of guidance
and only because of the uncoordinated evolution of the
separate units [22].

The chemotactic properties of bacteria are often ex-
ploited in experiments to trigger a particular response.
For instance, most bacteria preferentially reproduce at
room temperature –process during which they mostly re-
main motionless [23, 24]– while at higher temperatures
they can either develop biofilms if the growing substrate
is dry or become motile by growing flagella –a proteic pro-
trusion which is used by some bacterial species to swarm
and swim in wet environments. In this latter case, oxygen
availability or light intensity determines the dynamical
response of the system and can be used in experiments
as a control parameter to tune the typical speed of mi-
gration. When this is large enough, dense suspensions of
flagellate bacteria in a fluidic environment arrange in a
liquid crystalline fashion [22] and develop a chaotic flow-
ing state characterized by whirling patterns which resem-
ble those observed in an isotropic fluid flowing at large
Reynolds numbers –a feature that earned this dynamical
state the title of bacterial (or active) turbulence [25–30].

Inspired by this huge variety of possible states, many
models have been advanced to capture the dynamics
of bacterial suspensions. They range from particle (or
molecular) models [1, 31, 32] –where each unit in the
system evolves according to a given equation of motion
and interactions– to continuous models [33–40] –where
the status of the system is described in terms of a few
continuous fields capturing only the slowly-varying hy-
drodynamic features of the system (local group velocity,
polarization, density, etc.).

In the following we will take the former molecular ap-
proach and describe every constituent as a dumbbell –
namely two joint spheres linked with a rigid spring – au-
tonomously moving in a viscous medium and subject to
thermal fluctuations. This particular realization falls in
the wide class of the so-called self-propelled active Brow-
nian constituents. Many recent studies have focused
on different elements ranging from disks [18, 41–44] to
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rods and ellipsoids [45, 46], and contributed to explicate
the effects of non-equilibrium in phenomena like motil-
ity induced phase separation (MIPS) [18] and arrested
phase separation [47], providing significant insights on
the physics of collective effects of bacterial suspensions
and other similar active systems. Interestingly enough, it
was repeatedly suggested that active systems could hinge
on a minimal toolkit of physical mechanisms, indepen-
dently of the particular realization, to achieve a specific
dynamical response. However, most research has focused
on two-dimensional systems, while much less is known on
three-dimensional realizations, relevant for a full charac-
terization of real biological systems, as these are most
often subject to a full 3D dynamics.
To better outline the scope of our study, we find it

useful to summarize some important results obtained in
systems of active Brownian particles (ABP) both in 2D
and 3D, before proceeding with the presentation of our
findings. In Sec. IA, we provide a brief summary of pre-
vious studies, regarding the properties of MIPS at vary-
ing the system’s dimensionality and the particles’ inter-
action. Far from being a complete review on ABP, we
suggest the interested reader to refer to Ref. [18]. Next,
in Sec. I B we motivate our study and summarize our
results.

A. Brief summary of previous studies

Most literature on active Brownian systems focused
on two-dimensional realizations, both for their biologi-
cal relevance and for the important implications on the
melting mechanism in 2D [48]. In recent years, there
has been significant progress in understanding the non-
equilibrium behavior of active Brownian particles, with
much attention on disks and dumbbells. Both types of
systems exhibit segregation into dense and dilute phases
in absence of attractive interactions, solely due to persis-
tence in motion. This segregation phenomenon, known
in the literature as motility-induced phase separation (or
shortly MIPS), consists of the interplay between two pro-
cesses. First, scattering of active particles results into
a local drop of velocity due to mutual repulsion; sec-
ond, particles tend to aggregate into dense clusters due
to their persistence. A positive feedback between these
two processes drives nucleation and growth of clusters
and ultimately a macroscopic phase separation. Clus-
ters in turn displace and also aggregate [43, 49]. More
specifically, for dumbbells a coexistence region between
dense (hexatic) and dilute (liquid) phases, found in the
absence of activity, extends continuously to high values
of activity [50]. For disks, instead, between the hexatic-
liquid coexistence and MIPS, occurring at low and high
activity, respectively, there is a region at intermediate
activity where no coexistence between different phases
is found [51]. Other special features of the active disk
systems include micro-separation of hexatic domains or
the formation of cavitation bubbles in the interior of the

dense aggregates [42, 50, 51] which take different form in
active diatomic systems [43, 52–55].
While the panorama is pretty much understood for 2D

realizations of active systems, much less is known about
the phase behaviour of these same systems in 3D [56–
62]. Stenhammar et al. [56] first observed that the MIPS
transition is significantly inhibited in 3D for active Brow-
nian spheres in absence of any attractive interactions and
shifted towards higher activities, due to reduced persis-
tence in 3D space. On the other hand, van Damme et
al. [58] pointed out that MIPS is completely suppressed
for spherocylinders of aspect ratio 2 in 3D. The authors
argued that MIPS suppression is ultimately due to pas-
sive torques originating from anisotropic steric repulsion
between the rods. This makes rods quickly reorient upon
binary collisions or encounters with a cluster, preventing
accumulation and phase separation.
Three-dimensional systems of active spherical parti-

cles [63] and dumbbells [64] in presence of attractive in-
teractions have been studied numerically with the pur-
pose of addressing the experimental realization of bac-
terial systems in interaction with non-absorbing poly-
mers [64, 65]. In this case, demixing into coexisting
phases is tamed by the aggregation strength, leading to
the formation of highly dynamical structures as rotat-
ing clusters [64]. However, activity tends to suppress
aggregation, consistently with experimental observations
of suspensions of motile bacteria. The non-equilibrium
nature of the phase coexistence is also illustrated by the
formation of new dynamical states, such as percolating
networks caused by the interplay between attraction and
motility [66].
Furthermore, the phase behavior of 3D passive attrac-

tive atomic and molecular systems is very rich in itself
and is not fully understood yet [67]. This is because the
way in which many-body systems interact is highly influ-
enced by the geometry of the elementary constituents and
different macroscopic behaviors are observed in systems
with different shapes. The interest in these systems has
grown over the last 15 years or so, thanks to the possibil-
ity of engineering colloids with different shapes, sphere’s
diameter and separation length, and tuning particle-
particle interactions [68], paving the way towards the de-
sign of colloidal crystals with useful optical properties.
Indeed, dumbbells model diatomic molecules and show
interesting crystal structures at equilibrium [69–72]. In
the context of self-assembly studies [73], patchy dumb-
bells have been the focus of much attention [74–79]. In
the limit of weak activity, the 3D model that we will
consider in this article is relevant to the description and
characterization of these very interesting passive systems.

