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ABSTRACT
Our understanding of microorganisms residing within our gut and their roles in the host metabo-
lism and immunity advanced greatly over the past 20 years. Currently, microbiome studies are 
shifting from association and correlation studies to studies demonstrating causality of identified 
microbiome signatures and identification of molecular mechanisms underlying these interactions. 
This transformation is crucial for the efficient translation into clinical application and development 
of targeted strategies to beneficially modulate the intestinal microbiota. As mechanistic studies are 
still quite challenging to perform in humans, the causal role of microbiota is frequently evaluated in 
animal models that need to be appropriately selected. Here, we provide a comprehensive overview 
on approaches that can be applied in addressing causality of host-microbe interactions in five major 
animal model organisms (Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and 
pigs). We particularly focused on discussing methods available for studying the causality ranging 
from the usage of gut microbiota transfer, diverse models of metabolic and immune perturbations 
involving nutritional and chemical factors, gene modifications and surgically induced models, 
metabolite profiling up to culture-based approached. Furthermore, we addressed the impact of 
the gut morphology, physiology as well as diet on the microbiota composition in various models 
and resulting species specificities. Finally, we conclude this review with the discussion on models 
that can be applied to study the causal role of the gut microbiota in the context of metabolic 
syndrome and host immunity. We hope this review will facilitate important considerations for 
appropriate animal model selection.
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Introduction

The human gut harbors trillions of microbes. The 
recent change of the traditional view that gut 
microbiota effects are not only limited to fermenta-
tion of food but also influence metabolism and 
immune status. This has led to the realization that 
these microbes can be considered as an instrument 
for maintaining health.1 During recent years, it has 
been proven that microbes in the intestine are 
influenced by external factors such as diet, 

antibiotics and many other environmental factors 
that may affect the microbiota-host interactions in 
both positive and negative ways. This demonstrates 
the plasticity of the gut microbial community and 
shed new lights toward the manipulation of micro-
biota function and activity, useful in improving 
metabolic and immunological health, especially in 
disease prevention and treatment. However, to 
develop successful microbiome-based therapeutics, 
the field needs to concentrate on causation and 
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mechanisms. This involves moving past descriptive 
microbiota and health parameter analyses to stu-
dies deciphering mechanistic interactions of how 
commensal microbes affect different health out-
comes, as this is a crucial step in translating micro-
biome findings into clinics.

Establishing causality in humans is hindered 
mainly by high complexity of the human micro-
biome as well as immense genetic and lifestyle 
differences among populations and individuals. 
Consequently, the majority of human studies are 
still observational, or are not designed to prove 
causal relationships between microbiota changes 
and development of disease. Although adapted 
application of methods such as Mendelian rando-
mization or machine-learning approaches are dis-
cussed as a mean of improving causality in human 
microbiome studies,2,3 most of our knowledge 
regarding microbial causality stems from model 
systems. Many experiments in animal models 
have demonstrated the proof of principle that inter-
fering in host-microbe interactions can contribute 
to delay or prevent diseases. Also, animal models 
have been instrumental in understanding potential 
causal relations between microbiota changes and 
physiological-metabolic perturbations providing 
insight in potential mechanisms.4,5 Variables 
involved in health outcomes can be tightly con-
trolled in animal models. This can be achieved 
through application of gnotobiotic animals, geneti-
cally manipulated animals, strict environmental 
controls, and the ability to sacrifice animals at the 
desired time-point in the study supporting the use 
of animal models to perform mechanistic analyses 
and establish causality in host-microbiota interac-
tions. However, the translation of these observed 
animal results to humans remains complex and 
challenging. To improve this, factors influencing 
the healthy microbiome and microbiome reshaping 
during different disease stages need to be addressed 
and better understood. This can be accomplished 
by combined application of studies performed in 
both humans and model systems, which need to be 
appropriately selected. In the present manuscript, 
we summarize information on five major animal 
models (Caenorhabditis elegans, Drosophila mela-
nogaster, zebrafish, rodents, and pigs) in which the 
role of microbiota in development of metabolic and 
immunological perturbations can be analyzed. The 

aim of this review is to discuss all important factors 
scientists need to take into account to make sure 
that their model, even if not perfect, will be able to 
address the research question with a maximum 
knowledge/awareness of the confounding factors 
such as gut physiology, diet, choice of model of 
pathology, and microbiota composition. This ulti-
mately may lead to a more confident approach 
when causal relations between microbiota function 
and host-health or disease have to be inferred.

Part A. Methods for studying the causal role of 
gut microbiota

Microbiota changes – a chicken and egg question

The intestinal microbiota executes numerous ben-
eficial functions for the host health. These include 
synthesis of essential vitamins or metabolites such 
as short chain fatty acids (SCFAs) (mainly acetate, 
propionate and butyrate), degradation of food 
components into nutrients, and regulation of meta-
bolic and immune responses.1,6 Over the last 
20 years, changes in intestinal microbiota composi-
tion or function have been associated with inflam-
matory, immune, metabolic, and behavioral 
disorders.7–9 However, most of these studies so far 
still demonstrate associations between microbiota 
alterations and host changes. In most instances, it is 
still unclear whether the observed changes are 
a cause or just a consequence of the disease pro-
gress. Therefore, a major and timely challenge is to 
infer causality from host and microbiome interac-
tions. This will grant us to develop targeted strate-
gies to prevent disease and modulate intestinal 
microbiota to the benefit of the host. To this end, 
the field is currently striving to decipher molecular 
mechanisms underlying host-microbe interactions 
and to gain insight in how this is related to host 
physiology and health status.

