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IDENTIFYING SEDIMENT SOURCE AREAS IN A MEDITERRANEAN WATERSHED 1 

USING THE SWAT MODEL 2 
 3 

Abstract 4 
 5 

This study aims to evaluate the suitability of the Soil and Water Assessment Tool (SWAT) model in 6 

simulating runoff and sediment loss in the Carapelle (SE Italy), a typical Mediterranean watershed, 7 

where continuous measurements of streamflow and sediment concentration were collected over a 8 

five-year period, on a half-hour timescale, processed on a daily timescale. After sensitivity analysis, 9 

the model was calibrated, and validated for runoff and sediment. Statistics show generally satisfactory 10 

efficiency. To further improve sediment simulation performance, we used a seasonal calibration 11 

scheme, in which data recorded in the dry and wet seasons were used to calibrate sediments 12 

separately, on a seasonal basis. We also tested the model’s capability in identifying the major 13 

sediment source zones, and river segments where there is sediment deposition. On the basin scale, 14 

the average water yield (186mm) corresponds to 27% of the total rainfall (686mm) and average 15 

annual sediment load was estimated to be 6.8 t ha-1 yr-1. On the sub-basin scale, a gradient of sediment 16 

yield was found that is characterised by a large difference among the upper (7 to 13 t ha-1 yr-1), central, 17 

and lower parts (<1 t ha-1 yr-1) of the study area. Conversely, deposition in channel flow has its highest 18 

values in the central part of the watershed, where there is an alluvial plain. Winter wheat and olive 19 

landuse are the major source areas, in terms of sediment. This study confirms that the Mediterranean 20 

watershed is a fragile ecosystem, and measures are needed to mitigate soil depletion. 21 
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1. Introduction 1 

 2 
Land degradation, in its various forms, is a common problem in Europe (Panagos et al., 2014) and in 3 

many other parts of the world (European Commission, 2006; Jones et al., 2012; Garcìa-Ruiz et al., 4 

2016). Although soil has a fundamental role in ecosystems and economies (Pimentel, 2006; Tibebe 5 

& Bewket, 2011), it is perceived to be abundant and, as its degradation is generally a slow process, it 6 

passes unnoticed. In order to increase awareness regarding the soil erosion problem and its impact on 7 

water quality, ecosystem services, biodiversity, and food production, the European Commission 8 

(2006) listed erosion among the soil risks in their Soil Thematic Strategy 9 

(http://ec.europa.eu/environment/soil/index_en.htm), and identified measures that the member states 10 

needed to take to combat soil threats. 11 

Watershed management can play an important role in protecting soil and water (Nikolaidis et 12 

al., 2013; Abdelwahab et al., 2014; Bisantino et al., 2015); however, before identifying specific 13 

conservation and best management practices (BMPs) in order to mitigate soil depletion, there is a 14 

need to quantify erosion and identify the source zones of such sediment in the watershed (Asres & 15 

Awulachew, 2010; Abdelwahab et al., 2016; Vigiak et al., 2016). 16 

Sheet and rill erosion are the most widespread types of accelerated water erosion in Europe 17 

(Panagos et al., 2015), constituting the principal cause of land degradation (Garcìa-Ruiz et al., 2016). 18 

Soil sediments detached from the agricultural watershed landscape due to water erosion carry 19 

nutrients, fertilisers and chemicals that reach water bodies and lead to water quality impairment 20 

(Rickson et al., 2014; Gamvroudis et al., 2015). Additionally, the sediment regime exerts a great 21 

influence on aquatic and riparian ecosystems (Wohl et al., 2015).  22 

On a basin scale, sediment yield is the result of several factors controlling runoff generation 23 

and erosion processes, and it is strongly related to factors controlling the sediment dynamics in a 24 

catchment, including sediment generation, transport and deposition (Parsons, 2012). Indeed, the shape 25 

of a given hillslope, and its natural or artificial geomorphological features, may exert a substantial 26 

influence on erosion and deposition (Fryirs et al., 2007), as well as on connectivity (Fryirs, 2013) and 27 

pathway development (Marchamalo et al., 2016). The term ‘connectivity’ is used to describe the 28 

extent to which sediment generated on hillslopes is connected to a channel, by overland and 29 

subsurface flow, as well as the linkage of streamflow and sediment within a channel network (Hooke, 30 

2003; Lesschen et al., 2009; Medeiros et al., 2010; Di Stefano & Ferro, 2017). Erosion and 31 

connectivity are complex and non-linear processes that involve a large number of factors that cannot 32 

be monitored directly. Spatial and temporal variability of physical processes causing erosion and 33 

sediment delivery poses a severe limitation both on field measurements and for up-scaling results of 34 

field measurements, especially in semi-arid landscapes (Marchamalo et al., 2016). For these reasons, 35 

soil loss assessment is generally performed by means of models (Collins & Walling, 2004).  36 

In recent decades, a large number of erosion models have been developed, operating at 37 

different time and spatial scales with various levels of complexity (Ferro & Porto, 2009; Cerdà et al., 38 

2010; Karydas et al., 2014). Among these models are the Water Erosion Prediction Project (WEPP: 39 

Flanagan et al., 2012), Annualized Agricultural Non-Point Source (AnnAGNPS: Theurer & 40 

Cronshey, 1998; Bingner & Theurer, 2005; United States Department of Agriculture - Agricultural 41 

Research Service [USDA-ARS], 2011), Agricultural Policy Environmental eXtender (APEX: 42 

Gassman et al., 2010), European Soil Erosion Model (EUROSEM: Morgan et al., 1998), Kinematic 43 

Runoff and Erosion Model (KINEROS2: Smith et al., 1995), Pan European Erosion Risk Assessment 44 

(PESERA: Kirkby et al., 2003), Revised Universal Soil Loss Equation (RUSLE2015: Panagos et al., 45 

2015), and the Soil and Water Assessment Tool (SWAT: Arnold et al., 1998).  46 

Although they are efficient as decision support tools, one of the limiting factors of most 47 

hydrological models is that they require a large number of spatially and temporally variable input 48 

data (Abouabdillah et al., 2014). Additionally, model results are affected by uncertainties with regards 49 

to the conceptual model, input and parameterisation, which can complicate performance (Pappemberg 50 
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& Beven, 2006, Abbaspour et al., 2007; Refsgaard et al., 2007; Gotzinger & Bardossy, 2008; Yang 1 

et al., 2008; Abbaspour et al., 2015) 2 

The SWAT model is one of the most widely used semi-distributed models for evaluating 3 

erosion and sediment transport processes, allowing simulation of dominant sediment sources (Oeurng 4 

et al., 2011; Bonumá et al., 2012; Furl et al., 2015; Krysanova & White, 2015; Vigiak et al., 2015); 5 

however, recent studies (Table I) have identified difficulties in simulating hydrology and sediment 6 

load in regions under Mediterranean climates, according to the Koppen (1931) classification of: 7 

Mediterranean basin, coastal California, southern Australia, South Africa and central Chile. The 8 

absence of streamflow, which is frequently recorded in the river networks of these regions, is a critical 9 

point in model hydrological simulations (De Girolamo et al., 2017). Moreover, a few studies reported 10 

SWAT applications to simulate sediment load in Mediterranean basins with temporary river systems 11 

(Gamvroudis et al., 2015), with particular reference to sediment modeling on a daily timescale 12 

(Licciardello et al., 2011). Generally, sediment calibration and validation is performed on a monthly 13 

basis (Table I), and the results, which are presented on a yearly to monthly basis, show an 14 

underestimation of sediment load. Nevertheless, in medium or small watersheds, a large difference 15 

can be found between daily and monthly values, in terms of sediment load, therefore a monthly 16 

timescale is not exhaustive for analysing erosion and sediment delivery processes in these watersheds. 17 

Mediterranean rivers exhibit a specific hydrological regime, characterised by extremely low flow 18 

with flash flood events (Bisantino et al., 2010; Skoulikidis et al., 2017), which complicates both 19 

monitoring and modeling activities (Oueslati et al., 2015; De Girolamo et al., 2017). Although 20 

measurements of streamflow and sediment concentration on a daily timescale are fundamental for 21 

river research and watershed management, monitoring surface waters remains a challenge in the 22 

Mediterranean region.  23 

In this context, the aims of the present study were to: (i) evaluate SWAT model suitability in 24 

simulating runoff and sediment loss in the Carapelle (SE Italy), a typical Mediterranean watershed, 25 

where continuous measurements of streamflow and sediment concentration were collected over a 26 

five-year period, on a half-hour timescale, successively processed on a daily timescale; (ii) identify a 27 

strategy for improving sediment load simulation in streams characterised by extremely low flow; and 28 