B. Goal and article structure

In this introduction, we discussed how clustering of
bacterial suspensions can be explained in terms of simple
physical mechanisms when modelled as systems of active
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Brownian constituents. Importantly, most of these re-
sults and observations only hold in two-dimensions and
cannot be invoked to explain the coarsening of bacterial
aggregates in three-dimensions. However, collective ef-
fects in bacterial suspensions are also observed in 3D.
Our goal in this paper is to clarify the relevance of

motility in the dynamics of three-dimensional suspen-
sions by performing a systematic analysis of the phase
behavior of a system of propelled attractive dumbbells.

The article is structured as follows. In Section II we
will present the model for active Brownian dumbbells.
The discrete mesoscopic approach here implemented al-
lows us to retain only the main features of bacterial sus-
pension (local orientation, attractive interactions) and
to wipe out more system-dependent features. Section III
is devoted to the analysis of the phase behavior of the
system in a three-dimensional unconfined geometry. We
will identify four phases (gel, disordered, phase-separated
and percolating network) while varying two control pa-
rameters, namely the Péclet number Pe measuring the
strength of the activity with respect to the thermal fluc-
tuations and the total packing fraction ϕ. The effect of
the attraction strength will also be considered. Next, in
Sec. IV we will focus on the description of the motion
of a single isolated cluster in the phase-separated phase.
We close the paper with some conclusions in Sec. V.

II. MODEL AND NUMERICAL METHODS

A. Model

We simulate a system of N dumbbells immersed in a
three dimensional space. Each dumbbell is a dimer com-
posed of two spherical beads separated by a distance σ,
and each of mass m. The beads are rigidly connected
and their center-to-center distance is kept fixed at dis-
tance σ. Each bead l evolves in time according to the
Langevin equation

mr̈l = −γṙl + factl −∇lU + ξl , (1)

where l = 1, .., 2N . γ is the damping coefficient and U
is the total potential energy. The term ξl is a Gaussian
white noise, with zero average and variance fixed by the
fluctuation-dissipation theorem as

⟨ξlα(t)⟩ = 0 , (2)

⟨ξlα(t1)ξpβ(t2)⟩ = 2kBTγδlpδαβδ(t1 − t2) , (3)

where α, β = 1, 2, 3 label the spatial coordinates, T is the
temperature of the equilibrium bath and kB the Boltz-
mann constant.

The self-propulsion is represented by the active force
factl. This force has the same fixed modulus fact for all
spheres. It points from the tail to the head monomer
in the dumbbell and acts along the line that joins the
centers of the two beads. The tail and head identity of
the beads in a molecule are attributed randomly at the
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FIG. 1. Simulation set up. Mie potential shown for four
combinations of the cutoff length, rc, and of the attraction
strength, ϵ. These values are reported in the key in units
of length, σ, and of energy, ϵ0. All curves are shifted so that
UMie(rc) = 0. In all cases n = 32. (b) A snapshot of an active
dumbbell system with pure repulsive interbead interactions in
a 3D periodic box. ϕ = 0.01 and Pe = 150. Without attrac-
tion between the dumbbells MIPS is absent even at higher
densities and activity.

beginning of the simulation and they are kept fixed along
the numerical experiment.
Beads belonging to different dumbbells interact

through the Mie short-range potential:

UMie(r) = 4ϵϵ0

[(σMie

r

)2n

−
(σMie

r

)n
]
θ(rc − r)

−4ϵϵ0

[(
σMie

rc

)2n

−
(
σMie

rc

)n
]
,

(4)

with n = 32, σMie = 2−1/nσ, r the distance between the
concerned beads, rc the potential cutoff, θ(r) the Heav-
iside step function and ϵ0 the energy unit. The second
term on the right-hand side represents a shift in the po-
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tential such that UMie(rc) = 0. The time unit is defined

as τ =
√

mσ2/ϵ0. The variation of the potential UMie

with the parameter ϵ controlling the potential energy
scale is shown in Fig. 1(a). This potential has a pro-
nounced minimum at rmin = 21/nσMie = σ and it allows
colloids to behave similarly to hard spheres at distances
shorter than σ [50, 51], while it acts attractively at longer
distances. Unless otherwise stated, we use rc = 1.5σ.
The system can be characterized through the following

dimensionless numbers. The relevance of active injection
with respect to thermal fluctuations is captured by the
Péclet number

Pe =
2factσ

kBT
, (5)

which is the dimensionless ratio between the advective
transport rate and the diffusive transport rate (the con-
stant two relates to the total active force on the dumbbell,
which is twice fact). Moreover, the aggregation capabil-
ity of the system can be captured by measuring the ratio
between the strength of the attractive force and the ac-
tive force [63]

Pagg =
ϵ

factσ
. (6)

Finally, the global density or packing fraction is quanti-
fied by the volume fraction

ϕ = N
πσ3

3V
, (7)

with V the volume of the box where the dumbbells are
placed and N the total number of dumbbells, that is,
twice the number of spherical beads. Although in the
following we will mostly consider relatively low packing
fractions, ϕ ≤ 0.45, it is worth mentioning that the close-
packing value ϕcp ≃ 0.74 and the random close packing
value ϕrcp ≃ 0.64 for hard spheres in 3D. Close packing
is achieved by the face center cubic and the hexagonal
close packing arrangements. In both cases each sphere
touches 12 neighboring spheres [80].

From now on we set the units of length, energy and
mass, respectively σ, ϵ0 and m, to 1.

1. Numerical details

The evolution equations are integrated using the
velocity-Verlet algorithm with the open-source code
LAMMPS [81]. Both beads of each dumbbell are con-
strained at fixed distance via the SHAKE algorithm,
which applies at each timestep an additional force so that
the bond length remains constant at the next iteration
step [82]. The integration timestep is δt = 0.005. The
dumbbells move in a cubic box with fully periodic bound-
ary conditions.

We use as attraction strengths ϵ = 0.3, though we
have also explored cases with ϵ = 0.2 and ϵ = 0.4. We

set kBT = 0.05 and γ = 10.0. The latter choice ensures
that, although we are considering the inertial contribu-
tion in Eq. (1), the dynamics is over-damped over rela-
tively short timescales of the order of m/γ ∼ 0.1.
Simulations are performed fixing N = 4096 and vary-

ing the box size to match the target volume fraction
ϕ. Densities are varied between 0.001 to 0.45, while the
Péclet number Pe is varied between 0 and 200. Simula-
tions are started from dumbbells placed randomly in the
box, and evolve until stationary conditions are reached.
This typically occurs after 105 time units. Afterwards,
systems are simulated typically for 5·105 time units in or-
der to collect data. Stationary conditions are checked by
looking that the probability density distribution does not
vary looking at different times during simulation. Note
that in the case of the gel phase described in Section III
the system is in an arrested state. While we observe
slight changes in the potential energy as a function of
time, due to small rearrangements of particles inside the
gel branches, the density distribution is substantially sta-
tionary. We do however observe that the thickening of
branches is slightly faster increasing Pe.
We apply the DBSCAN algorithm for cluster identi-