Gut microbiota transfer as a mean of demonstrating 
causal relations

Gnotobiotic invertebrate and vertebrate animals or 
Fecal microbiota transfer in germ-free rodents are 
commonly used to establish causal relations 
between given a gut microbiota as a whole or its 
constituents and host phenotypes. It involves the 
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colonization of ex-Germ Free (GF) invertebrate of 
vertebrate animals with given microbial culture or 
communities and the study of the resulting animal 
phenotypes4 or the administration of minimally 
manipulated microbial communities from the 
fecal or cecal matter of a donor (being an experi-
mentally challenged animal of human patient) into 
a recipient GF mice to investigate the transfer of 
specific phenotypes of disease.10–12 Although this 
latter method represents a standard in the field 
there is much debate on whether the protocols 
applied allow a sound interpretation of the micro-
biota induced effects. In human-to-mice transfer 
studies, there is only the option to transfer human 
fecal matter, while in mice-to-mice transfer cecal 
microbiota is often preferred. This microbiota 
population contains all the microbiota needed for 
fermentation as the cecum is the primary site for 
generation of SCFAs. The microbiota can be trans-
planted into the same species (allogenic microbiota 
transfer) or into different species (xenogenic micro-
biota transfer). The predominantly used animal 
model for microbiota transfer is mice, but other 
species such as rats or pigs (mini pigs in general) 
can also be used as recipients.13–15 The microbiota 
transfer is mainly administered via intragastric 
inoculation.10−12−16 The preparation of donor 
inoculum for transfer varies from inoculation 
immediately after collection to administration of 
frozen samples with or without addition of cryo-
protectant 10−12. Frequency of administration also 
varies from study to study ranging from single to 
multiple gavage cycles.10,12,17,18 All these variations 
might have impact on the outcome of a phenotype.

The microbiota recipients can be GF mice or 
conventionally raised mice with or without micro-
biota depletion by antibiotics17,19 (Table 1). While 
GF models, predominantly GF mouse models, are 
set as a benchmark for the studies of the microbiota 
impact, many researchers turn to microbiota- 
depleted models as a rapid, cheaper, and more 
accessible alternative. Complex microbiota of the 
recipients is reduced by removing a high propor-
tion of endogenous taxa with broad-spectrum anti-
biotics. Studies showed that broad-spectrum 
antibiotic combinations such as ampicillin, vanco-
mycin, neomycin, and metronidazole are more effi-
cient than a single antibiotic to improve microbiota 
engraftment.14,18 However, usage of antibiotics 

cannot eliminate all intestinal microbes and can 
be associated with off-target drug effects, which 
needs to be considered when assessing the results. 
Recently, bowel cleansing with laxative-based 
approaches, such as polyethylene glycol (PEG), 
has been suggested as an alternative to GF or anti-
biotic-depleted models for microbiota transfer 
studies17,18 (Table 1). It is important to note that 
all of these approaches have their advantages and 
limitations that need to be considered when plan-
ning experiments (Suppl Table 1).

Several human disorders such as obesity, inflam-
matory bowel disease, or malnourishment have 
been successfully transferred to mouse models by 
microbiota transfer.20–22 It is known from different 
xenogenic fecal transfer studies that the microbiota 
of the donor adapts to the recipient-microbiota 
composition during several weeks.23,24 This time 
lapse has proven to be efficient for the microbiota 
to induce changes in the mouse recipient and con-
sequently resulted fundamental to unravel the 
mechanisms useful to determine whether specific 
immunological processes are microbiota dependent 
or not.23,25 Recent studies show that similar adap-
tations occur when transferring between mice 
strains and has still led to meaningful conclusions 
on which bacterial species are responsible for 
immune regulatory processes.26 Overall, these stu-
dies emphasize that microbiota humanized mice 
can reflect both the dysbiotic features of the micro-
bial community and the disease phenotype, despite 
known limitations.27 This suggests that this model 
is still a useful tool to untangle disease mechanisms 
and identify disease- or health-relevant taxa. 
Nevertheless, using immunologically or metaboli-
cally humanized rodents or hosts with similar phy-
siology such as pigs or primates will increase the 
possibility of identifying species involved in 
human-specific host-microbe interactions.27 

However, there are and will be limitations as 
recently illustrated in a study involving 1700 trans-
fers of human-to-GF mouse transfers, where less 
than half of the bacterial species identified in the 
human donors were able to colonize in GF mice.28 

This can be attributed to several factors such as 
donor-to-donor variations in colonization effi-
ciency due to individual donor characteristics that 
influence microbiota behavior such as differences 
in dietary habits, genetics, and lifestyle.29 In 
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addition, some human species such as some 
Firmicutes and Faecalibacterium spp. are difficult 
to study in mice.14,26 A recent study also suggests 
that human microbiota colonize better in GF pig-
lets than in GF mice, but this obviously needs con-
firmation in other studies and would not be as cost 
effective as mice studies.30

As environmental conditions are easier to master 
in smaller animal models, the use of non- 
mammalian model to investigate a simplified host- 
microbiome interaction is de facto easier to handle. 
In Caenorhabditis elegans or Drosophila melanoga-
ster, for instance, GF animals can be fed with 
defined diets supplemented with pure culture of 
specific bacteria species or consortia that may differ 
from the microbial environment they usually 
encounter in the wild.31 For C. elegans, several 
studies have investigated the role of chosen specific 
bacterial strains (or consortia) – frequently lactic 
acid bacteria, on lifespan, fat metabolism, or meta-
bolic pathways involved in energy metabolism 
regulation.32,33 The worm has also been extensively 
used in the field of host-pathogen interaction, trig-
gering the regulation of innate immunity34 as well 
as a cascade of a wide variety of genes.35 Similarly, 
Drosophila has been extensively used as a model to 
study the phenomenology and the underlying 
molecular and cellular mechanisms of microbiota- 
diet interactions and their influence on host biology 
including postnatal development (ie juvenile 

growth and maturation), adult physiology (ie 
immune and metabolic functions and behavior) 
and aging.36,37

And various models of metabolic or immune 
perturbations

Not only microbiota transfer studies but also 
exploring and studying influence of microbiota in 
animal models with diseases are used to unravel 
whether and how microbiota changes can cause 
disease. In order to find causal link, obesity, insulin 
resistance (IR), diabetes and cardiovascular diseases 
have been recently extensively inspected.5 The fea-
sibility of such approaches relies on the character-
ization of microbiota communities responsible for 
disease developments as well as on microbiota dele-
tion or correction with pre- and probiotics that may 
act to delay or prevent diseases. However, also 
immune disorders such as inflammatory bowel dis-
ease, allergies, and even autoimmune disorders 
such as type 1 diabetes are studied in animals.38 

As observed in humans, these models generally 
reproduce one or several phenotypes of diseases 
and can be categorized in three groups depending 
on the way metabolic or immune disorders are 
generated: 1) homeostasis perturbations induced 
by environmental factors such as nutritional or 
chemically induced factors, 2) genetically modified 
polygenic or gene knock-out (KO) animals, or 3) 

Table 1. Models of microbiota depletion: germ-free, antibiotic- and polyethylene glycol-induced including their specificities and 
research applications.