(iii) assess model capabilities in the evaluation of sediment connectivity, by identifying source zones 29 

and sediment deposition along the channel in the watershed, in order to address where a program of 30 

measures can be implemented to mitigate soil erosion. 31 

Dealing with a streamflow and sediment load simulation in a typical watershed under 32 

Mediterranean climate, we tried to analyse and discuss what water resources managers can expect 33 

from hydrological models, and the problems that modelers have to acknowledge and overcome. The 34 

approach tested in this paper for sediment calibration, as part of the global model calibration, despite 35 

being specific to the SWAT model, is applicable to different models, and to other basins characterised 36 

by extreme low flow and high temporal variability in streamflow, such as the Carapelle. 37 

 38 
Table I. A selection of relevant studies performed on the Mediterranean climatic region (classification of 39 
Koppen, 1931), concerning sediment load simulation with the SWAT model (this paper included). 40 
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 1 
 2 

2. Materials and methods 3 

2.1 Study area 4 
The Carapelle watershed (Figure 1) is located in northern Apulia (SE Italy). The drainage area is 506 5 

km2 and the main channel length is 52.16 km. The watershed is characterised by a mean elevation of 6 

466 m above sea level (asl), varying between 120 and 1089 m asl. The mean watershed slope is 8.2%, 7 

and the mean slope of the main channel is 1.8%. 8 

The river headwaters are in the neighboring Campanian Apennine region, and most of the upper 9 

watercourse crosses the orographic system of the Daunia Hills (Abdelwahab et al., 2013). The 10 

channel is confined to the hilly part of the basin, and assumes a braided form in the alluvial plain, 11 

where the coarser material is deposited. The hydrological regime is characterised by high variability 12 

over a short time, with extremely low flow conditions during the summer months (June to September) 13 

and high flow conditions recorded in winter and early spring.  14 

Sheet wash and concentrated water erosion are the main active erosion processes in the area, 15 

with no noticeable form of gully erosion. In addition, several landslides are present in the area, where 16 

the geological units (clay-flysch: http://93.51.158.165/POR/map_default.phtml) are susceptible to 17 

slope movement mainly related to rainfall events (Wasowski et al., 2007). Bank erosion is also an 18 

active process, especially in the upstream river reaches. 19 

Mediterranean climatic conditions prevail in the watershed, with wet autumn/winter and dry 20 

spring/summer seasons (Milella et al., 2012). Precipitation ranges from 450 to 800 mm y-1, and the 21 

rainiest months are March and November, while August is the driest.  22 

The monitoring station, which is located near the village of Ordona (41°17'50.347"N, 23 

15°36'2.583"E), is equipped with two gauging systems. For measuring streamflow, the Puglia Region 24 

Technical Service (National Hydrographic Service) provides an electromechanical and ultrasound 25 

stage meter that registered data every half an hour. An infrared optical probe (Hach-Lange Solitax) 26 

was used for measurements of suspended sediment concentration (SSC) at half-hour intervals. The 27 

streamflow and SSC measurements were processed in order to obtain daily sediment loads over the 28 

whole study period (2007-2011), with only a few weeks interruption for maintenance. A complete 29 

description of the gauging station and equipment can be found in Gentile et al. (2010). The highest 30 

Related case 

studies 
Study area 

Calibration and Validation 

Period and time step 
Key results 

Potter & Hiatt., 
2009 

California Few a year grab sample 
measurements 

Calibration 2005 - 2007 

Average annual sediment load  3.66 t ha-1 yr−1 

SWAT model generally tends to underestimate the measured sediment 

PBIAS for three gauge station: + 52.6; +26.5 and +73.9 

Gamvroudis et al., 
2014 

Greece Monthly time step 
Calibration 2010 - 2011 

Average annual sediment yield 0.85 t ha−1
 yr−1 

In the two main flood event SWAT, simulate suspended sediment appropriately with a 

slight underestimation. 

PBIAS for two gauging station: +33.4 and +13.4 
Nerantzaki et al., 

2015 

Greece Monthly time step 

Calibration: 2011 - 2014 

Average erosion rate from 0.97 t ha-1 yr−1 to 1.6 t ha-1 yr−1 

Model overestimation due to the fact that the majority of the observations had low 

values of sediment concentration  
PBIAS -57% 

Peraza-Castro et 

al., 2015 

Northern 

Spain 

Daily time step 

Calibration 2009 - 2012 
Validation 2001 - 2009 

Average annual sediment load 0.33 t ha-1 yr−1 

Underestimation and overestimation during some flood events. The underestimation 
occurs for four events that according to Montoya-Armenta (2013). 

Briak et al.,  

2016 

Northern 

Morocco 

Monthly time step 

Calibration 1976 - 1984 
Validation 1985 - 1993 

Average annual sediment yield 55 t ha-1 yr−1 

Generally SWAT tends to underestimate peak of sediment concentration 
PBIAS +7.12 for calibration; PBIAS +15.51 for validation 

Gyamfi et al., 

2016 

Southern 

Africa 

Monthly time steps 

Calibration 1994 - 1995 
Validation 1996 - 1997 

Mean sediment yield for the Land use change scenario varies from 1.33 t ha-1 yr−1 to 

4.46 t ha-1 yr−1.  
Simulated sediment match fairly with the observed with an underestimation 

PBIAS + 27.36 for calibration; PBIAS +39.73 for validation 

Chen et al.,  
2017 

California Monthly time step 
Calibration 2003 - 2008 

Validation 2009 - 2014 

Model significantly overestimate sediment load during peak events with default 
Bagnold equation, but produced better results when the physically based Bagnold 

equation is used. 
PBIAS - 32 for Calibration; PBIAS 0 for Validation 

This Work Southern 

Italy 

Daily and Monthly time step 

Calibration 2007-2008 
Validation 2009 - 2010 

Average annual sediment load 6.8 t ha-1 yr−1 

SWAT model showed generally  an overestimation of the dry season and an 
underestimation of the wet season 

http://93.51.158.165/POR/map_default.phtml
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SSC recorded in the study period is 47.83 g L-1, corresponding to a peak flow of 19.82 m3 s-1 (Garcìa-1 

Rama et al., 2016). 2 

 3 

 4 
Figure 1. Study area: the Carapelle watershed (Apulia region, SE Italy). 5 
 6 

 7 

2.2 Model configuration 8 
The SWAT2012 version with Arc-GIS interface (Winchell et al., 2013) was run from 2007 to 2011, 9 

using a daily interval, with two years of warm up (2005-2006). SWAT is a semi-distributed, 10 

continuous hydrological model (Arnold et al., 1993; Arnold et al., 1998) that was developed for 11 

assessing the long-term impacts of different conservation and management practices on water bodies 12 

in ungauged catchments (Srinivasan et al., 1998; Arnold et al., 2012; Glavan et al., 2013). The history 13 

of the model can be found on http://www.brc.tamus.edu/swat/ and a review of recent developments 14 

and applications has been reported in Volk et al. (2016). 15 

For simulation of the physical processes associated with water and sediment, the SWAT 16 

model divides the watershed into sub-basins and, further, into hydrological response units (HRU) that 17 

are areas with homogenous slope, land use, management and soil characteristics. In our study, the 18 

watershed was discretised by setting the upstream drainage area, which is required to define the 19 

beginning of a stream, to 2000 ha, resulting in 17 sub-basins. A percentage threshold of land use, soil 20 

class, and slope were then set to 10%, 10%, and 20%, respectively, resulting in 87 HRUs. We verified 21 

that, with these thresholds, only minor land uses and soils were eliminated, and that the original 22 

proportion of land use and soil within each sub-basins was maintained. Extra caution was used to 23 

ensure that areas with high potential erosion were not excluded from these thresholds.  24 

Hydrological balance is considered to be the driving factor, as it affects all physical processes 25 

in the watershed, including plant growth, chemicals and sediment routing (Arnold et al., 2012). The 26 

model simulates hydrology in two separate phases: the landscape phase, which controls the quantity 27 
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of water, sediment, nutrients and pesticides moving from each sub-basin towards the main stream; 1 

and the in-stream phase, which controls the movement of water and sediments in the stream system 2 

towards the watershed outlet. Surface runoff is estimated using the modified Soil Conservation 3 

Service-Curve Number (SCS-CN) method (USDA-SCS, 1972), and Manning’s equation is used to 4 

predict stream velocity and discharge. Erosion in SWAT is computed using the Modified Universal 5 

Soil Loss Equation (MUSLE: Williams, 1975), which determines sediment yield using the same 6 

parameters as the original USLE, except that the rainfall erosion factor is replaced by a runoff factor. 7 