fication [41, 42, 83]. DBSCAN is a density-based clus-
tering algorithm that can identify clusters of arbitrary
shape and size, grouping together points that are closely
packed and marking as outliers points that lie alone in
low-density regions. DBSCAN works with two parame-
ters: R and nmin. R specifies the radius of a neighbor-
hood around a point, and nmin specifies the minimum
number of points required to form a dense region. A
point is classified as a core point if there are at least
nmin other points within R distance from it. A point
is classified as a border point if there are less than nmin

points within R distance from it, but is within R dis-
tance of a core point. A point is classified as a noise
point if it is neither a core nor a border point. In our
case, we choose R = 1.5σ and nmin = 12, based on the
preferred structures at close packing. Then, DBSCAN
assigns each core point to a cluster, along with all the
points that are density-reachable from it (i.e., there is a
path of core points connecting them). Border points are
assigned to the cluster of their nearest core point, and
noise points are left unassigned. Note that changes in
the parameters can affect the identification of clusters.
For instance, increasing the radius to values larger than
2, or decreasing n leads to the incorrect identification of
neighbouring clusters as the same one. Instead, decreas-
ing the radius below 1 or increasing the required number
of neighbours inhibit the identification of the clusters.
We visually verified that the assigned clusters are identi-
fied correctly with this choice of parameters.

III. PHASE BEHAVIOUR

Before entering into the heart of our study, we con-
firmed that there is no stable MIPS [61] for purely repul-
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sive active dumbbells. The condition for purely repulsive
dumbbells is achieved by setting the cut-off lengthscale
rc = 1, so that only the repulsive core in the Mie potential
is preserved (blue curve in Fig. 1(a)). A typical config-
uration of the steady state is shown in Fig. 1(b), clearly
demonstrating the absence of particle aggregation.

We start by presenting the phase diagram obtained by
scanning various values of the packing fraction ϕ and the
Péclet number Pe. In Fig. 2, snapshots are presented
for different combinations of these two parameters. We
find that the system exhibits a variety of diverse phases.
We start by discussing them at a pictorial level and we
later give a quantitative characterization by studying the
distribution of local densities, the distribution of cluster
sizes, and the dynamics.

A. The structures

We commence our analysis by setting Pe = 0 and
examining the structures formed at long times for the
global densities ϕ = 0.05, 0.1, 0.2, 0.3, as shown in the
first row of Fig. 2. In the passive limit the dumbbells
aggregate in a gel phase, in which particles form a rather
static percolating network. This behavior, called gela-
tion [47, 67, 84–86], is due to a rapid cooling of an ini-
tially disordered conformation which in conjunction with
the dumbbells’ anisotropy and the short-range attraction
induces the formation of such metastable state. The sta-
ble state would be instead phase-separated – a configu-
ration which, nonetheless, cannot be reached since the
thermal energy is insufficient for the dumbbells to rear-
range into a single compact cluster. As a matter of fact,
rigid dumbbells interacting with a square-well potential
undergo a gas-liquid phase separation [75, 76]

In the second row of Fig. 2 we consider a higher ac-
tivity Pe = 50, while maintaining the same densities as
in the first row. The dumbbells now aggregate to form a
single cluster at any density. We will refer to this state
as phase-separated. The resulting cluster exhibits both
translational and rotational persistent motion, which we
will characterize in detail in Sec. IV. Remarkably, an in-
crease in Pe induces the dumbbells to reorganize, destroy-
ing the gel network and forming a single cluster, thanks
to the activity that acts as an additional source of noise.

When the activity is further increased to Pe = 100
(third row), an interesting effect is observed upon varying
the density. Specifically, at densities ϕ = 0.05 (i) and
ϕ = 0.1 (j), we still find phase separation. However, at
higher densities ϕ = 0.2 (k) and ϕ = 0.3 (l), the system
becomes more disordered, with small clusters that do not
grow in size over time. These clusters connect to each
other, forming a phase that is similar to the gel observed
at vanishing activity but is more dynamic in nature, with
the network connections constantly forming and breaking
throughout the simulation (see SM Movie 1) [87]. This
phase will be referred to as percolating phase, following
the nomenclature of Ref. [66] where a similar behavior

was found for a system of self-propelled Lennard-Jones
spheres.
Finally, at Pe = 150 (fourth row), we notice that at

low densities the activity causes the system to become
fully disordered (Fig. 2(m,n)). In this case, the activ-
ity is strong enough to overcome the aggregation force,
leading to the cluster’s breakup. Conversely, at higher
densities, (o) and (p), we observe again the formation of
a percolating network.
Despite the presence of attraction, we have observed

four phases occurring in distinct ways. Such findings sug-
gest the existence of a complex phase diagram, which we
will now proceed to characterize.

B. The local densities

First of all, we reckon that there are no isolated dumb-
bells once the steady state is reached. In order to identify
the different phases, we developed a method involving
the construction of a Voronoi tessellation [88]. Such a
tessellation partitions the simulation box into a set of
regions –the Voronoi cells– surrounding each bead such
that all points within each cell are closer to the pertain-
ing bead than any other beads. By computing the local
packing fraction ϕi within each region, defined as the ra-
tio between a single bead’s volume and its Voronoi cell
volume, we obtain valuable information about the local
packing and structure of the system. In fact, this quan-
tity expresses how much free space the bead has and thus
whether it is free, or located in a cluster.
In Fig. 3, we present the probability distributions of the

local density ϕi in the four distinct phases identified in
the study (the global density and Pe values are specified
in the caption). In each phase the distribution has unique
characteristics which can be used as a fingerprint of each
phase to classify different configurations.
In the gel phase, the distribution has three well-defined

peaks, one at low and two at high density. The low den-
sity peak is due to the beads placed on the border of
the gel; these beads are located inside very large Voronoi
cells and hence return a very low ϕi. Instead, the high
density peaks are due to beads inside the dense regions of
the gel. One is centered around the close packing value
ϕcp ∼ 0.74, while the other is at a value in between the
random close packing ϕrcp ∼ 0.64 and ϕcp ∼ 0.74. We
note that for these parameters the low density peak car-
ries more weight than each of the two high density ones.
This feature also holds for other values of the parameters
corresponding to a gel network.
In the phase-separated systems, the low density peak

also corresponds to spheres which are on the single clus-
ter surface. At high local densities, there is a double
peak structure with one of the peaks sitting on the close
packing density and the other one at a slightly lower
value, very similar to what we found in the gel. There
is, though, an important difference with the gel data,
which resides on the height of these peaks: in the phase-
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FIG. 2. Phase behavior of attractive active dumbbells. Snapshots of the dumbbells’ system for different global densities
ϕ and Péclet numbers Pe. The attraction ϵ = 0.3 for all cases presented here. Particles are colored according to the local
density. From top to bottom, the rows correspond to Pe = 0, 50, 100, 150. From left to right, columns correspond to ϕ =
0.05, 0.1, 0.2, 0.3. At Pe = 0, panels (a)-(d), the system is in the gel phase. Increasing activity for the same densities, panels
(e)-(h) for Pe = 50, or for even higher Pe = 100 and small densities (i)-(j), aggregation is favoured and there is complete
phase separation, in the sense described in the main text. At Pe = 150 and low density, panels (m)-(n), the structure breaks
down into small pieces. At higher densities, panels (o)-(p), the percolating network subsists. The bar on top of the plot shows
the scale for the local density with which the beads are colored, the scale we use to distinguish the phases, see Fig. 3 and its
discussion, together with the dynamic properties to be presented in Sec. III E.

separated phase a much larger portion of particles have
the large densities of these two peaks.

