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Abstract: Remote sensing images (RSIs) are widely used in various fields due to their versatility,
accuracy, and capacity for earth observation. Direct application of RSIs to harvest optimal results is
generally difficult, especially for weak information features in the images. Thus, extracting the weak
information in RSIs is reasonable to promote further applications. However, the current techniques
for weak information extraction mainly focus on spectral features in hyperspectral images (HSIs),
and a universal weak information extraction technology for RSI is lacking. Therefore, this study
focused on mining the weak information from RSIs and proposed the deep multi-order spatial-
spectral residual feature extractor (DMSRE). The DMSRE considers the global information and
three-dimensional cube structures by combining low-rank representation, high-order residual
quantization, and multi-granularity spectral segmentation theories. This extractor obtains spatial—
spectral features from two derived sequences (deep spatial-spectral residual feature (DMSR) and
deep spatial-spectral coding feature (DMSC)), and three RSI datasets (i.e., Chikusei, ZY1-02D, and
Pasture datasets) were employed to validate the DMSRE method. Comparative results of the weak
information extraction-based classifications (including DMSR and DMSC) and the raw image-based
classifications showed the following: (i) the DMSRs can improve the classification accuracy of indi-
vidual classes in fine classification applications (e.g., Asphalt class in the Chikusei dataset, from
89.12% to 95.99%); (ii) the DMSC improved the overall accuracy in rough classification applications
(from 92.07% to 92.78%); and (iii) the DMSC improved the overall accuracy in RGB classification
applications (from 63.25% to 63.6%), whereas DMSR improved the classification accuracy of indi-
vidual classes on the RGB image (e.g., Plantain classes in the Pasture dataset, from 32.49% to
39.86%). This study demonstrates the practicality and capability of the DMSRE method to promote
target recognition on RSIs and presents an alternative technique for weak information mining on
RSIs, indicating the potential to extend weak information-based applications of RSIs.

Keywords: remote sensing; spatial-spectral feature; feature extraction; weak information;
classification
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1. Introduction

Remote sensing images (RSIs) can capture details of ground objects [1]; thus, they are
widely used in agriculture, military, resource exploration, and change detection [2-5]. In-
formation extraction is one of the most important step in RSI processing and plays a sig-
nificant role in the application of RSIs [6]; however, information extraction from RSIs still
remains challenging [7], especially in weak information. Weak information features in
RSIs generally refer to information that is less apparent or easily overshadowed by sur-
rounding features [8], and weak information is hard extract after preprocessing [9], e.g.,
soil salinity [10], heavy metals [11]. Achieving optimal results for weak information fea-
tures can be challenging. Therefore, developing an approach for efficient mining of weak
information in RSIs is necessary to facilitate and promote their application.

The feature extraction (FE) technique is an effective way to address the challenging
task of information extraction in RSIs [12]. This technique helps extract suitable feature
information from the raw RSIs for remote sensing [13]. The most common FE techniques
for RSIs can be divided into three major categories: spectral-, spatial-, and spatial-spectral-
based FE methods. Classical spectral-based FE methods for RSIs, such as principal com-
ponent analysis (PCA) [14] and linear discriminant analysis (LDA) [15], are widely ap-
plied. PCA identifies the projection with the minimum data reconstruction error, while
LDA aims to retain the information necessary to separate the target classes [16]. However,
the above methods are unsuitable for modeling the nonlinear relationships for complex
RSI data [17,18]. Thus, numerous extension methods based on PCA and LDA, such as
robust PCA [19], sparse PCA [20], subspace LDA [21], regularized LDA [22], and so on
[23-25], have been proposed. Several other techniques have also been introduced to tackle
this problem and achieve highly advantageous results, such as utilizing locality-preserv-
ing projection [26], locality-preserving nonnegative matrix factorization [27], nonnegative
matrix factorization [28], and Gaussian mixture models [29]. However, the spectral-based
FE methods are commonly known as the dimensionality reduction method, which loses
the detailed information and the spectral relationship of RSIs.

In the context of spatial-based FE methods, the gray-level co-occurrence matrices,
Gabor wavelets [30], morphological profiles (MPs) [31], and Markov random fields [32]
are widely applied. However, the spatial-based FE methods via neighborhoods of pixels
were limited by the scale selection and the detailed content of very high-resolution images
[33]. Akcay et al. [33] exploited the structural information of RSIs using morphological
operators to address these problems and achieved excellent performance. Mallinis et al.
[34] extracted local patterns of images via texture measurement methods and yielded su-
perior classification results. However, the use of only spatial or spectral information may
occasionally be insufficient to achieve desired results [17]. Therefore, combining the spa-
tial and spectral information of RSIs has the potential to achieve high performance in FE.