The entire estimated amount of eroded sediment in the hillslope areas reaches the channel (Le Roux 8 

et al., 2013). The model considers most connectivity aspects in one simulation package, including 9 

factors controlling upland sediment generation, channel transport, and sediment deposition (Collins 10 

& Walling, 2014). For channel sediments, SWAT simulates the two dominant sediment transport 11 

processes of degradation and deposition (Neitsch et al., 2002), with a simplified version of the 12 

Bagnold stream power relationship (Bagnold, 1977), where the maximum transport is based on the 13 

peak channel velocity. The Hargreaves Method was chosen to evaluate potential evapotranspiration 14 

(Hargreaves, 1975), since temperature and solar radiation values were available for the study area. 15 

The SWAT model generated several output files and results aggregated at different levels: 16 

basin, sub-basin, river segment (reach), and HRU. The SWAT model does not consider the processes 17 

of deposition during transport from the HRU to the channel. Hence, an entire sub-basin is identified 18 

as a source of sediment; however, by processing the in- and out-variables generated by the model, it 19 

is possible to identify the reaches where there is sediment deposition, and the critical HRUs in terms 20 

of soil loss. 21 

 22 

2.3 Input data  23 
A Digital Elevation Model (DEM), with a resolution of 20×20 m, was used to delineate the watershed. 24 

Land use data are based on a merge between the Land Use Map of Apulia and the Land Agricultural 25 

Use Map of Campania, both with a resolution of 100 m, obtained from the geoportals of both regions. 26 

The land use is largely represented by winter wheat (76%), with a lower fraction of deciduous forest 27 

(7%), coniferous forest (4%), olive orchard (3.3%), rangeland (7%), and other land uses. All classes 28 

were reclassified, according to the Corine Land Cover classes (European Environment Agency, 29 

2006), and a SWAT code was then assigned to each land use to create the land use database. 30 

Currently, soil data with high resolution, covering the whole basin, are not available. Hence, 31 

the soil data attributes were extracted from the topsoil physical properties for European maps 32 

(Ballabio et al., 2016) that were provided by the European Soil Data Centre (ESDAC), based on the 33 

Land Use and Cover Area Frame Statistical survey (LUCAS) data, a project aimed at collecting 34 

homogenous data about the state of land use/cover across the European Union (Tóth et al., 2013). 35 

Through a GIS-based process of overlaying different maps (texture, coarse fragment, bulk density, 36 

organic carbon, and available water capacity), a layer that gathered all soil characteristics was 37 

obtained, with a resolution of 500 m. Five soil textures were identified, with clay loam texture 38 

representing almost 48% of the watershed area. Soil profiles were identified using the Soil Profile 39 

Analytical Database for Europe (SPADE/2: Hiederer et al., 2006), creating a link between the 40 

database and a map of soil polygons from the Soil Geographic Database of Europe (SGDBE). 41 

Climate data (e.g. daily maximum and minimum temperatures, daily precipitation), acquired 42 

by eight weather stations located in the watershed and its surroundings, were used as the input climate 43 

data for the simulations. The management operation data, regarding winter wheat and olive, were 44 

collected from field surveys and farmer interviews. Planting, harvesting, and tillage applications were 45 

simulated for each cropping system with specific dates. For winter wheat, a four-year crop rotation 46 

was adopted, with plowing (25-40 cm) in August, harrowing in October, and three fertilisations in 47 

December, February, and April. In order to take into account the actual agricultural practices (deep 48 

and up and down plowing), the SWAT2012.mdb was modified with a new value for depth (400 mm). 49 

The crop was planted in November and harvested in July. For olive plants, on the other hand, three 50 

shallow tillages (plowing and harrowing) occurred every two months, starting in April, two organic 51 
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fertilisations were applied in December and January, and the plants were harvested in November 1 

(Abdelwahab et al., 2016). 2 

 3 

 4 

 5 

 6 

2.4 Model calibration and validation 7 
The automated software SWAT-CUP (Abbaspour et al., 2015) was used to perform a global 8 

sensitivity analysis, in order to remove insensitive parameters from the calibration process. A t-test 9 

was used to identify a measure of sensitivity (i.e. larger absolute values imply higher sensitivity) of 10 

each hydrological and sediment parameters (Arnold et al., 2012), and p-values were used to determine 11 

the significance of the sensitivity, by testing the null hypothesis where the coefficient is equal to zero 12 

or, in other words, where the parameter has no effect (e.g. a p-value < 0.05 means that there is only 13 

5% probability that results would generate a random distribution) (Swiss Federal Institute of Aquatic 14 

Science and Technology [EAWAG], 2013). At the end of the sensitivity analysis, the 10 most 15 

sensitive parameters for runoff and four parameters for sediment were chosen to be analysed 16 

thoroughly in a model calibration process. 17 

The observed data for runoff and sediment load were collected from 2007 to 2011, on a daily 18 

timescale. In order to perform a runoff calibration and validation, the observed streamflow data were 19 

split into two periods (Gan et al., 1997). Hence, the calibration was performed for the years 2007-20 

2008, with validation for the period 2009-2011. The years selected for calibration and validation are 21 

representative of annual and inter-annual variability, in terms of rainfall, streamflow, and sediment 22 

load. A very dry spring and summer were recorded in 2007 and 2010 (e.g. precipitation in August 23 

0.47 mm in 2007; 0.72 mm in 2010). A very rainy November and December were recorded in 2008, 24 

2009, and 2010.  25 

Automatic calibration and parameter uncertainty analysis was performed for streamflow by 26 

applying Sequential Uncertainty Fitting v.2 (SUFI-2) on a daily timescale, using SWAT-CUP to 27 

search for parameter values that optimised an objective function, such as the Nash & Sutcliffe (1970) 28 

efficiency (NSE) value (Gupta et al., 1999). Before starting the automatic calibration process, the 29 

type of change to be applied to the parameter was selected (EAWAG, 2013). In particular, to reflect 30 

physical factors such as soil type, land use, elevation, and their spatial variability, for CN and 31 

available water capacity (SOL_AWC), it was chosen to maintain the spatial variability, and the initial 32 

fixed value for HRU was multiplied by a 1+a given value (letter R in Table II). For the other 33 

parameters, the initial fixed value was replaced by a given value (letter V in Table II). 34 

Subsequently, the model was calibrated for sediment load, as recommended by several studies 35 

(Santhi et al., 2001; Engel et al., 2007; Arnold et al., 2012). A manual calibration at daily intervals 36 

was preferred in this case, due to the reduced number of parameters (four) evidenced by the sensitivity 37 

analysis (Table II). The calibration was carried out for a period of two years (2007-2008) maintaining 38 

fixed runoff parameters. By changing sediment parameters one at a time, and for the whole basin, a 39 

range of values was considered for each parameter, and the best simulation was fixed, based on the 40 

maximum objective function (NSE). 41 

To evaluate the model efficiency, we used the coefficient of determination (R2), NSE, and the 42 

percent bias (PBIAS). The obtained R2 values show the degree of collinearity between simulated and 43 

measured data. The NSE determines the relative magnitude of the residual variance, compared to the 44 

variance of the measured data. The PBIAS measures the average tendency of the simulated data to be 45 

larger or smaller than the measured data (Gupta et al., 1999). Acceptable values are considered as 46 

NSE > 0.5, R2 > 0.5, and PBIAS ± 25 for runoff and ± 55 for sediment, as suggested by Moriasi et al. 47 

(2007). Other authors (e.g. Zema et al., 2016) considered a value of NSE > 0.35 to be satisfactory in 48 

Mediterranean areas. 49 

Another step was the evaluation of the model performance, by splitting all the daily and 50 

monthly values into two periods, one corresponding to the wet season (from October to April) and 51 
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the other the dry season (from May to September). After that, a new calibration for sediment was 1 

performed on a seasonal basis. 2 

 3 

 4 

3. Results 5 

3.1 Modelling 6 
The most sensitive parameters for runoff and sediment and the corresponding t-Stat and p-value used 7 

in the model calibration process are showed in Table II. 8 

After 1000 iterations, SWAT-CUP identified a range of values for each parameter included in 9 

the sensitivity analysis, based on the maximum objective function, which in this case was the NSE. 10 

Using these ranges, SWAT-CUP simulated a 95% probability distribution (95PPU), which was 11 

calculated at 2.5% and 97.5% of the cumulative distribution of results (Abbaspour et al., 2015), 12 

yielding the best fit value corresponding to the set of parameters that gives the best estimation curve 13 

(Table II). The results of the uncertainty analysis, using the SUFI-2, are shown in Figure 2, which 14 

illustrates the best simulation, the observed streamflow, and the 95PPU. As shown in Figure 2, the 15 

uncertainty interval is quite large under both high and low flow conditions. These results are 16 

consistent with the studies of Uhlenbrook et al. (1999) and De Girolamo et al. (2017). 17 