To elucidate the origin of the two peaks in the lo-
cal density distributions of the gel and phase-separated
phase, we analyze the relative frequency of beads with
different coordination numbers. The coordination num-

ber of a bead is defined as the number of its nearest neigh-
bours in the Voronoi sense, that is, two beads are consid-
ered to be nearest neighbours if they share a common face
of the tesselation, and their centers are located within a
distance of 1.5σ, Fig. 4(a). The data in Fig. 4 demon-
strate that beads with coordination number 12 contribute
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FIG. 3. Local Voronoi density. Distribution of the local
packing fraction of Voronoi cells for different global density
and Péclet numbers in the four phases: ϕ = 0.10 and Pe = 0
in the gel, ϕ = 0.10 and Pe = 50 in the phase-separated
state, ϕ = 0.10 and Pe = 200 in the disordered phase, and
ϕ = 0.30 and Pe = 150 in the percolating network. The
high density peak in the gel and phase-separated phase are
at the close packing value, shown with a dotted vertical line,
while the next one close to it is in between ϕrcp ∼ 0.64 and
ϕcp ∼ 0.74, shown with a dashed vertical line, respectively.
Inset: same distributions plotted together to empathize the
relative difference in the peak intensity. The dependence on
Pe at fixed ϕ and ϵ is analyzed in Appendix A.

to the peak at the close packing value. More precisely,
these beads belong to either a face-centered cubic (fcc)
or a hexagonal close-packed (hcp) local crystalline struc-
ture in the interior of the cluster. As shown in Fig. 4
(b), the two structures coexist and both have local den-
sity ϕ ≃ ϕcp, consistently with the location of the purple
peak in Fig. 4 (c). The secondary peak is associated
with beads that have a coordination number equal to 11,
and are topological defects that locally disrupt the reg-
ular lattice and lower the local packing fraction. The
crystalline structure in the bulk of the cluster resembles
very closely the high-density ground state of a system of
passive dumbbells, which is a so-called aperiodic crystal,
with all beads arranged on a close-packed ordered struc-
ture and disordered bonds between beads [90]. The only
difference here is that we see a mix of fcc and hcp struc-
tures. This arrangement is very common in close-packed
spheres, and the interfacial planes are called stacking
faults. We note that our configurations are not ground
state and the system is active, so it is reasonable to ex-
pect other close-packed structures to be stable. Particles
with a lower coordination number contribute to the rest
of the distribution and, in particular, to the lower density
peak which, as mentioned above, is due to the beads on

the surface of the cluster, thus with a smaller number of
neighbors compared to the core ones, see Fig. 4(a).
In order to distinguish between the gel and phase-

separated phases, it is necessary to check the system’s
motility: in the gel, dumbbells are almost frozen and
cannot diffuse, conversely in the phase-separated case
diffusion is observed, see Fig. 7. More detailed charac-
terizations of the motility of the full system, and of the
single clusters of the phase-separated phase, are given in
Sec. III E and Sec. IV, respectively.
In the disordered phase, the beads are more homoge-

neously distributed, resulting in an equally partitioned
space and the development of only a single peak at small
density, around ϕi ∼ 0.1. The percolating network has
a significantly different ϕi distribution. It is broad, with
the appearance of all intermediate densities, with almost
equal probability. As noted in the fourth row of Fig. 2,
the system smoothly transitions between the disordered
and the percolating phases.
A comparison between the local packing fraction dis-

tributions in the four phases can be appreciated in the
inset of the lower left panel in Fig. 3. There is a clear
difference in the height of the peaks for the four phases.
We also show in Fig. A.1 in the Appendix A how the
intensity of the peaks changes with varying Pe, at fixed
ϕ = 0.1 and ϵ = 0.3. The variation of Pe takes the sys-
tem from the gel, across the phase separated and finally
to the percolating network phase. We see no signature of
discontinuity in the height of the two peaks at high local
packing fraction when crossing the transition lines.

C. The cluster size distribution

In order to identify the global density ϕ at which the
system percolates, one can proceed as in the usual anal-
ysis of percolation [91] and gel [47, 67, 86] transitions. A
common observable to detect a percolating structure is
the cluster size distribution, displayed in Fig. 5 for Pe = 5
and 150 and various packing fractions. At both Pe val-
ues we see a transition between a disordered phase and
a percolating one. After clustering each conformation
using DBSCAN (see the method description in Sec. II),
we compute the distribution of cluster sizes. While for
sufficiently low densities the distributions have an expo-
nential decay, near the density where clusters start to
connect to form a percolating network, the cluster size
distribution takes a power-law form with an exponen-
tial cutoff [91] (ϕ = 0.01 for Pe=5 and ϕ = 0.1 for
Pe=150). Notably, the distributions at both the percolat-
ing network and gel transitions are compatible with the
algebraic law N−τ

c , with τ the Fisher exponent of stan-
dard random percolation for a three-dimensional system,
τ ∼ 2.18, associated to a fractal dimension df ∼ 2.53 by
a hyperscaling relation , see dashed lines in Fig 5(a,b).
Increasing density, percolation starts to occur and the
system becomes interconnected, with a large cluster and
a few small ones. In this case, the cluster size distribution
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FIG. 4. Structural analysis of active clusters. (a) Snapshot of the system for Pe = 50 and ϕ = 0.10 (phase-separated
phase), with particles colored accordingly to the number of neighbouring particles inside a cutoff distance of 1.5σ. (b) Snapshot
of the same configurations with particles colored accordingly to the common neighbor analysis [89]. Particles with FCC order are
in blue, those with HCP order in red, while particles with no crystalline order are in grey. (c) Distribution of the local packing
fraction of Voronoi cells for a configuration in the phase-separated state. The dotted colored lines represent the contribution
to the distribution of the beads having a selected Coordination Number (CN), reported in the legend.

appears to have a peak at a cluster size of the order of the
number of beads in the system (ϕ = 0.05 for Pe=5 and
ϕ = 0.2 for Pe=150). Note that the different ranges of
cluster sizes observed in Fig 5(a,b) stem directly from the
different densities considered in the two cases, given that
the number of dumbbells remains fixed in both cases.