As imaging technology continues to evolve, the spatial resolution of RSIs has signif-
icantly increased. This advancement enhances the accuracy of RSI applications by incor-
porating spatial information of neighboring positions into spectral-based feature extrac-
tion methods [35]. Therefore, numerous spatial-based FE methods have been introduced
into spectral-based FE methods to construct spatial-spectral-based FE methods. The ex-
tended MPs were developed for spatial-spectral feature extraction of RSIs [36] and ob-
tained a better classification result. Kang et al. [37] extracted the spatial-spectral features
via edge-preserving filtering, which assumed the correlation among neighboring objects,
and significantly improved the classification accuracy. In addition, the deep learning (DL)
method has achieved remarkable achievements in the spatial-spectral-based FE method
in RSIs [38,39]. Chen et al. [40] introduced a deep belief network to the extract spatial—
spectral features of RSIs and achieved a high accuracy of classification results. Based on
deep belief network, Ma et al. [41] added a regularization term to extract spectral-spatial
features by introducing an energy function in a spatially updated deep auto-encoder,
thereby providing encouraging results. Moreover, Kavitha et al. [42] proposed that a deep
e-CNN model using a spatial-spectral feature merging strategy effectively improves the
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classification performance. However, the spatial-spectral-based FE method based on DL
needs a large number of training samples, which increases its nonuniversality.

In the context of weak information extraction methods for RSIs, Kang [43,44] intro-
duced a multi-granularity spectral segmentation (MGSS) technique addressing hyper-
spectral weak information mining and achieved excellent performance in the quantitative
application of remote sensing. MGSS enables multi-granularity segmentation (MGS) and
multi-granularity reconstruction (MGRS) of spectral data via multi-granularity residual
(MGR). Kang [45] proposed an optimal pixel-based residual spectral reconstruction
method based on the MGRS and improved estimation accuracy of aboveground biomass
on grasslands. Building on the foundation of the MGR, Pang et al. [46] simulated hyper-
spectral data using the multispectral of sample points and achieved favorable results in
grassland micronutrient estimation. Fan et al. [10] expanded the MGSS to soil salinity
monitoring and found that MGSS technology can effectively extract weak spectral infor-
mation from soil, compared with the traditional spectral preprocessing methods, signifi-
cantly improved the correlation between spectra and soil. An increasing number of reports
have addressed this technology since the introduction of MGSS. However, the MGSS
method focuses on the spectral domain and disregards the spatial information of RSIs,
which limits its application in remote sensing.

The current study attempts to develop a spatial-spectral-based FE technique to ad-
dress the aforementioned problem. This technique can comprehensively consider the
three-dimensional structure and global information of RSIs to mine the weak information
in RSIs. Inspired by MGSS theory, this study proposes a novel spatial-spectral-based FE
technique by combining low-rank presentation (LRR), high-order residual quantization
(HORQ), and MGSS and discusses the characteristic and practicality of the extracted fea-
ture via its classification results.

2. Basic Methodology

HORQ, MGSS, and LRR are the important foundations of the proposed method.
HORQ and MGSS are used to mine the weak information in theory, and LRR is used to
explore the global structure of RSIs. Therefore, the four underlying components are briefly
reviewed in this section.

2.1. High-Order Residual Quantization

The HORQ technique [47] was proposed to accelerate and compress neural networks.
Building on the foundation of XNOR-Net [48], HORQ incorporates +1 or -1 Binary Coding
(BC + 1) [49] to achieve significant computational acceleration while maintaining network
accuracy. HORQ approximates the high-dimensional vector X as X = ;H;, where H;
represents the BC + 1 coding matrix of X, and f; is a positive factor, which denotes the
weighting coefficient of H;. The estimations for X and f;H, are as follows:

Bi, Hi = argmin(B;, H,)
B1.Hy (1)
= argmin||X — B Hy||,,
B1.H1

Considering Formula (1), Li [47] and Rastegari [48] provided comprehensive descrip-
tions of its analytical steps. The solution was as follows:

L1
{51 = ﬁ”X”l1

Hi = sign(X)’ @

where sign(X) represents the sign function of X. Furthermore, concerning the residual
of X, Li defined residual as follows [47]:

Ri_1(X) =X =X, BiH;, 3)
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where N is a positive integer greater than 1, and the encoding feature of X at i-order is
defined as follows:

Ci(X) = B:H;. @)

2.2. Multi-Granularity Spectral Segmentation

Based on the HORQ method, Kang et al. [43] introduced high-order binary coding
(HOBC) for hyperspectral images (HSIs), which enables high-performance coding com-
pression and lossless recovery of HSIs. Subsequently, Kang [45] extended HOBC to intro-
duce the MGSS technique. MGSS involves continuous quantization and decomposition of
the spectral information and mines weak spectral features within specific wavelength
ranges. This technique assumes the acquisition of spectral vectors as G, and its Nth order
reconstructed features can be expressed as follows:

G = XV-1BH; + Ry(G) = -1 BiH;. ©)

Kang [43] provided detailed derivations and explanations of the analytical derivation
of Formula (6). Thus, f; and H; can be represented as below:

{ﬁi = IR (&),

, . (6)
H; = sign(Ri—1(G))

The MGSS technique performs spectral feature decomposition on sampled points to
attain per-pixel spectral features of RSIs. However, the aforementioned methods concen-
trate on spectral features on a per-pixel basis, disregarding the three-dimensional struc-
ture that is inherent in RSIs.