Model 
Feature Germ-free Antibiotic-induced microbiota depletion

Polyethylene glycol (PEG)-induced 
microbiota depletion

Derivation/ 
maintenance

Labor intensive and costly, specific equipment 
needed for maintenance

Inexpensive and accessible, no specific equipment needed for maintenance

Availability Only few strains commercially available, new 
strains need to be first re-derived germ-free

Usage of available complex microbiota-colonized models

Treatment effect 
on the host

Physiological and anatomical special features, 
underdeveloped immune system

Drug off-target effects on host physiology 
and disease onset, primed immune system 
during neonatal period

Effects of significant microbial reduction 
on host physiology, primed immune 
system during neonatal period

Microbial 
composition/ 
standardization

Fully known, absence of all living 
microorganisms, highly standardized

Unknown, presence of viruses, fungi, archaea, 
and antibiotic-resistant bacteria, facility- 
specific differences can be observed

Unknown, presence of residual microbes, 
facility-specific differences can be 
observed

Engraftment/ 
colonization 
stability

Long-term and intergenerational durability of 
engraftment

Negative effects of residual antibiotic and 
microbiota, potential loss of engraftment

Recovery of initial microbiota, loss of 
long-term engraftment stability

Research 
application/ 
aim

Transfer of microbiota-induced phenotype 
(not known to be microbiota-dependent), 
effect of monocolonization or colonization 
with minimal microbial communities on 
host phenotype and physiology

Transfer of microbiota-induced phenotype 
(known to be microbiota-dependent), 
identification of bacteria relevant for 
different phenotypes, effects of microbiota 
disruption in different life stages

Transfer of microbiota-induced 
phenotype (known to be microbiota- 
dependent), effects of microbiota 
disruption in different life stages
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surgically induced disorders. In many cases, these 
models have been set up without taking into 
account or even studying microbiota changes but 
they have the benefit that they are very well char-
acterized and generally validated for translational 
research in humans.5 Importantly, confounding 
parameters such as animals’ diet, age, handling, 
environmental parameters5 need to be evaluated 
as potential interfering factors in causal relation-
ships between microbiota changes and host 
responses. In parallel, the use of genetically mod-
ified (for genes involved in metabolic pathways or 
immune regulation) Drosophila or zebrafish lines 
can add highly valuable and novel concepts of 
mechanisms at stake in host-microbiota cross-talk 
and regulation of host genes by specific microbes.

Microbial metabolites and their impact on host 
health: an indirect way to decipher the 
host-microbiota interaction

The intestinal microbiome is an integral part of the 
metabolism of nutrients and orally administered 
drugs. Consequently, the metabolome profile that 
results from nutrient processing by intestinal 
microbiota depends both on the nature of the con-
sumed molecules and microbiota composition. 
These microbial metabolites are known to influence 
the severity and development of metabolic diseases, 
such as fatty liver disease, atherosclerosis, obesity, 
type 2 diabetes, and other manifestations of the 
metabolic syndrome (MetS). These microbial meta-
bolites include SCFAs,39 indoles, secondary bile 
acids, biogenic amines, vitamins, ethanol, succi-
nate, or pyruvate.40 These molecules have been 
linked to both positive and negative health out-
comes depending on the context and disease in 
which they were studied.

Microbial metabolites affect both host physiol-
ogy and microbiota composition as well as func-
tion. Bile acids for example are metabolized by the 
intestinal microbiota and are known to influence 
bile acids metabolism and hormonal activity.41 Also 
bile acids shape gut microbiota through influencing 
detergent activity and influence innate immunity 
(mainly microbiota derived-secondary bile acids 
for the later).42,43 SCFAs are known for their ben-
eficial role on gut permeability, insulin sensitivity, 
and appetite-body weight regulation.44 This has 

been particularly investigated in rodents with sup-
plementations or colic infusions of SCFAs45 but 
impact of microbial metabolites on host phenotype 
can also be studied in invertebrates. For instance, 
C. elegans is able to detect diverse metabolites (ben-
eficial or detrimental) produced by broad classes of 
bacteria that can induce innate and learned beha-
vioral responses but also modify longevity, reveal-
ing the influence of host-microbe interactions on 
phenotype of this invertebrate animal host.46–48 

Similarly in Drosophila, a systematic work con-
ducted on gnotobiotic animals bred on a large 
array of chemically defined diets has allowed to 
identify the full nutritional requirements of the 
GF host and how Drosophila commensals compen-
sate for specific host auxotrophies and support their 
animal host nutrition and growth.49

Culture-based approaches

To establish causality between microbial signatures 
and disease or health status of the host, robust 
experimental models with defined microbiota are 
required for validation of generated hypotheses. 
Some prefer the approach of defined culture-based 
microbial communities. This approach relies on 
isolation and characterization of intestinal micro-
biota members. In recent years, significant efforts 
have been made in this field resulting in represen-
tative strains available in pure culture. This how-
ever only applies to 35–65% of the species that can 
be detected by sequencing50 and still quite 
a number of microbial taxa are not taken into 
account because of inability to culture these micro-
organisms. For further development of the micro-
biome field, it is crucial that newly isolated and 
characterized commensal species are deposited in 
culture collections and in nucleotide (or taxo-
nomic) databases making them available to the 
scientific community. Efforts are now being made 
to expand the collection of human, pig, and mouse 
gut bacterial isolates which are now the foundation 
of mechanistic studies.51–53 This approach facili-
tates studies on impact of single taxa on the host 
physiology, but also generation of defined beneficial 
microbial communities. Generation of models with 
simplified microbiomes can reduce influence of 
confounding effects of endogenous complex micro-
biota on host health effects and increase the 
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experimental reproducibility. Assemblage of sim-
plified microbiomes represent modular system in 
which intestinal isolates are combined together 
based on their function or scientific hypothesis to 
perform targeted mechanistic studies.50–52

Part B. Animal models applicable for 
determining causality of microbiota changes 
and host phenotype

A very challenging assignment for every study 
addressing causal relationships is choosing an ade-
quate model for studying a disease condition and 
carefully consider any parameters that might affect 
the gut microbiota. This requires appropriate 
knowledge of the characteristics of each animal 
model, its morphology, physiology, dietary habits, 
metabolism, microbiota composition but also 
genetics, behavior, and test environment (Suppl. 
Table 1 and Table 2).