 18 
Table II. SWAT sensitivity analysis results, default range of parameters and best-fit calibration. Letter R is for 19 
relative change (initial parameter is multiplied by 1+ a given value in calibration). Letter V is for replacement 20 
(initial parameter is replaced by a given value). 21 

Parameters Description t-Stat p-Value Range Best fit 

Runoff 

V__ESCO.hru Soil Evaporation compensation factor 174.459 0.000 0.83-1.00 1.000 

R__CN2.mgt  Curve Number 145.900 0.000 0.04-0.11 0.080 

V__ALPHA_BF.gw  Baseflow alpha factor 88.771 0.000 0.38-0.75 0.460 

V__GWQMN.gw  Threshold depth of water in shallow aquifer 1.399 0.162 0.19-0.40 0.300 

V__GW_REVAP.gw  Groundwater “revap” coefficient 0.934 0.351 0.03-0.14 0.060 

V__CH_N2.rte  Manning’s “n” value for main channel -4.374 0.000 0.01-0.03 0.010 

V__CH_K2.rte  Effective hyd. Cond. In the main channel -17.760 0.000 38.70-42.90 40.910 

V__GW_DELAY.gw  Groundwater delay time -33.269 0.000 31.11-70.37 35.600 

V__OV_N.hru  Manning’s “n” value for overland flow -42.025 0.000 7.51-12.54 12.510 

R__SOL_AWC.sol  Soil available water storage capacity -61.333 0.000 0.39-0.57 0.560 

Sediment 

ADJ_PKR.bsn 
Peak rate adjustment factor for sediment routing in the 

sub-basin 
0.087 0.931 

- 
1.400 

LAT_SED.hru Sediment concentration in groundwater flow -0.643 0.520 - 250.000 

SPCON.bsn 
Maximum amount of sediment reentrained during 

channel sediment routing 
-0.672 0.502 - 0.003 

BIOMIX.mgt Biological mixing efficiency -0.785 0.432 - 0.500 

 22 

 23 
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Figure 2. Observed daily streamflow, 95% model uncertainty, and best simulation at the outlet. Calibration 1 
period: 2007-2008. 2 
 3 

The daily sediment calibration (2007-2008) results (i.e. best fit simulation and uncertainty 4 

interval) are reported in Figure 3. Daily sediment validation was carried out for a three-year period 5 

(2009-2011). 6 

 7 

 8 
Figure 3. Daily observed and simulated sediment, model uncertainty, and best simulation at the outlet. Calibration 9 
period: 2007-2008. Daily sediment calibration for period 2007-2008. 10 

 11 

The goodness of fit between the modeled and observed data for the calibration period was 12 

evaluated using the NSE, R2 and PBIAS indices. Statistical index values are shown in Table III, both 13 

for the calibration and validation periods. The values obtained for daily streamflow and sediment 14 

calibration showed satisfactory model efficiency, according to Moriasi et al. (2007), while those 15 

obtained for the validation period should be considered not satisfactory according to the same Authors 16 

(Table III). On a monthly timescale the values can be considered satisfactory according to Moriasi et 17 

al. (2007) and Zema et al. (2016) both for calibration and validation. 18 

To better investigate results obtained from the calibration and validation, all daily values were 19 

split into two periods, one corresponding to the wet season (October to April) and the other to the dry 20 

season (May to September). All were then statistically reconsidered. The results (Figure 4) revealed 21 

that the model tends to perform better in the wet season, compared to the dry season, both for runoff 22 

and sediment simulations. In particular, upon evaluating the model performance on a monthly scale, 23 

runoff showed good performance (NSE = 0.7, R2 = 0.6, PBIAS = 3.6) in the wet season, while it was 24 

unsatisfactory in the dry season (NSE = -0.3, R2 = 0.7, PBIAS = -43.3), for which an overestimation 25 

was revealed. After an accurate analysis of the dry period, which included rainfall, measured and 26 

simulated streamflow, it was evident that the low performance was mainly due to few flood events 27 

occurred in 2010 due to convective rainfalls. In these cases, to enhance SWAT simulation results, 28 

Moon et al. (2004), Kalin & Hantush (2006) suggest to use Next-Generation Weather Radar 29 

(NEXRAD) precipitation. Unfortunately, in Carapelle watershed these kind of data were not 30 

available. However, a check was done to evaluate the performance of the model without these three 31 

events. The results in terms of statistics were satisfactory, hence based on this evidence a calibration 32 

based on a seasonal scheme was not carried out. 33 

Monthly sediment simulations showed similar good results in the wet season (NSE = 0.6, R2 34 

= 0.7, PBIAS = -28.2). In the dry period, the model performance was unsatisfactory (NSE = 0.1, R2 35 

= 0.2, PBIAS = +69.0); however, in this case, an underestimation of the data was indicated.  36 

Based on these results, a new calibration of sediment load was performed, differentiating 37 

between the dry and wet seasons. In particular, as the streamflow varied from extremely low (0.010 38 

m3 s-1) to high (60 m3 s-1), a combination of two different values of the linear parameter for calculating 39 

the maximum amount of sediment that can be re-entrained during channel sediment routing (SPCON) 40 

(Table II) for the dry and wet periods was found to perform better channel sediment routing in the 41 

Carapelle river system. The initial range of this parameter (0.0001-0.01) was restricted to a smaller 42 

interval of variability (0.0008-0.005). In particular, while the best value for the whole hydrological 43 
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year, in terms of statistical performance, was 0.003, two different optimal values were identified for 1 

the dry (0.0008) and wet (0.005) seasons. With this strategy, the results improved, in terms of 2 

statistical indices, as listed in Table III, while it was found that, by using the values 0.0008 and 0.005, 3 

for the whole period, PBIAS was +77.78 and -53.65, respectively.  4 

 5 
Table III. Model performance statistics for annual calibration/validation and for seasonal calibration (wet/dry 6 
periods). 7 

Daily 0.6 0.6 -1.0 0.4 0.4 2.0 

Monthly 0.9 0.8 12.5 0.6 0.6 -14.3 

Sediment 

Daily 0.6 0.6 -1.5 0.2 0.2 29.5 

Monthly 0.7 0.5 -0.6 0.7 0.7 -5.3 

  Wet Dry 

Runoff 

Daily 0.5 0.5 1.6 0.4 -1.4 -39.8 

Monthly 0.6 0.7 -3.6 0.7 -0.3 -43.3 

Sediment 

Daily 0.5 0.5 17.3 0.2 -3.7 -140.1 

Monthly 0.7 0.6 -28.2 0.2 0.1 69.0 

Sediment with new calibration 

  Wet (SPCON 0.005) Dry (SPCON 0.0008) 

Daily 0.5 0.6 -38.4 0.5 0.5 33.9 

 8 

 9 
Figure 4. Simulated daily streamflow versus observed daily streamflow for the wet (NSE = 0.45, R2 = 0.5, PBIAS 10 
= +1.58) and dry (NSE = -1.42, R2 = 0.35, PBIAS = -39.83) seasons (a); simulated daily sediment load versus 11 
observed daily sediment load for the wet (NSE = 0.5, R2 = 0.5, PBIAS = +17.26) and dry (NSE = -3.73, R2 = 0.2, 12 
PBIAS = -140.06) (b) seasons. 13 
 14 

In order to evaluate the efficiency of the new calibration, all the flood events were analysed 15 

in terms of peak discharge and sediment load. In Figure 5a three events with different intensities (14th 16 

October, 2010; 19th February, 2011; 5th March, 2011) are represented. By using SPCON = 0.003 (best 17 

value for whole period); the observed sediment load is generally underestimated. As the Figure 5a 18 

shows , observed sediment load was 10341 t, 35914 t, and 64281 t in October, February, and March, 19 

respectively, while simulated load was 4245 t, 49294 t, and 30508 t, respectively. In the same way, 20 

by using a SPCON = 0.005, sediment load for the three events became 11306 t, 37226 t, and 68875 21 

t, respectively. Analysing the dry period (Figure 5b) (from May to July, 2007), it is evident that 22 

observed sediment load is overestimated, by using the best value for the whole period. An 23 

improvement of fit was obtained by using the value calibrated specifically for the dry period (SPCON 24 

= 0.0008). 25 

 26 
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 1 
Figure 5. a) Observed and simulated streamflow for three events; observed and simulated sediment load from the 2 
whole hydrological year value (SPCON = 0.003) and seasonal calibration value for channel routing (SPCON = 3 
0.005). b) Observed and simulated streamflow for three months, observed and simulated sediment load from the 4 
whole hydrological year value (SPCON = 0.003) and seasonal calibration value for channel routing (SPCON = 5 
0.0008). 6 
 7 