2.3. Low-Rank Representation of RSIs

The RSl is a three-dimensional cube that combines imagery and spectral characteris-
tics. LRR is the introduced technique to fully consider the global spatial and spectral in-
formation of raw images. LRR is widely used in image processing due to its impressive
performance in capturing the global data structure [50]. Therefore, LRR is proposed for
RSIs to mine their global spectral-spatial character. During the FE process, the three-di-
mensional RSI is transformed into a two-dimensional low-rank matrix to incorporate the
global spatial-spectral information, allowing for globally optimized extracted features.
Figure 1 shows the flowchart of the LRR for RSIs.

Spectral

1<band 2+ band i* band

Figure 1. Flowchart of LRR for RSL

Suppose G € H™ ™ js the achieved RSI, m X n is the spatial size of G, and b is its
band number. Thus, G can be introduced as follows:

G = AE, (7)

where A € H™? isthe abundance matrix, E € HP*? is the endmember matrix, and p is
the number of endmembers. G is factorized into products of A and E; thus, the low rank
of G should be satisfied.
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rank(G) < min(rank(A),rank(E)) << min(mn, b). 8)

Therefore, if the LRR is used in the feature extraction for RSI, then it can be expressed
as below:

L* = arg minrank(E)

s.t.G—AE =0,G6>0,176 =17 ©

where G > 0,17G = 1T indicates E as nonnegative and oneness constraints.

3. Datasets and Methods

The datasets employed in this study are first introduced. The derivation of the pro-
posed method is then described in detail.

3.1. Datasets

This study conducted validation using three different RSI datasets to verify the effec-
tiveness of the proposed method in the weak information mining of RSIs, and the descrip-
tion of the three datasets is as follows:

(1) Chikusei dataset (CK dataset) [51]: The CK dataset was achieved using the Head-
wall Hyperspec-VNIR-C imaging sensor over agricultural and urban areas in Chikusei,
Ibaraki, Japan (Figure 2a). The image in the CK dataset comprises 2517 x 2335 pixels and
contains 128 bands, its spectral range is from 363 nm to 1018 nm, and its spatial resolution
is 2.5 m. The ground truth (GT) has 19 classes (including urban and rural areas) and was
collected via field survey and visual inspection using high-resolution color images ob-
tained using a Canon EOS 5D Mark II together with the hyperspectral data.

(2) ZY1-02D dataset (ZY dataset) [52]: The ZY dataset was achieved using the hyper-
spectral sensor on the ZY1-02D satellite in Changzhou city, China (Figure 2b). This dataset
has 166 contiguous bands covering the spectral wavelength range from 0.4 um to 2.5 um
and comprises 1999 x 2051 pixels. The spatial and spectral resolutions of this dataset are
30 m and 10 nm, respectively. The GT is only divided into five classes (i.e., Water, Bared,
Vegetation, Building, and Road), which are visually inspected using a high-resolution
multispectral image obtained by the ZY1-02D satellite and field survey, due to the low
spatial resolution (around 30 m) of the ZY dataset.

(3) Pasture dataset (PT dataset): The PT dataset was collected in the Hulunbuir grass-
land using the camera of a Huawei P40 mobile phone. The image in the PT dataset was
obtained via vertical photography with a 1.5 m height. The RGB image in the PT dataset
comprises 8192 x 6144 pixels. The GT for all RGB images in this dataset was obtained
through expert visual interpretation combined with field surveys, leading to the classifi-
cation of data into 10 categories. For the demands of this study, the used RGB image in
the PT dataset only contains five categories (Figure 2c).
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Figure 2. Color image sample of (a) CK dataset, (b) ZY dataset, (c) PT dataset; corresponding GT of
(d) CK dataset, (e) ZY dataset, (f) PT dataset; and corresponding legend of (g) CK dataset, (h) ZY
dataset, and (i) PT dataset.

The CK dataset was employed to assess the spatial and spectral features using the
deep spatial-spectral residual feature (DMSR) and deep spatial-spectral coding feature
(DMSC). Additionally, the CK dataset was used to determine the intraclass discrimination
capability of DMSR and DMSC in fine classification. The ZY dataset was utilized to eval-
uate the effectiveness of DMSRs and DMSCs in rough classification and examine the in-
terclass identification capacities of DMSR and DMSC. The CK dataset and ZY dataset con-
tain typical remote sensing images; however, RGB images are also an important source of
remote sensing data. Thus, this study also aims to test whether or not the proposed
method can be used to analyze RGB images with reasonable performance. Therefore, the
PT dataset was utilized to explore the feasibility of extending DMSRE to RGB images.

3.2. Deep Multi-Order Spatial-Spectral Residual Feature Extraction

The study aims to develop a spatial-spectral feature extraction technique for mining
weak information in RSIs. First, the proposed method tackles the global information
within RSIs by converting the three-dimensional structure of raw RSIs into a two-dimen-
sional spatial-spectral information matrix prior to the extraction process. Subsequently,
the extracted spatial-spectral features are reorganized into a three-dimensional structure,
ensuring dimensional consistency with the raw RSIs. Two sequences of spatial-spectral
features are extracted by iteratively decomposing the residuals of the raw RSIs. Figure 3
illustrates the flowchart of the proposed method.
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1-order 2-order 3-order n-order

Figure 3. Flowchart of the proposed method. (DMSR: deep spatial-spectral residual feature; DMSC:
deep spatial-spectral coding feature).