Gut morphology and physiology

Although similarities exist between species, diges-
tive tract morphology, physiology as well as the 
amount and type of microbiota may vary 
(Table 2). Animals adapt to their environment 
and in particular to their food pattern.54 

Omnivore species such as humans depend on 
food digestion and nutrient absorption in the fore-
gut and midgut54 and on hindgut bacterial fermen-
tation of food components that are not digestible by 
host enzymes. Anatomical differences of the hind-
gut exist between animal models used (Table 2). 
These differences need to be considered for transla-
tion of concepts to humans. In addition, physiolo-
gical/biochemical discrepancies in the lumen 
environment (digestion rate, transit time, physical 
pressures, pH, osmolarity, enzymes, bile acids, 
metabolites) impact the metabolic fate of ingested 
nutrients and induce various selective pressure on 
microbiota present in the different segments of the 
intestine. If these concerns can be addressed par-
tially in mammal models that present physiological 
similarities with humans, this is less the case in 
invertebrate models such as C. elegans or 
D. melanogaster where gut physiology, digestive 
processes, and nutritional habits are quite different 
from humans. Nevertheless, at cellular level, 

hydrolysis of lumen molecules by proteases, pro-
cesses of metabolites absorption, lipids accumula-
tion, endocytosis mechanisms and regulation of 
some metabolic pathways are partially preserved, 
and represent a complement, alternative and poten-
tially more powerful option to investigate these 
mechanisms.55,56

In practice, mammals have been extensively used 
in digestion/absorption studies, but it should be 
pointed out that even if gut (including hindgut) 
physiology and metabolism are closer to humans, 
a critical review57 pointed out some discrepancies 
between mammals and humans. For instance, the 
small intestine of mice is lacking anatomical niches 
for mucus-associated bacteria that are present in 
other rodents and humans. For translational 
research, anatomically, the human large intestine 
has features similar to pig (omnivore) and the dog. 
In addition, there are major differences in the 
volume of the intestines between species. In pri-
mates, the colon represents about 50% of the total 
volume of the digestive tract while it only repre-
sents 20% in humans, implying a large difference in 
fermentation capacity and contribution of fermen-
tation products to overall energy metabolism of the 
host.58 Indeed, Stevens et al.59 demonstrated 
a direct correlation between the fermentation end 
products contribution to overall host energy supply 
and size of the hindgut: 2% for dogs, 6–9% for 
humans, and 10–31% for pigs. Although anatomi-
cal differences can be major between species, many 
homologies are found such as the differentiated cell 
types present in the gut,60 and several biological 
and physiological homologies (Table 2).

At the immunity level, model species can be 
categorized in models with both an innate and 
adaptive immune system (mammals and to 
a certain extent zebrafish) and a category with 
only an innate immune system (invertebrates) 
(Table 3). Still, at the molecular level, some host 
pattern recognition receptors such as Toll-like, 
NOD-like, or C-type lectin receptors, involved in 
the innate immune system, are described both in 
mammals,61 zebrafish,62 and invertebrates.63 In this 
latter field, the utilization of invertebrates or fish 
can significantly add meaningful information on 
how host and gut microbiota communicate. 
Consequently, when choosing a model, it should 
again be emphasized that specific parameters and 
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pitfalls should be carefully considered to make and 
appropriate choice to study host-microbiota inter-
action and impact on immunity.

Diet

General considerations in mammals
In humans, it is widely accepted that microbiota 
composition and diversity are highly dependent on 
diet64 which can partially explain the variation in 
microbiota composition between and within indi-
viduals over time.65 Clear diet-correlated differ-
ences in microbiota composition have been 
demonstrated between vegetarians and meat- 
eating individuals66 or following interventional stu-
dies using pro- or prebiotics.67 At the same time, 
whole-community shotgun metagenomics sequen-
cing applied to healthy subjects shows how, at the 
genomic level, sample phenotypic differences can 
be attributed to a small number of genomic changes 
and how the majority of genomic information is 
part of stable microbiome cores reflecting similar 
metabolic traits.68 Notwithstanding the need for an 
integrated approach with other omics data in dee-
pening the metabolic traits (gene, transcript and 
protein catalogs), the microbiota adaptation to diet-
ary habits can first of all be proven in a healthy 
status by studying changes in commensal species 
that can shift in favor of the host (commensalistic 
symbiosis) or can lead to positive outcomes for 
both the microorganisms and the host (mutualistic 
symbiosis).

The human microbiota-based sample clustering 
also applies to different species. Carnivores, omni-
vores, or herbivores have different microbiota com-
position but also contain clusters that are relatively 
conserved throughout species.69 It is not only the 
microbiota composition that is different but also 
microbiota functionality as the microorganisms pro-
duce different types of metabolic products such as 
SCFAs.40 Microbial ecosystems adapt to available 
nutrients, at both the diversity/composition and func-
tional level. This is associated with a rapid adaptation 
of the enzymatic equipment of microbes70 and ability 
to synthesize microbial products such as SCFAs.

Although the timeframe required to induce shifts 
in microbiota composition is still subject of debate, 
it has been shown that shifts may happen in 

a matter of days or hours after change of a diet. 
Turnbaugh et al.10 have demonstrated a rapid tran-
sition in mice that presented an alteration in their 
microbiota composition and its gene expression 
profile within one day after switching from a high- 
plant carbohydrate diet to a high-fat, high-sugar 
diet. Also, circadian rhythms in microbiota compo-
sition have been observed both in humans and 
rodents, partially attributable to the fasting- 
feeding pattern.71 Longitudinal variation in the 
gut microbiota highlights the difficulty to properly 
assess microbiota composition, even within the 
same individual.