3.2 Streamflow and sediment load 8 
Analysis of the model results for the five-year study period on a basin scale show that only 17% of 9 

rainfall (119 mm of the average yearly value of 686 mm) reaches the river network through surface 10 

runoff, and 85% (500 mm) is lost via evapotranspiration, which is a value similar to those obtained 11 

from other studies in the same region (Romanazzi et al., 2015). A total water yield, considered as the 12 

sum of surface runoff, lateral flow, and groundwater contribution net of transmission losses, of 186 13 

mm was simulated, corresponding to 27% of the total rainfall, while the average annual sediment 14 

loading was 6.8 t ha-1 yr-1. 15 

The pattern of sediment load at the outlet of the watershed follows the pattern of streamflow (Figure 16 

6). Sediment dynamics in the Carapelle watershed show a winter (December to April) dominant 17 

erosion pattern, caused by rainfall events. At the outlet, about 60% of the average annual discharge, 18 

and nearly 90% of the annual sediment load, are transported in the wet season (October to April). 19 

Meanwhile, during the dry months (May to September), sediment loading is very low (≤ 0.2 t ha-1). 20 

High inter-annual variability was simulated in sediment loads, ranging from 3.18 t ha-1 yr-1 to 12.1 t 21 

ha-1 yr-1, as a consequence of different climatic conditions recorded in 2008 and 2009, with yearly 22 

rainfalls of 553 mm and 829 mm, respectively.  23 

The hillslope sediment delivery ratio (SDR) was computed for the whole basin as the ratio of 24 

sediment yield to the stream at the outlet, divided by the gross erosion occurring on the hillslopes. 25 

SDR is generally interpreted as transport efficiency of sediment from the hillslopes to the stream 26 

network (Ferro & Porto 2000; Lu et al., 2006). In the study area, the average annual SDR assumes a 27 

value of 0.3, ranging from 0.19 to 0.42 for the driest and wettest years, 2008 and 2009, respectively. 28 

 29 
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 1 
Figure 6. Comparison between streamflow and sediment load. 2 
 3 

3.3 Sediment source areas 4 
Analysing the model results on a sub-basin scale, a high difference in soil loss among the upper, 5 

central, and lower parts of the study area can be observed (Figure 7a). The upstream area is 6 

characterised by high erosion rates (7-13 t ha-1 yr-1), which slowly decrease along the downstream 7 

sub-basins. The morphology has a great influence on erosion. Indeed, sub-basins showing the highest 8 

annual erosion (e.g. sub-basins 16, 17) are characterised by steep slopes, while low values of soil loss 9 

(<1 t ha-1 yr-1) are simulated in the flat sub-basins (e.g. sub-basins 1, 2, and 3). 10 

Figure 7b shows, with respect to deposition in the reaches, the highest value, simulated in the 11 

central part of the Carapelle basin, which is downstream of the steeper reaches, where there is a first 12 

alluvial plain (sub-basin 15). Here, the river assumes a braided course, and there is deposition of the 13 

coarser material. The mountainous part of the basin shows an absence of, or very low, deposition 14 

(<0.15 t ha-1 yr-1). 15 

Furthermore, the principal land uses, as identified by the model in the HRU analysis, as well 16 

as the rainfall, slope, and soil types, were related to the sediment yield in order to identify the main 17 

source areas (Table IV). The result of this analysis evidences that the mean annual specific sediment 18 

loss is mostly conditioned by rainfall and slope. For instance, the model simulates a sediment loss for 19 

winter wheat ranging from 0.1 t ha-1 yr-1 to 15 t ha-1 yr-1. It seems that soil texture exerts a minor 20 

influence, especially in the upper part of the basin. This is due to the fact that soils, classified as clay 21 

and clay-loam in the mountainous part of the basin, show similar properties. The highest value of soil 22 

loss is predicted for the winter wheat crop, with a sediment loss of 15.38 t ha-1 yr-1, under average 23 

annual rainfall of about 900 mm, along a steep slope (15%). As expected, forest and rangeland show 24 

lower values of sediment loss.  25 

Figure 7c, which is colour-coded by land use, shows all the critical HRUs in the sub-basins  26 

that are characterised by a mean annual sediment yield greater than the threshold value of 1.40 t ha-1 27 

y-1 set by Verheijen et al. (2009). This threshold value represents tolerable soil erosion for conditions 28 

prevalent in Europe, for which a deterioration or loss of one or more soil functions does not occur. In 29 

the same figure, the white HRUs are characterised by tolerable erosion values. 30 

 31 
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 1 
Figure 7. a) Average annual sediment yield on sub-basin scale; b) average annual sediment deposition in channel; 2 
c) location of critical HRUs in sub-basins as a function of land use. 3 
 4 
Table IV. Mean annual sediment yield for each sub-basin as a function of land use, rainfall, soil type, and slope. 5 

Subbasins Land use 
Rainfall 
(mm) 

Soil type 

 Slope (%) Sediment Yield 

    (t ha-1 yr-1) 

min max min max 

1 
Winter wheat 578.68 Silty-Clay-Loam/Clay-Loam 0.23 7.18 0.05 1.67 

Olive Groves 578.68 Silty-Clay-Loam/Clay-Loam 8.38 9.20 2.07 2.34 

2 Winter wheat 612.28 Silty-Clay/Clay-Loam 0.28 6.45 0.08 1.41 

3 Winter wheat 578.68 Silty-Clay-Loam/Clay-Loam 0.25 6.36 0.05 1.06 

4 

Deciduous Forests 847.4 Clay/Clay-Loam 25.08 27.05 1.7 7.49 

Winter wheat 847.4 Silty-Clay/Silty-Clay-Loam/Clay-Loam 0.25 15.07 0.26 13.83 

Olive Groves 847.4 Clay-Loam 15.04 8.22 

5 Winter wheat 578.68 Silty-Clay/Clay-Loam 4.52 9.48 0.72 2.77 

6 Winter wheat 592.84 Clay/Silty-Clay 11.49 11.89 3.08 3.36 

7 Winter wheat 578.68 Clay/Silty-Clay/Clay-Loam 7.94 11.40 1.98 3.45 

8 

Rangeland 592.84 Clay/Clay-Loam 26.85 30.85 0.36 0.79 

Deciduous Forests 592.84 Clay-Loam 28.90 0.11 

Winter wheat 592.84 Clay/Clay-Loam 16.65 17.46 5.76 6.76 

9 Winter wheat 702.8 Clay/Silty-Clay/Clay-Loam 10.19 16.25 5.33 10.61 

10 
Winter wheat 702.8 Clay/Clay-Loam 12.78 14.41 6.59 8.59 

Deciduous Forests 702.8 Clay/Clay-Loam 19.10 23.97 0.22 0.68 

11 

Winter wheat 702.8 Silty-Clay-Loam/Clay-Loam 0.14 15.61 0.13 8.75 

Rangeland 702.8 Clay-Loam 18.49 0.25 

Deciduous Forests 702.8 Clay-Loam 21.62 0.25 

Beushes and srhubs 702.8 Clay-Loam 0.12 19.76 0.13 0.16 

12 

Winter wheat 592.84 Clay/Clay-Loam 13.30 16.75 3.52 6.27 

Deciduous Forests 592.84 Clay-Loam 33.40 0.13 

Beushes and srhubs 592.84 Clay/Clay-Loam 25.87 26.45 0.07 0.25 

Olive Groves 592.84 Clay/Clay-Loam 23.82 26.36 3.21 3.42 

13 

Deciduous Forests 702.8 Clay-Loam 23.11 0.27 

Beushes and srhubs 702.8 Clay-Loam 22.49 0.17 

Winter wheat 702.8 Clay/Clay-Loam 12.64 16.31 5.58 10.3 

14 
Rangeland 702.8 Clay/Clay-Loam 18.27 18.45 0.25 0.34 

Winter wheat 702.8 Clay/Clay-Loam 15.08 15.22 9.68 9.74 

15 
Rangeland 592.84 Clay/Clay-Loam 14.60 19.25 0.13 0.3 

Winter wheat 592.84 Clay/Clay-Loam 13.21 14.26 4.19 4.28 
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16 