The proposed method extracts spatial-spectral features from RSIs in two directions,
at multiple depths, and in various orders (Figure 3) and thus is named deep multi-order
spatial-spectral residual feature extraction (DMSRE). DMSRE can extract two sequences
of spatial-spectral features with the same dimension of RSIs. The two spatial-spectral fea-
ture sequences are referred to as DMSRs and DMSCs. Each sequence of DMSR and DMSC
comprises features of multiple orders, with the nth order DMSR or DMSC labeled as the
n-order DMSC or DMSR. Furthermore, DMSRE is derived as follows:

Suppose L is a low-rank matrix of the achieved RSI G . If the 1st-order DMSR of L
is defined as R(L),, then . can be expressed as follows:

L= W1C1 + R(L)l, (10)
N
where G G{—L+l} is the coding matrixof ; and w, istheweightof C,. C; and w;
can generally be calculated as follows:

wy ==Ly, (11)

C, =sign(L). (12)
The R(L); in Formula (11) can then be further quantized as follows:
R(L); = wyC; + R(L),. (13)

Thus, Formula (10) can be rewritten:

L = W1C1 + WZCZ + R(L)Zl (14)

where
wy = = [RWlls, (15
C, =sign(R(L),) . (16)

Moreover, the R(L), can be quantized again. Therefore, the . can finally be intro-
duced as follows:

N
L= wC +R(L),. (17)

Formula (17) shows that the R(L); is close to 0, while the order N is sufficiently high.
Thus, Formula (10) can be written as below:
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Simultaneously, the analytical solutions of the weighted and coding matrices for each
depth are, respectively, presented:

wy = —IR(L)yll1, (19)

C, =sign(R(L);) - (20)
Finally, the DMSC and DMSR can be, respectively, expressed:
DMSC; = YN wic;, (21)

DMSRL- =L—- Ziv w;(C;. (22)

Formula (21) shows that the information content of the DMSC sequence features in-
creases with the order until it converges with that of the raw image. Conversely, the in-
formation content of DMSR (Formula (22)) decreases as the order increases until it con-
verges to zero. Combining Formulas (21) and (22), the raw RSI can be reconstructed by
the same order of DMSR and DMSC.

DMSRE can theoretically extract the feature indefinitely, with the terminated order
depending on the raw RSI and its application demands. Therefore, the mean spectral an-
gle (MSA) [53] and structural similarity index (SSIM) [54] were introduced to discuss the
terminated order. MSA characterizes the spectral similarity between the DMSC and the
raw RSI, whereas SSIM represents the structural similarity between the DMSC and the
raw RSI. These metrics are defined as follows:

_ (Quxpy+C1)(oxy+Cz)
SSIM(X,Y) = (2 AREAC1) (T2t Cr) (23)
mn
MSA 1 Z 180 X'y 24)
=— Y —arccos ——,
mn T XYl

=1
where X and Y denote the raw RSI and DMSC, respectively. Herein, py signifies the
mean value of X, u, represents the mean value of Y, and of and of correspond to the
variances of X and Y, respectively. oy, stands for the covariance between X and Y. Con-
stants C; and C, are introduced to ensure numerical stability during computations. In
Formula (24), m and n refer to the number of rows and columns of raw RSIs, respectively.
The value of SSIM lies in the range [0,1], where high values indicate high structural simi-
larity between DMSCs and raw RSIs. Conversely, small values for the MSA indicate high
spectral similarity.

3.3. Evaluation Metrics

In this study, F1 scores were employed to evaluation the classification results. The F1
score was evaluated based on the recall and precision, which can be expressed as follows:

TP
Recall = TPTEN (25)
.. TP
Precision = ——,
TP+FP

where TP represents true positives, TN true negatives, FP false positives, and FN false
negatives. Moreover, the F1 score can be expressed as follows:

1 _ 2Recall X Precision (26)
-seore = Recall + Precision

A higher F1 score indicates a better classification result. The overall accuracy and the
classification accuracy of the single class in the classification result were used to evaluate
the F1 score.
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4. Results
4.1. Experimental Setting

Theoretically, the proposed method can continuously extract features indefinitely
based on the raw image. However, the extracted DMSC is slightly changed while the order
is high. Moreover, the terminated order varies for different datasets and demands of ap-
plications. This study attempts to find the terminated order, which is highly spectrally and
spatially similar to the raw CK dataset (Figure 4). Considering the CK dataset as an exam-
ple, first-order to sixteenth-order DMSCs and DMSRs are extracted from the CK dataset,
and the MSA and SSIM values between the DMSC and the raw CK dataset are then calcu-
lated (Figure 5).