Lastly, feeding behavior is an underestimated but 
essential consideration when choosing an appropri-
ate vertebrate model in translational research.57 In 
contrast to humans that consume food after several 
hours of fasting, mice and rats eat almost continu-
ously during their period of activity, i.e. during the 
night.72 Because of this feeding pattern, food parti-
cles are constantly mixed with stomach fluid which 
results in a higher gastric pH (around 2.7–4.1) com-
pared to humans. This is probably the reason why 
Lactobacilli are found in the upper part of the gut in 
mice while in humans only acid resistant bacteria 
like Streptococci, Prevotella spp., and Helicobacter 
pylori are present.73 Additionally, coprophagia that 
is frequently observed in rodents, pigs, and rabbits 
can interfere with human translation since it is con-
sidered to be an important factor of microbiota 
modulation in coprophagous animals.74

Microbiota composition and species specificities: the 
case of mice
Microbiota composition of different animal species 
used to study host-microbiota interaction, diet 
effects, and/or in translational studies have been 
described previously.4,57 The fact that there are 
differences of variable extent in microbiota compo-
sition at different taxonomic levels, makes transla-
tion of data sometimes challenging. Detailed 
phylogenetic and metagenomic analyses showed 
that while many common genera are found in the 
human and murine intestine, they differ strongly in 
abundance. Around 80 microbial gut genera were 
reportedly shared between mouse and man, which 
was confirmed by a comparison of murine and 
human 16S rRNA datasets.75 However, 
a comparative survey of the phylogenetic 
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composition of 16 human subjects and 3 often used 
mouse strains indicated that their microbiota is 
quantitatively very different.76 Additionally, labora-
tory circumstances influence microbiota composi-
tion. Factors such as inflammatory status, host 
genotype, diet, cage, and inter-individual effects 
and even the mouse-breeding facility influence 
microbiota composition.57 To address these issues, 
an extensive mouse microbiome catalog has been 
recently published.77 This catalog compares the 
human and mouse intestinal microbiota and 
shows considerable similarity at the genus level 
with a total of 60 genera detected in the mouse 
gut microbiome core, of which 25 were shared 
with the core genera in the human gut microbiome. 
However, when the mouse microbial genes were 
compared with that of human, only 4% were 
found to share considerable identity. Nevertheless, 
almost 80% of the annotated functions were com-
mon between mouse and human microbial data-
sets, indicating significant functional overlap. 
These observations support the argument that 
microbiota-transfer models are, for many bacterial 
species, appropriate for translational purposes.

Microbiota composition and species specificities: the 
case of invertebrates
In the lab, C. elegans are generally maintained on 
nematode growth medium and fed with 
Escherichia coli OP50 strain. The composition of 
the worm microbiome is rarely examined when 
they are growing in their natural environment (i.e. 
rotting fruits, compost, meaning a more complex 
diet). A comparative analysis (three studies) of 
microbiome from C. elegans raised in natural habi-
tats showed that the worms harbor a core micro-
biome (i.e. nonrandom microbial colonization) of 
14 microbial families.78 Hence, as for mammals, the 
concept of a core microbiome exists in C. elegans 
that results from both the selection of microbes 
during the establishment of a symbiosis and also 
on the microbes present in the specific environ-
ment of these animals, including food. These obser-
vations strongly suggest that worms can be a highly 
relevant model when it comes to study the under-
standing of the mechanisms of selection of micro-
organisms by the host, colonization processes, and 
host genes-microbiota interactions. This is specifi-
cally relevant in models harboring gut colonization 

with a microbiota composition limited to 10–20 
different species but mastered to mimic core micro-
biota observed in the wild.79 As observed in verte-
brates, the variable part of the microbiota is 
dependent on environmental factors.80,81 Three 
types82 of C. elegans microbiome has been identi-
fied relative to their dominant microbial taxa, with 
the largest group of C. elegans strains, harboring 28 
strains with the dominance of Ochrobactrum. Still, 
it remains important to note that C. elegans is fed 
nearly exclusively on microorganisms. This means 
that microbes are used as nutrients supplier to the 
worm, even if they also colonize the worm’s gut as 
stated above. Consequently, an axenic C. elegans, 
when left axenic on a long-term basis, is food 
deprived.83 In this model, it should be kept in 
mind that decreasing the bacterial supply to the 
animals, that cannot be fully compensated by 
other nutrients, corresponds to food deprivation 
or strong food restriction that itself can have 
important consequences on metabolism regulation 
and is known to increase life span.84

In both the lab and the wild, Drosophila- 
associated microbes fall into two major bacteria 
phylotypes dominated by the Acetobacter and 
Lactobacilli species.85 They proliferate on the nutri-
tional matrix and as such are frequently ingested by 
Drosophila adults or larvae. Depending on the diet, 
developmental stage, age and health status, the 
abundance and composition of the gut commu-
nities change and evolve, and vary from individual 
to individual.86 Their persistence in the entire 
intestinal tract is modulated by their ability to resist 
the physico-chemical constraints of this environ-
ment rather than intrinsic ability to reside in this 
niche.56 Indeed most Drosophila-associated bacter-
ial strains do not reside in the Drosophila gut but 
are rather transiting through the intestine and con-
stantly re-ingested. Yet, in two recent studies, stable 
colonization or the adult most anterior intestinal 
regions by strains of Acetobacter spp. and 
Lactobacillus spp isolated from wild flies has been 
reported suggesting that a seed microbiota may 
exist in Drosophila.87,88 Long-term persistence in 
the gut (ie, residency) is an important biological 
parameter to consider when studying microbial 
ecology, microbial dynamics in the host, micro-
biota vertical transmission and host ecological and 
evolutionary trajectories. However, many 

e2107386-10 M. BASIC ET AL.



Drosophila associated strains (persisting or not, 
from wild flies or lab Drosophila cultures) show 
a marked functional impact on the physiology of 
their host. These observations establish that resi-
dency is not required for Drosophila commensal 
bacteria to shape their host’s physiology but is 
probably an important attribute that has shaped 
Drosophila microbiota transmission patterns over 
generations.