D. The phase diagram

The aforementioned observations allowed us to identify
at each Pe and ϕ the corresponding phase, and build a
complete phase diagram, which is displayed in Fig. 6a for
the particular case ϵ = 0.3. The analysis of the dynamics
which will be presented in Sec. III E will further support
this classification.

Let us fix ϕ and discuss the various transitions found
upon increasing Pe in Fig. 6a. At ϕ = 10−3 (very dilute
system), and for all Pe, the system appears to be always
disordered. Upon considering ϕ = 0.05, we observe a
small region where the system is in a gel phase, followed
by the appearance at Pe = 10, or P−1

agg = 0.83, of phase
separation (the transition is located with our resolution
between Pe=2 and 10). This is due to the activity acting
as an additional noise, which enables particles to rear-
range and to not get stuck in a metastable conformation.
At Pe = 150, or P−1

agg = 12.5, activity is high enough so
that the phase-separated configurations start to break,
and the disordered phase takes over (the transition is
between Pe=120 and 150). At a higher packing frac-
tion, e.g. ϕ = 0.15, we also observe a transition between
gel and phase-separation, now at a slightly higher Pe or
P−1
agg. We attribute this increase with respect to what was

found for lower ϕ to the fact that at higher densities the
gel becomes thicker, and thus more difficult to break , see
Fig. A.2 in the Appendix. At Pe = 120, or P−1

agg = 10, we
observe a transition between a phase-separated phase and

a percolating network (the transition is between Pe=100
and 120). Again, activity is strong enough to break the
single dense phase, but the density is high enough so
that the small clusters are interconnected, forming the
network. At still higher ϕ, we observe the same transi-
tions between phases as the ones observed at ϕ = 0.15.
Notably, for increasing global packing fraction, the gel
and the percolating network phases tend to squeeze the
phase-separated regime, reducing the range in Pe where
the latter phase occurs. We did not probe densities near
close-packing, as it is out of the scope for this article.
We can now explore the effects of the beads attraction

strength ϵ. These can be visualized either as a new phase
diagram using as axes (ϕ, 1/ϵ) plane, built at fixed kBT
and Pe, or by changing the value of ϵ and constructing
the same phase diagram as in Fig. 6a. The former plot is
presented in Fig. 6b for Pe=100, while the latter is shown
in Fig. B.3 for ϵ = 0.2, 0.4 (1/ϵ = 5, 2.5 respectively).
Looking at Fig. B.3, we find all the four phases de-

scribed in Fig. 3, and a subdivision similar to Fig. 6a
of the regions pertaining to each phase. However, the
critical Pe between these phases are shifted. In more
detail, for ϵ = 0.2 the transition between gel and phase-
separated at low ϕ and the one between phase-separated
and percolating network at sufficiently high densities take
place at smaller Pe than for ϵ = 0.3. This can be at-
tributed to the fact that both activity and temperature
have a higher role in degrading the clustered system as
the ratio Pe/ϵ is increased. Conversely, for ϵ = 0.4, it
takes a stronger activity to break the clusters. Both
gel and phase-separated phases extend towards slightly
higher values of Pe at the same packing fraction.
When slicing the plots of Fig. 6a and Fig. B.3 at

Pe=100, one can form the plot of Fig. 6b. Increasing
ϕ from ϕ = 0.01 up to ϕ = 0.3 we see a disordered phase
turning into a phase-separated regime for high ϵ (or low
1/ϵ), where the contribution of attraction is stronger then
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FIG. 5. Cluster size distribution in the gel, disor-
dered and percolating network cases. (a) Probability
distribution of cluster sizes Nc at Pe = 5, for four values of the
global packing fraction ϕ = 0.001, 0.005, 0.01 (grey curves cor-
responding to the disordered phase) and ϕ = 0.05 (green curve
corresponding to the gel phase). Panel (b) shows the cluster
size distribution for Pe = 150, and ϕ = 0.001, 0.05, 0.1 (grey
curves corresponding to the disordered phase) and ϕ = 0.2
(yellow curve for the percolating network phase). The dot-
ted line corresponds to an algebraic decay N−τ

c with Fisher
exponent τ = 2.18, added for comparison. The cluster
size distribution was obtained by counting the number of
coarse-grained clusters identified with the DBSCAN algo-
rithm [41, 42, 83, 92]. For panel (a) 10 different simulations
where performed, and for each of them 103 configurations
where used for sampling. Panel (b) has been obtained using
a single run and 5 × 103 configurations, exploiting the shuf-
fling induced by activity.

activity, and into a percolating network for low ϵ (or high
1/ϵ), where instead activity is more important and breaks
clusters. Notably, the topology of this phase diagram is
very similar to the one in Fig. 2 of Ref. [67] derived for
a passive system.

Note that the effect of breaking phase-separated con-
figurations through the action of activity was discussed
preliminary in Ref. [64], where it was measured, start-
ing from a passive gel, the threshold value of attractive
strength ϵ needed to break the gel. The authors observed
that with activity this threshold increases, meaning that
activity enhances breaking of clusters of dumbbells.
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FIG. 6. Bulk phase behaviour. (a) Phase diagram in the
Pe-ϕ plane, at fixed ϵ = 0.3. (b) Phase diagram in the ϕ−1/ϵ
plane for Pe = 100.

E. Dumbbells dynamics

We now complement the analysis of the structural
properties that led us to the phase diagram in Fig. 6
with a characterization of the dynamics. In particular,
we measure the global dumbbells’ mean square displace-
ment (MSD) in each of the four phases, and the motion
of the single clusters formed via phase separation when
a non-vanishing active force is applied.
The total mean square displacement (MSD) is the re-

sult of the sum of the MSDs of the 2N colloids composing
the N dumbbells. It is defined as

∆2(t, t0) =
1

2N

2N∑
l=1

⟨(rl(t)− rl(t0))
2⟩ , (8)

where rl are the positions of the centers of the spheres.
Fig. 7 shows ∆2 for four combinations of parameters ϕ
and Pe representative of the four phases we described
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FIG. 7. Mean-square displacement (MSD) in the different
phases. Left scale: MSD in the gel (green, Pe = 0 and ϕ =
0.1), disordered phase (gray, Pe = 200 and ϕ = 0.1) and
percolating network (yellow, Pe = 150 and ϕ = 0.3). The
percolating network and disordered phases exhibit diffusive
behaviour at late time delays, as evidenced by the linear fit
(dashed line), while the dynamics of the gel is much slower
and may also tend to freeze. Right scale: MSD in the phase-
separated case (red curve) with Pe = 50 and ϕ = 0.1. The
dotted line represents a quadratic law, suggesting that the
motion of the dumbbell clusters is, on average, ballistic in
this case.

beforehand.
In the gel phase, the MSD is sub-diffusive (green curve

in Fig. 7). This can be understood in terms of particles
being confined within the gel, resulting in limited move-
ment. In contrast, the disordered phase and percolating
network (grey and yellow curves in Fig. 7) show diffusive
motion after a brief ballistic regime.