Data Chikusci dataset 02D dataset Pasture dataset
. High-order Residual Multi-Granularity
Low-rank Representaiton ° : '
(LRR) Quantization Spectral Segmentation
(HORQ) (MGSS)

Methods Deep Multi-Order Spatial-Spectral

Residual Feature Extraction

(DMSRE)
Deep Spatial-Spectral Deep Spatial-Spectral
Residual Feature Coding Feature
(DMSR) (DMSC)

Expe riments Random Forest Classifier

Spatial and Spectra - —
Discussion fj::\ﬁxr:ﬁ{l){;;cslll(ﬂ Pratical of DMSR Extension of DMSR
B and DMSC and DMSC and DMSC
Figure 4. Schematic of this study.
05
045
04
035
03
é 025
=
02
0.15
01
005
o
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Order(K) Order(K)
() (b)

Figure 5. SSIM (a) and MSA (b) values between the CK dataset and its DMSC.

It can be easily found that the SSIM is closer to 1 while the order is higher than the
eighth order, and the MSA is smaller than 0.05 (Figure 5). In this time, the DMSC is highly
similar to the raw image in the image structure and spectral domain. Although there were
some orders present that were higher (55IM) and lower (MSA) than the eight order, little
changed compared with the eighth-order DMSC. Therefore, considering the computa-
tional power and time costs, this study chose the eighth order as the terminal order of the
CK dataset.
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4.2. Spatial and Spectral Features of DMSR and DMSC
4.2.1. Spatial Features of DMSR and DMSC

The DMSR was obtained by continuously decomposing the residual of raw RSIs,
which indicates that the difference between the DMSR and raw image increases with or-
der. Therefore, the spatial visual of the DMSR displays the image darker than the raw CK
dataset in the beginning (Figure 6a), the ground objects in the DMSR gradually fragment
with high order (Figure 6), and the shape of the ground object cannot be observed in the
high order (Figures 6g,h).

(h)
Figure 6. Color image of (a-h) first- to eighth-order DMSR of the CK dataset.

The color images of the DMSC for the CK dataset are shown in Figure 6. The figure
demonstrates a black color in the first-order DMSC (Figure 7a), which only contains the
mean value of Li paradigm from the raw CK dataset, and the color varies depending on
raw RSIs. The information content of the DMSC gradually increases with the order. High-
reflectivity features, such as the roof and bare ground, are emphasized in the second-order
DMSC (Figure 7b). Vegetation such as farmland is highlighted in the third-order DMSC
(Figure 7c). Most ground objects are displayed in the fourth-order DMSC (Figure 7d) and
are visually increasingly similar to the raw image. Two detailed areas were selected and
enlarged to perform a detailed analysis to further understand the DMSR and DMSC trend,
as shown in Figure 8.
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Figure 8. Image of (a) detailed image 1, (b-i) first-order to eighth-order of DMSC of detailed image
1, (j) detailed image 2, and (k-r) first-order to eighth-order DMSR of detailed image 2.

Detailed image 1 shows the change in the DMSC with order (Figure 8b-i). The figure
reveals a black color at the first-order DMSC (Figure 8b), the high-reflectivity features
(e.g., roof) are displayed in the second order (Figure 8c), the vegetation (e.g., grassland) is
emphasized in the third order, the outline of most classes was recognized but without
intraclass information in the fourth order (Figure 8d), and the intraclass information was
refined when the order was higher than the fifth order (Figure 8f-i).
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Detailed image 2 is used to demonstrate the change in the DMSR with order (Figure
8k-r). The shapes of surface features show a tendency toward gradual fragmentation. The
DMBSR is visually similar to the raw image in the first order (Figure 8k), the features (e.g.,
roof) start to be gradually fragmented in the second order (Figure 8l), the weak information
has been gradually reflected when the order is higher than third order (Figure 8m); for ex-
ample, the information in the red box (Figure 8k-o), which is the shadow of the cloud on
the ground, is difficult to distinguish from the surrounding grass. However, the surround-
ing information in the third order to fifth order (Figure 8m-o0) demonstrates the capability
of the DMSR to mine weak information in RSIs. Overall, the results indicate that the DMSC
is appropriate for rough classification, whereas the DMSR is better suited for fine classifica-
tion. The DMSC and DMSR have the potential to enhance the accuracy of remote sensing
classification.

4.2.2. Spectral Features of DMSR

This study extracted the spectral features of vegetation in the DMSC and DMSR as
an example for analysis. The spectral curves are displayed in Figure 9.

(®) (8) (h)

RAW DMSR DMsC

Figure 9. Spectral (vegetation) features of (a-h) the spectral curves of the first-order to eighth-order
DMSC and DMSR.

In Figure 9, the blue curve is the spectral feature achieved from a raw RSI, while the
purple and green curves represent the curves of the DMSR and DMSC, respectively. The
DMSC shows a straight line in the first order (green line in Figure 9a), which only contains
the average value of its L: paradigm value. The second-order DMSC (Figure 9b) illustrates
the low-reflectivity features (e.g., vegetation) in visible spectral (0.37-0.71 um) and high-
reflectivity features in near-infrared spectral. The first- and second-order DMSCs only retain
minimal spectral information of raw RSIs, and the detailed spectral information of the
DMSC improves as the order increases (Figure 9c-h), bringing it close to raw RSIs.