Part C: Models of determining casual role of gut 
microbiota in metabolic syndrome

Rodents have been widely used in the field to iden-
tify the causative role of microbiota in energy hand-
ling, storage, and regulation of metabolic pathways. 
Microbiota transfer (allogenic or xenogenic) stu-
dies combined with interventional studies targeting 
specific microbiota functionalities have been devel-
oped to study MetS and obesity. This includes diet- 
induced obesity (DIO) models, genetically modi-
fied MetS animals, and animals with surgery- 
induced obesity (Table 3). These studies have 
demonstrated the co-evolution of specific micro-
biota phenotypes with obesity and MetS. 
However, other species are used as well such as 
minipigs because they are physiologically and 
metabolically closer to humans (Tables 1,2,3). 
These studies in vertebrates are complemented 
with invertebrate studies such as in C. elegans or 
Drosophila melanogaster to identify possible speci-
fic molecular mechanisms. In this latter case, 
genetically modified strains are commonly used as 
a powerful tool to highlight the role of specific 
genes in pathways regulations, but changes of 
diets are also tested, particularly in the case of 
Drosophila (High sucrose diet)89 and for 
C. elegans (High sugar – high lipid diet, starch 
supplemented diet).90,91 However, even if micro-
biota may be involved in energy homeostasis reg-
ulation in both Drosophila and rodents, it should be 
noted that underlying regulatory mechanisms may 
be very different as shown in axenic fruit flies that 
are capable to store more energy compared to their 
conventional counterparts,92 whereas GF rodents 
are lean and resistant to high-fat diets (HFD) rela-
tive to conventional rodents.93 Still, even if it 
remains necessary to be cautious in the translation 
of the results to humans, the use of Drosophila and 

C. elegans is expanding to screen probiotic bacteria 
that could be efficient in humans on specific 
immune-metabolic health outcomes and traits con-
served in these models (longevity, specific meta-
bolic pathways, lipids storage. 94–96

Gnotobiotic models

Data from GF animals and from microbiota transfer 
from obese, IR, diabetic or steatotic individuals into 
GF animals suggest that the gut microbiota contri-
butes to the development of metabolic phenotypes. 
Although this has led to novel insights, it is unknown 
which specific microorganisms determine host phe-
notype and obesity development. Recent experi-
ments have combined animal models with defined 
microbiota compositions in combination with var-
ious diets, including obesogenic diets, to investigate 
the complex interactions between diet, microbiota 
and the consequence on metabolites and signaling 
molecules generated.97 Aside from rodents, other 
mammal models such as pigs, dogs, and C. elegans 
or Drosophila have also proven to be powerful tool in 
understanding the interactions between obesity- 
related disorders and microbial ecosystems. If for 
pigs and dogs the health outcomes studied are basi-
cally the same as the ones measured in rodents, life- 
span, overall lipids accumulation and genes expres-
sion/protein contents or metabolites are more tar-
geted in the smaller models.

Diet induced obesity models

Although nutritional factors have been implicated 
in DIO, it is still unclear whether a shift in micro-
biota composition or a shift in food supply is 
responsible for metabolic changes. DIO can be 
established in Drosophila to zebrafish, rodents, 
and pigs98–101 but because of similarities in food 
and nutritional habits, rodents and to a lesser extent 
pigs are used for translational research to human. 
Some studies in these models have shown the value 
of microbiota-targeted intervention or treatments 
with microbial metabolites such as SCFAs in search 
for microbiota dependent effects on obesity.39 In 
addition, by analyzing metabolic adaptations and 
signals such as gut peptides, metabolites and hor-
mones, these models can contribute to new hypoth-
eses on mechanisms of diet-induced obesity.
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Genetically induced metabolic syndrome

Many genetically modified (GM) rodents, inverte-
brates, and fish models have been developed to 
induce alteration in energy or nutrient handling.5 

Physiological responses to an energy imbalance 
vary greatly between strains within the same spe-
cies, with variable resistance to MetS.5 Depending 
on the model/strain used, the phenotype is gener-
ated on normal or DIO diet. Microbiota composi-
tion in GM rodent models such as ob/ob or db/db 
has also been shown to be changed and to correlate 
with glucose intolerance and severity of obesity.102 

However, these GM models are not capable to fully 
mimic all metabolic perturbations occurring in 
MetS in humans and do not allow straightforward 
translation of the results to human MetS. In 
rodents, for instance, some models suffer from 
expedited beta cell dysfunction, others are rapidly 
prone to DIO or hepatic steatosis.5 This is particu-
larly the case in monogenic and KO models whose 
phenotype highlights only specific, reproducible 
but fragmented views on mechanisms involved in 
metabolic adaptations to MetS. On the contrary, in 
polygenic models, variable degrees of obesity, IR, 
and steatosis were observed. This variability seems 
to represent the wider range of MetS phenotypes 
that is also observed in humans and might therefore 
be of value for translational research. For MetS, 
rodents but also invertebrate and fish models are 
extensively used as well as some pig models.103 In 
all these species, gut microbiota dysbiosis has been 
demonstrated in DIO.100

Despite the remaining complexities, these mod-
els aid in understanding how host genetics, includ-
ing which genes, can influence microbiota 
composition. The study of co-evolution of micro-
biota and host genetics throughout life in these 
models could bring valuable data on how host 
genetics can drive microbiota composition and 
function.