When considering the phase-separated system (red
curve in Fig. 7), there is, instead, a ballistic behaviour at
long time-scales, characterised by a quadratic behaviour
∆2 ∼ t2, associated to the motion of a single aggregate,
as we do not see any particles in the dilute phase. This
indicates that the cluster exhibits persistent motion over
time, and suggests to analyze its dynamics in more detail.

Note that in these plots we do not explicitly subtract
the global motion of the center of mass of the system.
The results are unaffected by it, except for the phase-
separated system, where we observe ballistic motion of a
single cluster. Here, subtracting the motion of the cen-
ter of mass, which coincides with the cluster’s center of
mass, means not accounting for its overall characteristic
motion.

IV. SINGLE CLUSTER MOTION

We now characterize the ballistic motion of a single
cluster in the phase separated regime. We use a kine-

FIG. 8. Approximately helical trajectory of a typical
cluster. (a) In red the trajectory of the center of mass of
a cluster with Nc = 3728 beads, with no surrounding gas,
formed by aggregation at fact = 1 and evolving at T = 0.
The size of the cluster has been reduced by a factor of 2.5
to ease the visualization of the trajectory. The scales of the
Cartesian axes are measured in units of the bead’s diameter σ.
The aggregate is, approximately, an ellipsoid of revolution, or
spheroid. The approximate lengths of the semi-axes of the as-
sociated inertia tensor are (10.11, 9.71, 13.34). The principal

eigenvector is roughly parallel to k̂ – the direction along which
the net force momentum is null – while the remaining eigen-
values associated to the other two eigenvectors are roughly
degenerate, taking values (17.7, 16.2, 37.5). In dashed gray

the axis of the helix. The î, ĵ, k̂ Cartesian and inertial coor-
dinate system, superimposed to the cluster, moves along the
helical axis with constant velocity. The unit vectors do not
change their orientation with respect to the laboratory refer-
ence frame, with k̂ oriented in the direction of the helical axis
and î, ĵ and perpendicular to it. (b) One period of the tra-
jectories of the center of mass (dashed line, right scale), and

of one bead in the cluster (blue line, left scale), on the k̂, î
plane. Two movies in the SM highlight these two trajectories
in the full three-dimensional space.

matic and dynamical approach to decipher the interplay
between frictional dissipation and active forcing which
leads to the persistent motion of the active cluster.
Figure 8(a) shows a typical trajectory of the center of

mass (CoM) of a single cluster (red curve). This trajec-
tory was obtained by extracting one typical cluster from
the system and placing it in a box with no gas dumb-
bells around (in the figure the cluster has been resized to
make the trajectory visible). More details of the motion
can be appreciated in the video SM Movie 2. The cluster
moves along a trajectory resembling a helix. Indeed, its
motion can be seen as the composition of a linear motion
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at constant velocity along the direction defined by the
axis of the helix (dashed grey straight line), and an addi-
tional rotation around this axis. Notice that the radius
of the helix is of the order of the beads size; therefore,
rotational motion around the persistence axis does not
significantly contribute to the MSD, as it will be ratio-
nalized in the following. Importantly, once the cluster is
formed, the beads do not change their arrangement, so
that the cluster effectively behaves as a rigid body.

We introduce a new reference frame, with its center
placed on a fixed point within the cluster and moving
along the axis of the helix with the same persistence ve-
locity of the cluster itself. The helix axis is found as the
best fit of the trajectory of the cluster center of mass with
a straight line. The axes of this new coordinate system

are defined by the unit vectors î, ĵ, k̂ and are chosen in

such a way that k̂ is the direction of the helical axis and î,

ĵ are mutually perpendicular so that the triad forms an
orthonormal basis for the three-dimensional space. This
is shown in Fig. 8(a). We stress that such a reference
frame is inertial, as it only translates (and does not ro-
tate) with respect to the laboratory frame with constant
velocity.

In order to rationalize the dynamics of the cluster,
we plot in Fig. 8(b) the CoM trajectory during a sin-

gle helical period on the k̂, î plane (dashed black line),
along with the motion of a generic bead in the cluster
(solid blue curve). Two movies in the SM give a three-
dimensional view of these motions. By comparing the
two, one finds that their motion is periodic with the
same period. However, while the CoM trajectory has a
sinusoidal profile (with a rather small amplitude), consis-

tently with a circular motion on the î, ĵ plane normal to
the helix axis, the bead’s motion describes an epicycloid.
This is the fingerprint of the composite dynamics of the
beads which rotate around the CoM while the latter ro-
tates around the helix axis. Such dynamics is reminiscent
of that of the Moon orbiting the Earth and, in turn, ro-
tating on itself with the same period. Analogously, the
cluster rotates around the helix axis showing always the
same face (see SM Movie 3).

We stress that the motion displayed by the cluster in
Fig. 8 is not a particular case; it is consistently observed
for any typical cluster in the phase-separated region of
the phase diagram. We have checked that the analy-
sis that we develop below describes the motion of such
clusters with number of beads ranging from 100 to 4000.
Other clusters with more complex forms and dynamics
can also exist (as the result, for example, of the aggre-
gation of two colliding ones) but we do not discuss them
here.

To go beyond the kinematic description of the clus-
ter’s motion, we now solve its dynamics building on the
assumption that the cluster is, for all practical effects, a
rigid body. Therefore, the motion can be described by
separating positional and rotational degrees of freedom.

The CoM motion is governed by the effects of the total
active force and friction. Newton’s equation for the CoM

position Rcm reads

MR̈cm = Fdrag + Fact , (9)

withM = mNc the total mass of the cluster, Nc the num-

ber of particles in the cluster, Rcm = N−1
c

∑Nc

l=1 rl the

position of the CoM, Fact =
∑Nc

l=1 factl the total active

force, and Fdrag = −(M/m)γṘcm the total drag acting
on the center of mass. We stress that internal forces,
arising from the Mie potential and bond constraints, do
not contribute to the dynamics of the center of mass.
The equations describing the rotational dynamics are

given by

L̇ = Tdrag + Tact . (10)

Here L =
∑Nc

l=1 r
′
l × ṙ′l is the angular momentum of the

cluster computed choosing the CoM as reference point,
with r′l = rl − Rcm the position of the l−th bead with
respect to the CoM. The right-hand-side is the total force
momentum, decomposed in a contribution from the ac-

tive force Tact =
∑Nc

l=1 r
′
l×factl and another one from the

drag force Tdrag = −γL. Once more, torques originat-
ing from internal forces do not contribute to the overall
rotational dynamics.

Before proceeding, we stress that a peculiarity of this
system is that the active force Fact and torque Tact are
body-fixed, so that they undergo the same rotational and
translational motion as the rigid body, as beads do not
reposition during the trajectory.