On the contrary, the first-order DMSR (purple curve in Figure 9a) maintains all spectral
information but is only small in terms of spectral value because the first-order DMSR repre-
sents the raw RSIs minus its L1 paradigm value. The second-order DMSR (Figure 8b) high-
lights detailed information in the red edge spectral (approximately 0.7 um wavelength). The
DMBSR has increased spectral information in the first and second order, and the detailed
information becomes rich while the order becomes high (Figure 9b-h). Additionally, as the
order increases, the spectral value of the DMSR tends toward 0, while that of the DMSC
approaches the raw RSI’s.
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4.3. Classification Results Using DMSR and DMSC

This study performed classification experiments on raw RSIs and their extracted
DMSR and DMSC from three RSI datasets via random forest (RF) classifier to verify the
performance of the DMSC and DMSR. The CK dataset was applied for fine classification,
while the ZY dataset was applied for rough classification. The classification accuracy of
each single class and the overall accuracy were obtained from these classification results.
High values indicate superior classification results. Figures 10 and 11 illustrate the classi-
fication results for the DMSC and DMSR of the CK dataset, respectively.

() (h)
Figure 11. Classification results of (a—h) the first-order to eighth-order DMSC of the CK dataset.

The classification results using the DMSR (Figure 10) show minimal visual variation.
However, significantly more misclassifications are observed while the orders are higher
than the fifth order (Figure 10e-h). By contrast, the classification results via DMSC (Figure
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11) gradually increase the number of recognized classes as the order rises, and most clas-
ses have been recognized while the orders are greater than the fifth order (Figure 11e-h).
The classification and overall accuracies were calculated and are listed in Tables 1 and 2,
respectively, based on the classification results of the DMSR and DMSC.

Table 1 provides the classification accuracy of single class and the overall accuracy of
classification results; the F1 score was used to assess classification result both of overall
accuracy and the single class (the same applies to the following content). The overall ac-
curacy of the DMSR classification result displays a minor decrease as the order increases.
However, several individual classes achieved higher classification accuracy than the raw
image (highlighted in blue in Table 1), because the weak information related those classes
had been mined in the DMSR. The above conclusion supports that the DMSR can improve
the accuracy of individual class in fine classification application.

Table 1. Classification accuracy of different-order DMSRs of the CK dataset.

Class Name Raw First Or- Second Third Or- Fourth Fifth Or- Sixth Or- Seventh Eighth
der Order der Order der der Order  Order
Water 0.9939 0.9951 0.9916 0.9926 0.9939 0.9924 0.9754 0.9395 0.9402
School 0.9899 09850 0.9931 09855 09720 0.9483  0.9257 0.8300 0.7782
Park 0.7860  0.7146  0.8253  0.7566  0.5662  0.1176 ~ 0.5160  0.0000  0.0156
Farmland 09880 0.9826 0.9891 09847 09779 0.9630 09604 0.9446  0.9200
Plants 0.9935 09879  0.9895  0.9922 09893  0.9924 09849 0.9817 0.9834
Weeds 0.9704 0.9541 0.9530 0.9681 0.9626 0.9467 0.8929 0.9016 0.9045
Forest 0.9983 0.9962 0.9962 0.9951 0.9883 0.9857 0.9800 0.9742 0.9670
Grass 0.9953 0.9926 0.9957 0.9959 0.9948 0.9891 0.9772 0.9692 0.9611
Rice field (grown) 0.9987 0.9975 0.9978 0.9945 0.9847 0.9789 0.9739 0.9652 0.9539
Rice field 09951  0.9991 09973  0.9900 09913 0.9863 09842 09584  0.9689
Row crops 0.9971 09945 09936 0.9964 09947 0.9931 09846 0.9742  0.9570
House 09686  0.9794 09791 09687 09265 0.8136  0.7306  0.5956  0.5482
Manmade 09834 09834 09871 09680 09148 0.8597 0.8416  0.8203  0.8099
Manmade (dark) 0.9893  0.9942  0.9927 0.9928 09926 0.9885  0.9827 0.9723  0.9712
M?Ezgde 1.0000 09935 09868 09987 09564 0.8688 07524 05589  0.2982
M?;?j)de 09950 09928 09700 09199 09258 08371 00741  0.0000  0.0000
Manmade grass 0.9879 09873 09914 09835 09756  0.9001 0.8633  0.6983  0.5340
Asphalt 0.8912 09599 09511 09456 09391 09151 0.8593 0.5614  0.4500
Ground 09339 09153 0.8279 0.8851 0.8185  0.8302  0.0876  0.0000  0.0000
Overall accuracy 0.9922 09913 09921 09902 09824 0.9708 09570 0.9324  0.9177
Table 2. Classification accuracy of different-order DMSCs of the CK dataset.
Class Name Raw First Or- Second Third Or- Fourth Fifth Or- Sixth Or- Seventh Eighth
der Order der Order der der Order Order
Water 0.9939  0.0000 0.0000 0.8549 0.8526 09711 0.9913 09920  0.9931
School 0.9899  0.0000  0.0000  0.9290 0.9826 09868  0.9905  0.9941 0.9920
Park 0.7860  0.0000  0.0000  0.0000 0.3573  0.6038 0.6798  0.6699  0.7229
Farmland 0.9880 0.0000 0.0000 09503 0.9620 09785 0.9787  0.9825  0.9833
Plants 0.9935 0.0000 0.8034 09634 0.9829 09896  0.9890  0.9941 0.9927
Weeds 0.9704  0.0000  0.0020 0.8749  0.9250 0.9456  0.9401 0.9590  0.9584
Forest 0.9983 0.4184 0.7992 0.9250 0.9688 0.9936 0.9942 0.9963 0.9968
Grass 0.9953 0.0000 0.7099 0.9819 0.9926 0.9944 0.9942 0.9964 0.9945
Rice field (grown) 0.9987 0.0000 0.7530  0.8947  0.9574 09930 0.9943  0.9962  0.9976
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Rice field
Row crops
House
Manmade
Manmade (dark)
Manmade
(Red)
Manmade
(Blue)
Manmade grass
Asphalt
Ground
Overall accuracy