Rodent models of nonalcoholic fatty liver disease

Nonalcoholic fatty liver disease (NAFLD) is con-
sidered as the hepatic manifestation of MetS. It 
comprises a spectrum of diseases ranging from 
simple and usually nonprogressive steatosis to 

nonalcoholic steatohepatitis (NASH), fibrosis, and 
cirrhosis. Intestinal dysbiosis favors development 
and progression of metabolic liver disease and is 
characterized in adult patients by reduced abun-
dance of Bacteroidetes and elevated Prevotella and 
Prophyromonas spp.104 together with reduced 
diversity of the microbiota. Since the pathomor-
phological characteristics of NASH and alcoholic 
steatohepatitis (ASH) are quite similar, permanent 
exposure to ethanol may be one of the determinants 
of disease development.105

Comparison of GF and complex microbiota 
colonized mice has first highlighted that lack of 
gut microbiota leads to excess amounts and accu-
mulation of CAR-ligands such as bilirubin, bile 
acids, and steroid hormones leading to altered 
liver xenobiotic metabolism which could favor 
NAFLD development.106 Comparisons of GF and 
complex microbiota colonized mice further 
revealed that the commensal microbiota prevents 
fibrosis upon chronic liver injury in mice107 or 
determines the susceptibility to liver injury108 indi-
cating that the severity and/or incidence of liver 
diseases may be modulated in GF mice. Henao- 
Mejia et al further established the causative role of 
the gut microbiota in liver disease development 
using mouse models deficient in the pro- 
inflammatory multi-protein complexes 
inflammasome.109 These inflammasome-deficient 
mice exhibited exacerbated NAFLD phenotypes 
on methionine choline-deficient or HFD. 
Strikingly, co-housing of wild-type mice with 
these inflammasome-deficient mice resulted in 
exacerbations of glucose intolerance and obesity, 
hepatic steatosis and liver inflammation in wild- 
type mice. This suggests that dysbiosis itself can 
induce NAFLD progression. By transferring gut 
microbiota from mice with or without NAFLD to 
GF mice, Le Roy et al. showed that the gut micro-
biota was responsible for NAFLD.110 More 
recently, the transfer of a high-fat-shaped micro-
biota to GF mice induced hepatic lipoprotein secre-
tion and microvesicular steatosis.111 However, 
a recent study indicated that the contribution of 
the microbiome in NAFLD may be overarched by 
genetics of mice. This corroborates the observation 
that exchange of the microbiome between NAFLD 
susceptible and resistant mouse strains did not 
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influence the development of steatosis in response 
to HFD.112 This, however, should not be inter-
preted as a suggestion that the microbiota does 
not influence the NAFLD.

Indeed, fecal microbiota transplants from human 
to mice have also been explored to decipher the 
causative role of the microbiome in NAFLD. 
Inoculation of feces from patients with NASH or 
from healthy persons in GF mice led to NASH 
phenotype in the NASH-microbiota recipient 
mice.113 A recent study further established that stea-
tosis can be triggered in mice following human 
microbiota transplant from NAFLD patients con-
firming that the gut bacteria play a causative role in 
fatty liver development.114 Moreover, the gut micro-
biota from one genetically obese child with Prader– 
Willi syndrome induced liver steatosis in GF mice 
fed with a normal diet, indicating that the gut micro-
biota could promote the onset of liver steatosis in 
mice independently from diet and genetic factors.115

Surgical procedures: the case of by-pass surgery

Recent data have emerged on the role of microbiota 
in the improvement of health status of obese patients 
after bariatric surgery.116 Because of this, microbiota 
composition and function in models of Roux-en-Y 
gastric bypass and sleeve gastrectomy models of 
obese/diabetic animals have been investigated.117 

As for DIO, bariatric surgery targets both microbiota 
but also host appetite and capacities for nutrient 
digestion absorption. Consequently, the respective 
role of gut microbiota shift and decreased appetite 
as causes of efficacy of bariatric surgery’s on weight 
loss is regularly questioned.117,118

Part D. Causal role of gut microbiota alteration 
in host immunity

The gut microbiota plays an essential role in the 
development and maintenance of a fully functional 
immune system in both invertebrates and verte-
brates. Studies using GF mice reveal that the absence 
of commensal microbes is associated with under-
developed lymphoid tissues, impairment in myelo-
poiesis, defective T and B cell functions, and low 
numbers of circulating CD4 + T cells and antibody 
production, all of which can be restored by de novo 

colonization leading to increase disease 
resistance.119,120 Transfer studies in GF mice have 
been instrumental in identifying key bacteria that 
support different immune cell populations such as 
T helper (Th), cytotoxic T (Tc) cells, or T regulatory 
(Treg) cells. Akkermansia muciniphila for example 
has been shown to be a bacterium that can lower 
incidence of both type 1 and 2 diabetes probably by 
supporting generation of Treg cells and lowering Tc 
cell activity that target insulin-producing cells.121,122 

Another gut microorganism with Treg enhancing 
properties is the gram-positive clostridium 
Faecalibacterium prausnitzii. This organism belongs 
to the most abundant members of the gut microbiota 
and encompassed 2–5% of the total human 
microbiota.123 It is considered to be a major butyrate 
producing bacterium and its potential to attenuate 
disease has been shown in chemically induced mice 
colitis models.124 Monocolonization of GF animals 
with Bacteroides fragilis evokes the release of 
a bacterial polysaccharide able to direct the matura-
tion of the developing immune system in mice lead-
ing to correction of systemic T-cell deficiencies and 
Th1/Th2 imbalances in lymphoid tissues.125 Even for 
unraveling the influence of Bifidobacterium species, 
mice models have been instrumental despite the fact 
that mice have a lower abundance in this bacterium 
than humans, and in some mouse strains even 
absence. Bifidobacterium is associated with a more 
regulatory immune profile when transferred to 
mice.126,127

Although fungi are clearly part of the micro-
biota, their roles in immune defense are less stu-
died. Recent studies showed how the mucosa- 
associated fungus Malassezia restricta exacerbates 
colitis in mice128 and how a persistent Candida 
spp. colonization in the mouse gut exerts immu-
nological effects at distant sites, such as the 
lung.129 Similarly, a gut-associated filamentous 
fungal Talaromyces species, isolated from wild 
Aedes aegypti mosquitoes, has been demonstrated 
to alter Ae. aegypti physiology in a way that facil-
itates pathogen infection.130

The essence of microbiota in keeping immunity 
active has also been documented in GF 
zebrafishes.131 As in mice, the absence of microbiota 
in zebrafish larvae is associated with several structural 
alterations, including immature patterns of brush 
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border enzyme activity and glycoconjugate expres-
sion, and a paucity of enteroendocrine secretory 
cells.132 Furthermore, zebrafish gut microbiota has 
been demonstrated to impact the expression of over 
200 genes in the zebrafish intestine, many of which 
have also been observed in mice and are involved in 
innate immunity, nutrient metabolism, and intestinal 
epithelial differentiation and renewal.24