Rangeland 719.08 Clay/Clay-Loam 21.65 23.00 8.02 13.63 

Deciduous Forests 719.08 Clay-Loam 23.87 1.41 

Winter wheat 719.08 Clay/Clay-Loam 16.92 18.59 10.67 13.99 

Olive Groves 719.08 Clay-Loam 19.37 12.64 

17 
Rangeland 898.88 Clay/Clay-Loam 18.53 20.22 0.57 0.64 

Winter wheat 898.88 Clay/Clay-Loam 14.14 15.08 13.23 15.38 

 1 

 2 

4. Discussion 3 

4.1 Modelling streamflow 4 
The results obtained reveal that the SWAT model is able to predict runoff in the Carapelle basin, 5 

despite the complexity of the catchment area and limited availability of input data. The automatic 6 

procedures (SUFI-2 in SWAT-CUP) used to calibrate the hydrological processes proved to be 7 

successful assistance tools, despite the numerous parameters that should be taken into account.  8 

It has been found that the most sensitive hydrological parameters are closely related to 9 

evapotranspiration (i.e. soil evaporation compensation factor) and surface runoff processes (i.e. curve 10 

number). Hence, it can be stated that the streamflow regime in the Carapelle basin is dominated by 11 

surface runoff, while the baseflow has a minor influence on total water yield. Our study confirms the 12 

results of similar studies in southern Italy (De Girolamo et al., 2017, Licciardello et al., 2017). 13 

Streamflow simulation performances, analysed with statistical indices (R2, NSE, PBIAS) on 14 

a daily time interval, showed better results for the calibration period, compared to the validation 15 

period where only the PBIAS value can be considered very good, while the R2 and NSE values are 16 

unsatisfactory; however, when analysing the obtained results on a monthly scale, and using the 17 

performance thresholds suggested by Moriasi et al., (2007), SWAT showed a satisfactory 18 

performance in simulating streamflow. These results are in agreement with several studies, which 19 

reported that model simulations are poorer using daily time intervals, with respect to monthly or 20 

yearly ones (Fernandez et al., 2005; Grizzetti et al., 2005; Engel et al., 2007; De Girolamo et al., 21 

2015). 22 

To better understand the performance of the model, a more detailed analysis was performed, 23 

in order to have information about which periods are simulated with greater or lesser success. What 24 

emerged from this analysis is that the SWAT model tends to better predict streamflow in the wet 25 

season, compared to the dry season. In particular, streamflow is generally over-predicted in the dry 26 

season. This statement is also confirmed by several studies that have reported a discrepancy between 27 

observed and simulated streamflow in extremely low flow conditions (Muleta et al., 2012). Guse et 28 

al. (2013) identified groundwater and evapotranspiration parameters as the main reasons for the low 29 

performance in the dry season. Moreover, it is well known that temporary rivers are one of the most 30 

unstable river systems, and among the most intensively endangered by hydrological fluctuations 31 

(Larned et al., 2010). For these watersheds, the capacity of hydrological models in simulating 32 

extremely low flow conditions has been discussed (Kirkby et al., 2011; De Girolamo et al., 2015).  33 

It should be also considered that the reliability of the data, especially that for rainfall, used in 34 

the model simulations plays a relevant role in model results. A lack of direct correspondence between 35 

rainfall and observed streamflow was found both in the calibration and in the validation periods. In 36 

particular, some peaks of flow were recorded in the absence of measured rainfall events. This 37 

discrepancy can be due to errors in measurements (rainfall or streamflow), or to convective rainfall 38 

events localised in small areas around the stations, or gaps in the time-series. In addition, the number 39 

of gauging stations and their locations, which in our study were not spatially well-distributed across 40 

the basin, can have a great influence on model performance. Moreover, we have verified the presence 41 

of missing data in rainfall data series. To fill the gaps, we used the weather generator module, included 42 

in the SWAT model, which estimates the missing data through equations based on weather parameter 43 

statistics of the monitoring stations. However, although the method works well in filling the gaps, it 44 
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is expected that the estimated rainfall could be different from the true values and, consequently, 1 

simulated peak flows may not match measured values. A large number of statistical techniques is 2 

available to fill the gaps in rainfall time-series (Barca et al., 2016). For the Mediterranean climate, a 3 

more reliable method for filling the gaps than that used by the SWAT model could be the ‘weighted 4 

similarity index’, which is based on the similarity of some factors between stations 5 

(geomorphological and statistical correlation). These methods require time-series of climatic data 6 

recorded at several gauging stations, both inside and outside the basin, which were not available for 7 

our study. 8 

According to Strauch et al. (2012), another method to enhance SWAT simulation results is to use 9 

radar data precipitation, while, White et al. (2009) used the seasonal calibration scheme. The best 10 

strategy should be selected case by case after a critical analysis of the study area and the simulation 11 

results. In this study, radar data are not available and the discrepancies between simulated and 12 

observed streamflow in the dry period were mainly due to few events caused by convective rainfall, 13 

therefore a seasonal calibration scheme for streamflow was not carried out. 14 

 15 

4.2 Modeling sediment load 16 
Generally, the SWAT model has proven to simulate runoff better than sediment load. The range of 17 

values obtained in sediment calibration and validation is nevertheless satisfactory (Moriasi et al., 18 

2007) and similar to those reported by Zabaleta et al. (2014), Beeson et al. (2014), and Almendinger 19 

et al. (2014). There may be different reasons for low model performance in simulating sediment load. 20 

Many authors have complained about problems related to measured sediment data, such as the need 21 

for a large record to test the model profoundly (Bonumá et al., 2014), deficiency of data authenticity 22 

(Bieger et al., 2014), and poor statistical accuracy, due to the small magnitude of sediment load (Lu 23 

et al., 2014). In this study, as already reported by Bieger et al. (2014), the coarse resolution of DEM, 24 

soil and land use data, in addition to problems in the transferability of the MUSLE approach (Williams 25 

& Berndt, 1977) could be a reason for poor sediment yield simulation. Moreover, the SWAT model 26 

does not simulate bank erosion (Abouabdillah et al., 2014), which is an active process in the study 27 

area. On the other hand, point sources of sediment (i.e. mass movements) and connectivity remain 28 

difficult to describe in most models (De Vente et al., 2006). Indeed, several landslides have been 29 

enumerated, caused by the geotechnical properties of the units present in the area (clay-flysch). The 30 

activity of landslides is characterised by remobilisation of slope movement, related to rainfall events, 31 

which are the most relevant triggers of landslides (Wasowski et al., 2007). It should be kept in mind 32 

that, besides all previously given reasons that could lead to model inefficiency, especially in semi-33 

arid zones (Douglas-Mankin et al., 2010), hydrological models experience prediction uncertainty due 34 

to their own structure, input data, and parameters (Refsgaard et al., 2007). 35 

 For sediments, the most sensitive parameter is the peak rate adjustment factor (ADJ_PKR) for 36 

sediment routing in the sub-basin. This result is expected, as most of the sediment load is transported 37 

during floods. Additionally, the linear parameter for calculating the maximum amount of sediment 38 

that can be re-entrained during channel sediment routing (SPCON) was also found to be sensitive. In 39 

the seasonal calibration, a combination of two different values for this parameter, for the dry (0.0008) 40 

and wet periods (0.005), was found and implemented in order to improve channel sediment routing 41 

in the Carapelle river system. This is because, when the multiplication coefficient of the peak channel 42 

velocity in the Bagnold equation (SPCON) assumes a high value, the maximum transport capacity 43 

(i.e. concentration limit) increases. At the beginning of each time interval, the SWAT compares the 44 

inflow sediment concentration to the concentration limit. If the inflow concentration exceeds the limit, 45 

deposition occurs until a maximum sediment concentration is reached. The seasonal calibration can 46 

be justified for use in the dry season because the river network is a continuum where completely dry 47 

river segments and perennial reaches coexist, and flow conditions are very dissimilar from those of 48 

the wet period (De Girolamo et al., 2017). On the other hand, the results show that, with this approach, 49 

simulated and observed sediment loads are in very good agreement for flood events and for the dry 50 

period. Hence, we can say that it is necessary to go beyond statistical performance and select the best 51 
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set of parameters, taking into account the processes acting in the basin and the final objectives of the 1 

work. In this case, expert knowledge can be fundamental in making the conceptual model more 2 

realistic. Finally, our results show that the daily timescale adopted in this study is relevant for studying 3 

streamflow and sediment load regimes when the duration of flood events is a few days (or hours), as 4 

in the Carapelle basin, where the average monthly values were potentially not representative. The 5 

seasonal calibration scheme has already been used in SWAT for runoff (Lèvesque et al., 2008; Guse 6 

et al., 2013; Zangh et al., 2015), and our results verify that this approach can be used also for 7 

improving the performance of sediment simulation. 8 

 9 

4.3 Sediment source areas  10 
 On a basin scale, the SWAT model simulated an average sediment yield of 6.8 t ha-1 yr-1. 11 