With the equations of motion at hand, we are now
ready to derive an expression relating forces and torques
with kinematic quantities. First, we observe that the

CoM acceleration is null along the k̂ direction, therefore
the k-th component of the active force is counterbalanced
by the drag:

F k
act =

M

m
γV k , (11)

where V = Ṙcm, so that, by construction, V k is the
persistence velocity of the cluster along the helix axis,
measured in the laboratory reference frame.
Conversely, in the perpendicular plane defined by the

unit vectors î, ĵ, the CoM velocity rotates with constant

angular velocity ω = ωkk̂, see Fig. 9(a). As the dynamics
of the cluster is also in the overdamped regime, the active
force is approximately counterbalanced by the frictional
force so that to F⊥

act ≈ MγV ⊥/m, with the mismatch
F r = F⊥

drag + F⊥
act between the active and the frictional

force directed radially with respect to the circle in the
normal plane. This radial force becomes a non-negligible
inertial contribution, that is never counterbalanced by
drag and acts as a centripetal force pulling the cluster
towards the axis of the helix. It is indeed the combi-
nation of the balancing of the forces along the tangent
to the cluster trajectory and the centripetal unbalanced
radial component that gives rise to the helical motion.
Moreover, since the circular motion occurs with uniform
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FIG. 9. Schematic representation of the forces on the cluster and its helical and precessional motion. (a) Top

view, showing the components of Fact and Fdrag on the plane normal to k̂ , as well as the radial force Fr. (b) Side view,

showing the precessional motion of the angular momentum L around the axis k̂. Unit vectors î, ĵ in panels (a) and (b)

represent orthogonal basis vectors defining the plane normal to k̂. (c) Time evolution of F k
act, the k component of the active

force Fact, of F
⊥
act, the modulus of Fact perpendicular to k, and of F r, compared to the theoretical predictions (dashed lines)

from the equations described in the text. (d) Time evolution of the active torque Tact and angular momentum L, also compared
to the theoretical predictions (dashed lines).

velocity V ⊥ = ωkR, with R the radius of the circle, the
forces can be expressed in terms of the rotational velocity,
as follows:

F⊥
act =

M

m
Rγωk , (12)

F r = MR(ωk)
2
. (13)

(Note that in Eq. (12) we have dropped the inertial con-
tribution, consistently with the observation that ωk does
not change in time.)

We now test whether the formulæ (11)-(13) are in
agreement with the simulation data. In Fig. 9(c), we
show the forces considered (continuous lines) as functions
of time, and we compare them to the corresponding time
averaged quantities appearing on the right-hand-sides of
Eqs. (11)-(13) (dashed lines). We find good agreement

in all cases. In particular, we notice that the k̂ direc-
tion roughly coincides with that defined by the principal
eigenvector of the inertia tensor I while, instead, the ra-
dial force F r is significantly smaller than the other ones.
Moreover, the forces are hierarchically organized, with
F k
act ∼ 100, F⊥

act ∼ 20, and F r ∼ 10−2, in units of fact.
We now proceed with the analysis of the rotational dy-

namics by assuming that the angular momentum compo-

nent Lk in the k̂ direction remains constant over time –
or equivalently drag and active torques compensate along

k̂, i.e. γLk = T k
act. The component of the angular mo-

mentum normal to k̂ is constant in modulus, and ro-
tates with angular velocity ω around the helix axis under
the action of the total torque Ttot = Tdrag + Tact. Under

these assumptions, it is straightforward to rewrite the
time derivative in Eq. (10) so that

ω ×L = Ttot . (14)

This expression suggests that L performs a precessional
motion around the helical axis under the action of the
torque, see also Fig. 9(a). Moreover, one can also relate

the angular momentum along k̂ with the kk component
of the inertia tensor so that

Lk = Ikkωk , (15)

being Ikk the helical axis component of the inertia tensor
I of the cluster.
These equations are tested against simulations in

Fig. 9(d), and we find again good agreement. This con-
firms that the angular momentum performs a precession

around the k̂ axis with precession angular velocity equal
to that of the cluster, confirming a posteriori our initial
assumption.
As further tests, we checked the dependence of the pe-

riod on the magnitude of the active force fact derived
from Eq. (12),

τ =
2πMγR

κm

1

fact
, (16)

where F⊥
act = κfact with κ a proportionality coefficient

measured from simulation data that turns out to be inde-
pendent of the active force fact. To this purpose, we con-
sidered the same cluster and we varied fact. The results
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FIG. 10. Motion of a cluster with mass M = 3728 at
temperature T = 0. (a) Rotation period τ as a function of
the active force fact on a single bead. The slashed straight line
represents the theoretical prediction τ ∝ f−1

act in Eq. (16), with
κ = 48.71 and R = 0.204 measured independently. (b) Linear
velocity of the CoM, V k, as a function of the single bead
active force fact. The dashed line is the theoretical prediction
inverting Eq. (11), V k = mℓ/(Mγ)fact, using ℓ = F k

act/fact ≈
96.34 (measured independently) and γ = 10.

of this analysis show that the period and the active force
are indeed inversely proportional, see Fig. 10(a), with
the proportionality coefficient κ depending on the struc-
tural properties of each individual cluster considered,
and being consistent with the parameter dependencies
in Eq. (12) At the same time, we find that the radius R
remains constant while we vary fact (not shown). In fact,
inverting Eq. (12), one finds that R = F⊥

actm/(Mγωk),
with both F⊥

act and ωk proportional to fact, leaving no
dependence on the active force.

Finally, we put Eq. (11) to the numerical test. We
show in Fig. 10(b) that V k is proportional to fact with a
proportionality constant which agrees with the parame-
ter dependence of the prefactor in Eq. (11).

We also checked that the direction of motion k̂ does
not change in time.