While most recent mechanistic in vivo studies 
convincingly support the causal role of the com-
mensal microbiome in driving immune activation 
in health and in disease, we need to consider that 
chronic inflammation conversely may shape micro-
bial dysbiosis and functions of microbial commu-
nities in an extensive crosstalk between host 
microbiota and immunity. For instance, in mice 
the loss of Toll-like receptor 5 (TLR5), 
a component of the innate immune system that is 
expressed in the gut mucosa, produces alterations 
in the gut microbiota that induce low-grade inflam-
matory signaling.133 Similarly, deficiencies of anti-
microbial peptide production, such as occur in 
NOD2 mutant mice, are primarily responsible for 
uncontrolled B. vulgatus colonization, reduction of 
microbial richness, and expansion of Proteobacteria 
to attenuate the main phyla Bacteroidetes and 
Firmicutes, potentially contributing to the onset of 
a severe inflammation.134,135 The role of innate 
immune system and recognition of pathogens by 
host receptors is a concept that is also extensively 
studied in C. elegans and Drosophila that also pos-
sess an innate immunity (Table 3). For instance, 
and even if receptors are different, some intracel-
lular pathways involved in activation of innate 
immunity remain partially conserved over evolu-
tion (some TLR-activated pathways in particular – 
For review:136–138).

In addition to the impact of host-microbiota 
interactions on innate immune function, recent 
research also uncovered mechanisms governing 
mutualism between the microbiome and the adap-
tive immune system. Intestinal secretory IgA anti-
bodies have been reported to shape gut microbial 
communities throughout selective coating of com-
mensal bacteria which may promote modification 
in the bacterial gene expression, influencing their 
metabolic processes as well as their biogeography 
and survival within the gut.139

Transfer studies have, however, also revealed 
that some key immunological differences are not 
microbiota dependent. One of these is the gender- 
bias in immune responses which is more type-1 
interferon skewed in females than in males. This 
was considered to be associated with gender depen-
dent microbiota differences but transfer studies 
have shown23 that this was more dependent on 
inherited x-chromosomal- and sex-hormone- 
dependent differences in innate immunity in 
females that deletes typical male species such as 
Alistipes, Rikenella, and Porphyromonadaceae.

Despite these supportive findings for determining 
causative relationships between microbiota and host 
immunity some critical notes should be placed for 
the choice of mice models as principal differences in 
outcome may occur when comparing GF- and anti-
biotics-treated mice. For example, Faecalibacterium 
spp. a major Treg inducing species had a lower abun-
dance in human microbiota GF C57BL/6 (B6) mice 
recipients than in mice in which the recipient micro-
biota was deleted by antibiotics.14

This further emphasizes the importance of 
a clear research strategy and associated choice for 
a recipient type and experimental model that match 
the aim of the study.

Conclusion: The challenge to find an adequate 
model for mechanistic evaluation of 
host-microbiota interactions in the obesity/ 
metabolic syndrome and immunity regulation 
fields

Each animal species that can be used to assess the 
complex and intertwined gut-microbiota-host 
health issue presents characteristics that should be 
considered as advantageous or detrimental depend-
ing on the scientific question addressed. 
Uncovering mechanisms that are underlying com-
plex host-microbiota by resolving them to the level 
of specific metabolic or molecular pathway are vital 
to fully reveal the therapeutic potential of micro-
biota modulation. As the model species is more 
physiologically and microbially related to humans, 
the translatability of findings increases. On the con-
trary, when the role of a bacterial consortium needs 
to be evaluated, or more, when a very specific 
mechanism (conserved throughout evolution) is 
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Figure 1. Decision making support for the choice of an appropriate animal model to study host-microbiota interaction mechanisms 
and causal role of microbiota in the development of MetS and immune response disruptions.
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the target of the research, simpler models could be 
preferred. Although the straightforward and direct 
translation of findings from model systems is rather 
unfeasible, it can be increased by selection of appro-
priate models, by acknowledging and understand-
ing confounding factors and by inferring 
appropriate conclusions. In Figure 1, the applicabil-
ity of the main five models (Caenorhabditis elegans, 
Drosophila melanogaster, zebrafish, rodents, and 
pigs) for mechanistic evaluation of host micro-
biota-interaction in the fields of MetS and immune 
dysregulations is summarized. We hope that this 
review provides a comprehensive overview of 
important factors that scientist should be aware of 
when selecting a specific model to investigate the 
causal relation between microbiota changes and 
specific health outcomes.

Although our understanding of the role of gut 
microbes in host health and disease outcomes has 
advanced greatly over the past 20 years, there is 
still an immense knowledge gap that needs to be 
addressed in the future studies. This will facilitate 
the transition of microbiome research into the 
clinics and show the real power of microbiome- 
derived therapeutics. Currently, the interest and 
methodologies in the field of microbiota function-
ality are booming or being developed (integrative 
omics approaches, single-cell-based microbiota 
analyses, evaluation of the contribution of other 
microbiota members like fungi or phages, model-
ing of ecosystems assessing microbe-microbe 
interactions and consequences on metabolites 
production, microbial enzymes potentials 
obtained from metagenomics), which will in turn 
contribute to the better data interpretation gained 
from the model organisms. This better assessment 
of microbiota function will help to predict the host 
response that can be ultimately validated. 
Emerging area of interest is also the study of 
microbiota in different sites of the gut (such as 
mouth, jejunum, ileum, colon), but also other 
organs (lungs, gallbladder or liver) that are more 
rarely investigated, and the impact of these specific 
ecosystems on the host health. On the host side, 
the recent developments in the field of persona-
lized therapies and nutrition have developed 

intensive research in the understanding of the 
determinants of variabilities within populations, 
including populations with MetS and immune dis-
orders. Due to these recent conceptual and tech-
nical evolutions concerning host-microbiota 
interaction, no doubt that nutritional or drug stra-
tegies targeting microbiota will remain an active 
research topic. Lastly, and even if animal models 
remain essential in integrated physiology research, 
the burgeoning promising research using in vitro 
models (particularly organoids), but also fermen-
ters are and will represent some interesting alter-
natives to address some questions related to host- 
microbiota interaction.
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