These results are in line with those presented by Van Rompaey et al. (2005) for watersheds with 12 

similar characteristics in southern Italy; however, a large difference was found within the basin with 13 

regard to soil loss, ranging from 0 to 15 t ha-1 yr-1. This estimation is higher than what was reported 14 

for the northern areas of the Apulia region by Panagos et al. (2015), who found erosion rates ranging 15 

from 5 to 10 t ha-1 yr-1 by applying the RUSLE equation. It has been speculated that this difference is 16 

due to the different data resolution used in these two studies.  17 

Through analysis of soil loss on the sub-basin scale, a gradient was identified between the 18 

highest values in the mountainous part of the basin (subs 16 and 17) and the lowest values in flat 19 

areas (subs 1, 2, and 3). As an important role in soil erosion is played by the slope (Licciardello et al., 20 

2017), upstream sub-basins are characterised by higher values of slope, compared to the downstream 21 

areas. Slope can also be considered a key factor in the case of deposition, such that higher values are 22 

concentrated in the central part of the watershed, where the slope is lower than the upstream area.  23 

Based on this analysis, there are some sub-basins that apparently show anomalous results, 24 

such as 4 and 15. The former has both high erosion and deposition rates, as it is characterised by an 25 

upstream area with a high slope and flat downstream area. As a result, most of the sediment generated 26 

upstream is deposited in the same reach. On the other hand, sub-basin 15, although being located in 27 

the upstream area of the watershed, is also located downstream of the steeper reaches, and is 28 

characterised by an alluvial plain. For this reason, it has high deposition and medium erosion rates.  29 

It is known that low-slope areas limit sediment transport connection, in contrast to how an 30 

increase in the slope improves the connectivity (Borselli et al., 2008). It can, therefore, be stated that 31 

the Carapelle watershed has a middle area, where reaches receive and store many sediments, which 32 

causes a poor connectivity between the upstream area and the outlet. Generally, comparison between 33 

erosion and deposition maps reveals that SWAT is able to determine the sediment source locations, 34 

both in sub-basins and HRUs (Figure 7), as well as in the sink zones located in reaches. Moreover, 35 

the SWAT model, once efficiently calibrated and validated, can be used in scenario analysis to assess 36 

connectivity modifications in sediment migration modelling due to land use changes (Le Roux et al., 37 

2013). 38 

Soil formation rates are generally very low. For example, 100 to 400 years are needed to 39 

develop one centimetre of topsoil in Europe. Verheijen et al. (2009) found a rate of soil formation of 40 

1.40 t ha-1 y-1 (0.056 mm yr-1). This study show that land degradation in the Carapelle basin is a 41 

problem, indeed the soil loss (~7 t ha-1 yr-1, corresponding to 0.24 mm yr-1) is higher than this value. 42 

This means that soil is being lost much faster than the rate of renewal, and that soil erosion is 43 

effectively irreversible, with potentially high environmental and economic impacts.  44 

At the level of HRUs, land cover is a very significant factor (Licciardello et al., 2017), in 45 

addition to slope and precipitation, required to determine which areas have a high risk of erosion 46 

within sub-basins. The map in Figure 7c and Table IV show that, in the Carapelle watershed, winter 47 

wheat and olive groves are the major source areas. As expected, forest and rangeland represent the 48 

land use producing the lowest soil losses for each class of soil and slope. There are only a few forest 49 

and rangeland areas that produce sediment higher than the indicated threshold (i.e. > 1.40 t ha-1 y-1). 50 

Winter wheat (76% of the total area) requires tillage in autumn, leaving soils unprotected for most of 51 
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the wet season (Trombetta et al., 2016). Additionally, erosion is facilitated by deep, and up and down, 1 

ploughing, which is quite common in this basin. In order to correctly reproduce the deep and up and 2 

down ploughing, the SWAT2012.mdb database was modified, substituting the default value of depth 3 

of plough (moldboard plough 2 way) with a new one (400 mm). Moreover, high values of CN (from 4 

82 to 87) were used to simulate the unprotected soil conditions. Indeed, to take into account the 5 

presence of vegetation in forests and rangeland areas, low values of CN were used (from 65 to 72). 6 

Rainfall characteristics and soil type (mainly clay-loam), contributed to the erosion, as well as 7 

landslide activities. Hence, the combined analysis of Figure 7 and Table IV is very significant for 8 

determining the sources of sediments and their locations within sub-basins. Moreover, they are useful 9 

instruments in helping to prioritise the implementation of BMPs in the watersheds (Betrie et al., 10 

2011). 11 

This study confirms that Mediterranean watersheds are fragile agro-ecosystems because soil 12 

essentially constitutes a non-renewable resource (López-Vicente et al., 2013). Hence, to mitigate the 13 

impact of agriculture on soil depletion, BMPs have to be considered by the policy-makers of regional, 14 

national, and European Union institutions. A combination of agricultural (e.g. direct sowing of wheat 15 

with no tillage operation) and environmental measures (e.g. reforestation of the riparian buffers) may 16 

reduce soil erosion from the watershed (Abdelwahab et al., 2014). For this purpose, analysis of 17 

sediment source zones and deposition areas is crucial, as shown by Dickinson et al. (1990), who 18 

reported that there is an economic advantage to identifying the areas that have a higher potential to 19 

deliver sediment, with the aim of prioritising the implementation of control measures, and to facilitate 20 

planning for sustainable land management.  21 

 22 

 23 

Conclusions 24 
 25 

This study reports the results of the SWAT model application in simulating streamflow and sediment 26 

yield, and identifying sediment source areas in the Carapelle watershed. We intend this to be a 27 

contribution to help improve techniques for calibrating hydrology and sediment load in watersheds 28 

under Mediterranean climates, where the high variability of rainfall and hydrological regime makes 29 

it difficult to reproduce low flow and sediment accurately. The results of the present work show that 30 

the SWAT model is able to assess hydrological and sediment. On the other hand, the study confirms 31 

the problems associated with characterising the complexity and range of the environmental variables 32 

of these basins, as already reported in the literature. The automatic procedure used for calibrating the 33 

hydrological processes proved to be a successful assistance tool; however, it generally over-predicts 34 

streamflow in the dry season. The model tends to better predict streamflow in the wet season, and it 35 

has proven to simulate runoff better than sediment load. The statistical performance in a global 36 

calibration of sediment load, on a monthly timescale, is satisfactory; however, on a daily timescale, 37 

the results are unsatisfactory for the validation period. Hence, to further improve sediment 38 

performance here, a combination of two different values of the Bagnold’s equation parameter were 39 

proposed for the channel sediment routing, for the wet and dry seasons, respectively. With this 40 

strategy, the performance of the model is acceptable for both wet and dry periods, also on a daily 41 

timescale, and major flood events are well predicted for streamflow and sediment load. In the study 42 

area, the results show that erosion was mainly a winter process, and the major sources of sediment 43 

are those sub-basins characterised by steep slopes, where sediment mainly originates from winter 44 

wheat fields. The results also show that soil is being lost faster than the rate of replenishment, and 45 

that the soil erosion process is irreversible in the Carapelle basin. To mitigate the impact of agriculture 46 

on soil depletion and land degradation, conservative agricultural practices, and positive 47 

environmental measures have to be considered by policy-makers. For this purpose, the SWAT model 48 

is a useful tool because it permits the identification of areas that are at high risk of erosion and where 49 

different management options can be implemented for sustainable land management.  50 

 51 
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 1 
Table I. A selection of relevant studies performed on the Mediterranean climatic region (classification of 2 
Koppen, 1931), concerning sediment load simulation with the SWAT model (this paper included). 3 
 4 

 5 

 6 
Table II. SWAT sensitivity analysis results, default range of parameters and best-fit calibration. Letter R is for 7 
relative change (initial parameter is multiplied by 1+ a given value in calibration). Letter V is for replacement 8 
(initial parameter is replaced by a given value). 9 
 10 

Parameters Description t-Stat p-Value Range Best fit 

Runoff 

V__ESCO.hru Soil Evaporation compensation factor 174.459 0.000 0.83-1.00 1.000 

R__CN2.mgt  Curve Number 145.900 0.000 0.04-0.11 0.080 

V__ALPHA_BF.gw  Baseflow alpha factor 88.771 0.000 0.38-0.75 0.460 

V__GWQMN.gw  Threshold depth of water in shallow aquifer 1.399 0.162 0.19-0.40 0.300 

V__GW_REVAP.gw  Groundwater “revap” coefficient 0.934 0.351 0.03-0.14 0.060 

V__CH_N2.rte  Manning’s “n” value for main channel -4.374 0.000 0.01-0.03 0.010 

V__CH_K2.rte  Effective hyd. Cond. In the main channel -17.760 0.000 38.70-42.90 40.910 