09951  0.0000  0.0000 0.9885 0.9851 0.9965 0.9961 0.9965 0.9978
09971  0.0000  0.3128 09617  0.9838 0.9919 0.9937  0.9928 0.9920
09686  0.0000  0.1283 0.8995 0.9691 0.9748 0.9782 0.9760 0.9836
09834  0.0000  0.9656 0.9781 0.9819 0.9813 0.9858 0.9890 0.9843
0.9893  0.0000  0.4234 0.9450 0.9485 0.9855 0.9920 0.9915 0.9931
1.0000  0.0000  0.3644 0.9948 1.0000 1.0000 1.0000 0.9924  0.9963
0.9950  0.0000  0.8034 0.9624 1.0000 1.0000 0.9950 0.9926 0.9949
09879  0.0000  0.1353 0.8688 0.9821 0.9877  0.9875 0.9846 0.9874
0.8912  0.0000  0.0000 0.6562 0.9253 0.9508 09297 09384  0.9488
0.9339  0.0000  0.0000 0.0000 0.5400 0.8787  0.7019 0.8664  0.7500
09922  0.2645 0.5839 0.6684 0.9625 0.9870 0.9890 0.9911 0.9917

Table 2 shows the accuracy of classification results via DMSC. The overall accuracy
demonstrates an increasing trend with the orders. Notably, there are many 0 values in
classification results via the first- and second-order DMSC, because first- and second-or-
der DMSCs contain little RSI information. Compared with the classification results of the
raw image, the overall accuracy of the DMRC (especially orders higher than the sixth or-
der) only has minor differences. Meanwhile, the rough classification experiment was con-
ducted on the ZY dataset. The classification results via DMSR and DMSC of the ZY dataset

are shown in Figures 12 and 13, respectively.

il g g s
) (8) (h)

Figure 12. Classification results of (a-h) first-order to eighth-order DMSR of the ZY dataset.
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Figure 13. Classification results of (a-h) first-order to eighth-order DMSC of the ZY dataset.

The classification results by first- and second-order DMSR (Figure 12a,b, respec-
tively) can identify the most classes. The number of recognized classes slowly diminishes
starting from the third order (Figure 12c), whereas the changes in recognized classes be-
come less pronounced after the fifth-order DMSR (Figure 12e). The classification results
via first-order DMSC (Figure 13a) only identified the water class, that is, the number of
the identified classes with an increasing number as the order increases, from a visual per-
spective. The changes become less pronounced after the fifth order (Figure 13e). The ac-
curacy of the DMSR and DMSC for the ZY dataset is listed in Tables 3 and 4, respectively.

Table 3. Classification accuracy of first-order to eighth-order DMSR of the ZY dataset.

Class Name

First Or- Second Third Or- Fourth Fifth Or- Sixth Or- Seventh Eighth

Raw der Order der Order der der Order Order

Water
Building
Naked
Vegetation
Road
Overall accuracy

09546  0.9548 0.9567 0.9728 0.9756 0.9699 0.9367 0.8174 0.7897
0.9672 0.968 0.9769 0.9852 0.994 0.966 0.9971 0.9969 0.9971
0.8373  0.8332 0.8005 0.6752 0.5353 0.3094 0.2881 0.1958 0.1892
0.9006  0.8998 0.8423 0.8164 0.9792 0.5321 0.4971 0.4434 0.4377
0.8131  0.7992 0.7636 0.64 0.1454 0.5321 0.089 0.0346 0.0277
0.9207  0.9197 0.9016 0.8775  0.81081 0.73134  0.7096 0.645 0.6345

Table 4. Classification accuracy of first-order to eighth-order DMSC of the ZY dataset.