We can now comment more about the overdamping
assumption, and the presence of a non-negligible inertial
contribution that causes the cluster to feel a centripetal
force and experiencing the helical motion. This assump-
tion is in line with considering the cluster’s rotational mo-
tion with a constant angular velocity. The latter, in fact,
arises from the drag torque counterbalancing the active
torque. This same movement causes the active force to
have a body-fixed rotation with the cluster; thus at each
timestep this same force is slightly rotated with respect
to the counterbalancing drag. It is this mismatch that
causes an inertial contribution to appear. This same con-
tribution shapes in fact the motion of the center of mass
of the cluster. For instance, we can notice the depen-
dence of R on the damping coefficient γ. This formula
implies that under weaker damping coefficients the os-
cillatory motion around the propulsion axis has a larger
amplitude. This is indeed what we find, see Appendix C.
In fact, smaller damping means a larger force mismatch
F r and a larger centripetal force due to acceleration. So

larger dampings γ make the trajectory to look more and
more like a straight line.
We stress that the description of the cluster’s dynam-

ics is based on the assumption that the rotational veloc-
ity ω is oriented parallel to the helical axis, with negli-
gible transversal components. The latter could lead in
principle to more complex effects – such as nutation for
instance – which, nevertheless, were not observed in sim-
ulations1. This also resonates with the fact that in ab-
sence of net torques, a rigid body with two degenerate
eigenvalues in its inertia tensor would rotate by keeping
constant the component of the angular momentum par-
allel to the non-degenerate eigenvector [93]. Interestingly
enough, in our case the particle aggregates indeed exhibit
elongated shapes with the principle eigenvector roughly

parallel to k̂ (the product of the two unit vectors is 0.955)
and the two dimensions being roughly similar, see the
values given in the caption of Fig. 8. Nevertheless, the
motion of the cluster considered here is in general signif-
icantly more complicated as, in this case, the net force
and torque are not null, leading to a more complex dy-
namics, with the radial force sustaining the rotational
dynamics of the CoM of the cluster, ultimately leading
to the intriguing helical motion described above.
An interesting point to discuss is the possible effects

in the the cluster’s motion due to temperature, or equiv-
alently to Pe. If we fix the dumbbell’s arrangement in-
side the cluster, and if we are at ϕ and Pe values where
phase-separation is observed, the only effect of tempera-
ture would be to add thermal noise, which changes the
persistence direction over time. At the same time, ther-
mal noise might impact the arrangement of dumbbells
inside a cluster, starting from a disordered conformation,
and this in turn could change the total active forces and
torques acting on the cluster. In this particular cluster,
we observe that particles more likely point in a direction

perpendicular to k̂ (not shown). However, we expect that
increasing N, and thus the size of the cluster, that the ar-
rangements of dumbbells would be on average random on
all directions.
Another interesting point is to compare the flocking

effect found in [94] with our system where we do ob-
serve persistence, by measuring the parameter pc =
1
N

∑N
i=0

ṙi
|ṙi| . Although we see pc peaking where persis-

tent clusters appear (not shown), the magnitude of this
parameter is much less than one. The reason behind this
is that a portion of ṙi is dedicated to the rotational mo-
tion, obscuring the effect of flocking. Moreover, while
attractive ABPs can freely rotate, the direction of the
dumbbells inside a cluster is fixed in time, changing the
nature of the cluster itself.

1 Note that the precession of L is caused by L not being on the
same direction as ω and k̂ ( the latter parallel to each other).

If ω and k̂ are not parallel anymore, we could see changes in
direction of ω as well, making the motion much more complex.
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V. CONCLUSIONS

To conclude, we investigated the nature of the phase
behavior and the dynamics of an active dumbbell sys-
tem with attractive interactions in three dimensions. We
characterized the phase diagram in the (Pe, ϕ ≤ 0.45)
plane at fixed ϵ = 0.3 and we elucidated the effect of
the strength of the attraction ϵ by studying the station-
ary state reached at Pe = 100 and parameters in the
(ϕ ≥ 0.2, 1/ϵ ≤ 5) plane. In this way we showed that
four cases are realized: a disordered state, a percolating
network, phase separation and an active gel. We believe
that this phase diagram will serve as a reference for fur-
ther works on elongated self-propelled particles in 3D,
and also more realistic models that may include hydro-
dynamic interactions, which are known to play a highly
non trivial role in competition with particles’ anisotropy
and self-propulsion [92, 95].

Next, we focused on characterising the motion of a typ-
ical dense cluster in the phase-separated phase. First, we
found that these clusters typically take a spheroid form,
and for fact < 10 displace with constant velocity in a
direction which is very close to its main axis of symme-
try while performing a rotational motion of very small
radius in the transverse plane. All in all, the motion is
very close to helical. With some simple arguments, ex-
plained in Sec. IV, we then related the linear and angular
velocities to the strength of the active force acting on the
single molecules finding very good agreement with the
numerical measurements. The dynamics of formation of
these clusters, a full characterization of their morphology
and statistics, and many other details are very interesting
but fall beyond the scope of this work.
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Appendix A: Pe influence on the local structure

In Fig. A.1 we display the dependence on Pe of the
distribution of local packing fractions of the Voronoi cells
at fixed global density ϕ = 0.10 and ϵ = 0.3. The position
of the two peaks at high ϕ remains unmodified but their
heights change with Pe. More precisely, the two high
density peaks get higher and higher as Pe increases. The
variation is gradual with no signature of discontinuity.

In the main text we mentioned that the gel gets thicker
at higher Pe. The reason for this is that the activity
breaks the metastable gel configurations and facilitates

FIG. A.1. Distribution of the local packing fractions of the
Voronoi cells at fixed density ϕ = 0.10 and different Péclet
numbers reported in the legend. The attraction scale is ϵ =
0.3.

the formation of more organized local crystal structures,
which result in thicker branches. In a first step, we ob-
served this behaviour from the direct inspection of the
dumbbell configurations and evolution. In a second step,
we quantified how the thickness of the structures evolves
by computing the distributions of beads inside a sphere
of radius r = 5σ centered at each bead. We report the
result at two different Pe and same density ϕ = 0.25
in the gel phase in Fig. A.2. As expected, the distri-
bution mean shifts toward higher coordination numbers
with increasing activity, indicating that the structures
are indeed thicker.

FIG. A.2. Distribution of the number of particles (coordina-
tion number) within a sphere of fixed radius of 5σ in a system
with ϕ = 0.25 and ϵ = 0.3 and two Pe values.
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Appendix B: Phase Diagrams at varying attraction
strength

In this Appendix we present two other phase diagrams,
in the plane Pe - ϕ, for ϵ = 0.2 (panel above in Fig. B.3)
and ϵ = 0.4 (panel below in the same figure), to be com-
pared to the case ϵ = 0.3 shown in Fig. 6 in the body of
the paper. The horizontal axes are also parametrized by
P−1
agg following the scale at the top of the plots. Naturally,

the attraction stabilizes the gel (green stars) and phase
separated (red triangles) phases, which extend towards
larger values of Pe, at fixed ϕ, for increasing ϵ.
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FIG. B.3. Phase diagrams at different attraction
strengths, ϵ = 0.2 (above) and ϵ = 0.2 (below). The symbols
and color codes are the same as the ones in Fig. 6, with green
stars representing the gel, red triangles the phase separated
region, gray bullets the disordered phase and yellow squares
the percolating network.

FIG. C.4. Trajectory of a single cluster with N = 3278
beads and using different values of the damping coefficient γ,
reported in the legend.

Appendix C: The cluster’s trajectory

In Fig. C.4 we plot the trajectory of a selected cluster
using molecular dynamics with different damping coeffi-
cient γ. Not surprisingly, the weaker the damping the
larger the oscillations in the motion around the propul-

sion axis, called k̂ in the analysis of Sec. IV.
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