V__GW_DELAY.gw  Groundwater delay time -33.269 0.000 31.11-70.37 35.600 

V__OV_N.hru  Manning’s “n” value for overland flow -42.025 0.000 7.51-12.54 12.510 

R__SOL_AWC.sol  Soil available water storage capacity -61.333 0.000 0.39-0.57 0.560 

Sediment 

ADJ_PKR.bsn 
Peak rate adjustment factor for sediment routing in the 

sub-basin 
0.087 0.931 - 1.400 

LAT_SED.hru Sediment concentration in groundwater flow -0.643 0.520 - 250.000 

SPCON.bsn 
Maximum amount of sediment reentrained during 

channel sediment routing 
-0.672 0.502 - 0.003 

BIOMIX.mgt Biological mixing efficiency -0.785 0.432 - 0.500 

 11 

Related case 
studies 

Study area 
Calibration and Validation 
Period and time step 

Key results 

Potter & Hiatt., 

2009 

California Few a year grab sample 

measurements 

Calibration 2005 - 2007 

Average annual sediment load  3.66 t ha-1 yr−1 

SWAT model generally tends to underestimate the measured sediment 

PBIAS for three gauge station: + 52.6; +26.5 and +73.9 
Gamvroudis et al., 

2014 

Greece Monthly time step 

Calibration 2010 - 2011 

Average annual sediment yield 0.85 t ha−1
 yr−1 

In the two main flood event SWAT, simulate suspended sediment appropriately with a 

slight underestimation. 
PBIAS for two gauging station: +33.4 and +13.4 

Nerantzaki et al., 

2015 

Greece Monthly time step 

Calibration: 2011 - 2014 

Average erosion rate from 0.97 t ha-1 yr−1 to 1.6  t ha-1 yr−1 

Model overestimation due to the fact that the majority of the observations had low 
values of sediment concentration  

PBIAS -57% 

Peraza-Castro et 
al., 2015 

Northern 
Spain 

Daily time step 
Calibration 2009 - 2012 

Validation 2001 - 2009 

Average annual sediment load 0.33 t ha-1 yr−1 
Underestimation and overestimation during some flood events. The underestimation 

occurs for four events that according to Montoya-Armenta (2013). 

Briak et al.,  
2016 

Northern 
Morocco 

Monthly time step 
Calibration 1976 - 1984 

Validation 1985 - 1993 

Average annual sediment yield 55 t ha-1 yr−1 

Generally SWAT tends to underestimate peak of sediment concentration 

PBIAS +7.12 for calibration; PBIAS +15.51 for validation 

Gyamfi et al., 
2016 

Southern 
Africa 

Monthly time steps 
Calibration 1994 - 1995 

Validation 1996 - 1997 

Mean sediment yield for the Land use change scenario varies from 1.33 t ha-1 yr−1 to 
4.46 t ha-1 yr−1.  

Simulated sediment match fairly with the observed with an underestimation 

PBIAS + 27.36 for calibration; PBIAS +39.73 for validation 
Chen et al.,  

2017 

California Monthly time step 

Calibration 2003 - 2008 

Validation 2009 - 2014 

Model significantly overestimate sediment load during peak events with default 

Bagnold equation, but produced better results when the physically based Bagnold 

equation is used. 
PBIAS - 32 for Calibration; PBIAS 0 for Validation 

This Work Southern 
Italy 

Daily and Monthly time step 
Calibration 2007-2008 

Validation 2009 - 2010 

Average annual sediment load 6.8 t ha-1 yr−1 
SWAT model showed generally  an overestimation of the dry season and an 

underestimation of the wet season 
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Table III. Model performance statistics for annual calibration/validation and for seasonal calibration (wet/dry 1 
periods). 2 
 3 

  Calibration Validation 

 R2 NSE PBIAS R2 NSE PBIAS 

Runoff 

Daily 0.6 0.6 -1.0 0.4 0.4 2.0 

Monthly 0.9 0.8 12.5 0.6 0.6 -14.3 

Sediment 

Daily 0.6 0.6 -1.5 0.2 0.2 29.5 

Monthly 0.7 0.5 -0.6 0.7 0.7 -5.3 

  Wet Dry 

Runoff 

Daily 0.5 0.5 1.6 0.4 -1.4 -39.8 

Monthly 0.6 0.7 -3.6 0.7 -0.3 -43.3 

Sediment 

Daily 0.5 0.5 17.3 0.2 -3.7 -140.1 

Monthly 0.7 0.6 -28.2 0.2 0.1 69.0 

Sediment with new calibration 

  Wet (SPCON 0.005) Dry (SPCON 0.0008) 

Daily 0.5 0.6 -38.4 0.5 0.5 33.9 

 4 
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 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 
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 15 

 16 

 17 

 18 
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 23 

 24 

 25 
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 27 

 28 

 29 
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Table IV. Mean annual sediment yield for each sub-basin as a function of land use, rainfall, soil type, and slope. 1 
 2 

Subbasins Land use 
Rainfall 
(mm) 

Soil type 

 Slope (%) Sediment Yield 

    (t ha-1 yr-1) 

min max min max 

1 
Winter wheat 578.68 Silty-Clay-Loam/Clay-Loam 0.23 7.18 0.05 1.67 

Olive Groves 578.68 Silty-Clay-Loam/Clay-Loam 8.38 9.20 2.07 2.34 

2 Winter wheat 612.28 Silty-Clay/Clay-Loam 0.28 6.45 0.08 1.41 

3 Winter wheat 578.68 Silty-Clay-Loam/Clay-Loam 0.25 6.36 0.05 1.06 

4 

Deciduous Forests 847.4 Clay/Clay-Loam 25.08 27.05 1.7 7.49 

Winter wheat 847.4 Silty-Clay/Silty-Clay-Loam/Clay-Loam 0.25 15.07 0.26 13.83 

Olive Groves 847.4 Clay-Loam 15.04 8.22 

5 Winter wheat 578.68 Silty-Clay/Clay-Loam 4.52 9.48 0.72 2.77 

6 Winter wheat 592.84 Clay/Silty-Clay 11.49 11.89 3.08 3.36 

7 Winter wheat 578.68 Clay/Silty-Clay/Clay-Loam 7.94 11.40 1.98 3.45 

8 

Rangeland 592.84 Clay/Clay-Loam 26.85 30.85 0.36 0.79 

Deciduous Forests 592.84 Clay-Loam 28.90 0.11 

Winter wheat 592.84 Clay/Clay-Loam 16.65 17.46 5.76 6.76 

9 Winter wheat 702.8 Clay/Silty-Clay/Clay-Loam 10.19 16.25 5.33 10.61 

10 
Winter wheat 702.8 Clay/Clay-Loam 12.78 14.41 6.59 8.59 

Deciduous Forests 702.8 Clay/Clay-Loam 19.10 23.97 0.22 0.68 

11 

Winter wheat 702.8 Silty-Clay-Loam/Clay-Loam 0.14 15.61 0.13 8.75 

Rangeland 702.8 Clay-Loam 18.49 0.25 

Deciduous Forests 702.8 Clay-Loam 21.62 0.25 

Beushes and srhubs 702.8 Clay-Loam 0.12 19.76 0.13 0.16 

12 

Winter wheat 592.84 Clay/Clay-Loam 13.30 16.75 3.52 6.27 

Deciduous Forests 592.84 Clay-Loam 33.40 0.13 

Beushes and srhubs 592.84 Clay/Clay-Loam 25.87 26.45 0.07 0.25 

Olive Groves 592.84 Clay/Clay-Loam 23.82 26.36 3.21 3.42 

13 

Deciduous Forests 702.8 Clay-Loam 23.11 0.27 

Beushes and srhubs 702.8 Clay-Loam 22.49 0.17 

Winter wheat 702.8 Clay/Clay-Loam 12.64 16.31 5.58 10.3 

14 
Rangeland 702.8 Clay/Clay-Loam 18.27 18.45 0.25 0.34 

Winter wheat 702.8 Clay/Clay-Loam 15.08 15.22 9.68 9.74 

15 
Rangeland 592.84 Clay/Clay-Loam 14.60 19.25 0.13 0.3 

Winter wheat 592.84 Clay/Clay-Loam 13.21 14.26 4.19 4.28 

16 

Rangeland 719.08 Clay/Clay-Loam 21.65 23.00 8.02 13.63 

Deciduous Forests 719.08 Clay-Loam 23.87 1.41 

Winter wheat 719.08 Clay/Clay-Loam 16.92 18.59 10.67 13.99 

Olive Groves 719.08 Clay-Loam 19.37 12.64 

17 
Rangeland 898.88 Clay/Clay-Loam 18.53 20.22 0.57 0.64 

Winter wheat 898.88 Clay/Clay-Loam 14.14 15.08 13.23 15.38 

 3 