First Or- Second Third Or- Fourth Fifth Or- Sixth Or- Seventh Eighth

Class Name Raw der Order der Order der der Order Order
Water 09546  0.8261 0.9758 0.9764 0.9853 0.9709 0.9683 0.9616 0.9628
Building 0.9672 1 0.8559 0.9492 0.9629 0.9642 0.9683 0.9683 0.9666
Naked 0.8373 0 0.7779 0.8295 0.8334 0.8342 0.9339 0.8321 0.8359
Vegetation 0.9006 0 0.8081 0.8537 0.8777 0.8882 0.8975 0.9003 0.8961
Road 0.8131 0 0.2423 0.6855 0.7507 0.8002 0.8061 0.8101 0.8051

Overall accuracy

0.9207  0.5015 0.8514 0.9062 0.9204 0.9205 0.9232 0.9278 0.9213

The Water and Building class in the ZY dataset can achieve high accuracy in the clas-
sification via DMSR (Table 3): the accuracy of Water improved from 95.46% to 97.56%,
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while that of Building improved from 96.72% to 99.71%. The overall accuracy in the classi-
fication via DMSC (Table 4) achieved a superior result, and the overall accuracy improved
from 92.07% to 92.78%. This phenomenon is attributed to the DMSC’s emphasis on high-
lighting object boundaries by disregarding local detailed information. Consequently, the
DMSC tends to yield superior results for rough classification. The DMSC theoretically has
potential for improvement in overall accuracy. Furthermore, this study conducts experi-
ments on RGB images in the PT dataset to discuss the scalability of DMSRE. Figures 14
and 15 display the color image of the DMSR and DMSC, respectively.

(8) (h)
Figure 14. Color image of (a-h) first-order to eighth-order DMSR of the PT dataset.

(®) (8) (h)
Figure 15. Color image of (a-h) first-order to eighth-order DMSC of the PT dataset.

The spatial variations in DMSR (Figure 14) and DMSC (Figure 15) of the PT dataset
are consistent with those in the DMSR and DMSC in the CK and ZY datasets. The amount
of information for the DMSR gradually reduces as the orders increase. The first-order
DMSR (Figure 14a) only demonstrates a slight decrease in brightness. The difference be-
tween the raw image and the DMSR grows larger starting from the Fifth order (Figure
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14e). From the fifth to eighth order (Figure 14e-h), only the goat grass feature remains. In
the first-order DMSC (Figure 15a), the image is monochromatic, and the DMSC tends to
be close to the raw image as the order increases. The classification accuracies of the DMSR
and DMSC are presented in Tables 5 and 6, respectively.

Table 5. Classification accuracy of first- to eighth-order DMSR of the PT dataset.

Class Name

Raw

First Or- Second Third Or- Fourth Fifth Or- Sixth Or- Seventh Eighth
der Order der Order der der Order Order

Leymus chinensis
Astragalus obliquus
Thalictrum
Pulsatilla chinensis
Plantain
Overall accuracy

0.7684  0.7673 0.7651 0.7635 0.7617 0.7616 0.7607 0.7607 0.759%4
0.2955  0.3189 0.2842 0.2727 0.2042 0.1915 0.1124 0.1180 0.0362
0.1039  0.1385 0.1040 0.0994 0.0900 0.0980 0.0679 0.0741 0.0275
0.2866  0.2891 0.2485 0.2711 0.2269 0.2118 0.1879 0.1833 0.1584
0.3249  0.3986 0.3508 0.3747 0.3440 0.3495 0.2896 0.2960 0.2160
0.6325 0.64 0.6243 0.6128 0.6114 0.6113 0.6118 0.6115 0.6112

Table 6. Classification accuracy of first- to eighth-order DMSC of the PT dataset.

Class Name

First Or- Second Third Or- Fourth Fifth Or- Sixth Or- Seventh Eighth

Leymus chinensis
Astragalus obliquus
Thalictrum
Pulsatilla chinensis
Plantain
Overall accuracy

Raw der Order der Order der der Order Order
0.7684 0.7575 0.7571 0.7581 0.7599 0.7624 0.7633 0.7644 0.7661
0.2955 0 0.0764 0.0759 0.1808 0.2158 0.2985 0.2962 0.2992
0.1039 0 0 0.0000 0.0020 0.0254 0.0850 0.1114 0.1000
0.2866 0 0 0.0560 0.1434 0.2036 0.2718 0.2709 0.2743
0.3249 0 0 0.0000 0.0640 0.1910 0.3143 0.3303 0.3192

0.6325 0.6096 0.6097 0.6109 0.6173 0.6247 0.6321 0.6343 0.6360

From the classification result via raw image, it can be found that the classification
accuracy was not higher; only “Leymus chinensis” achieved higher accuracy, and other
classes had lower accuracy. This is because “Leymus chinensis” is the main dominant
species in the study area, and the other classes are companion species, which means the
“Leymus chinensis” class accounted for a large proportion in the PT dataset and other
classes had less proportion. Therefore, “Leymus chinensis” easily achieved a higher clas-
sification result than other classes. However, it still shows difficulty in companion species
classification, and the classification results via DMSR show the potential for this task. In
the classification results via DMSR (Table 5), most classes attain higher accuracy than the
classification result of the raw image, excluding the “Leymus chinensis” class. However,
it improved the classification accuracy of companion species slightly, which also means it
has potential for species classification. The overall accuracy performance in the DMSC
coincides with the results observed in the two other RSI datasets (Table 6). The overall
accuracy steadily improved with the increase in orders, ultimately exceeding the overall
accuracy of the raw image.

5. Discussion
5.1. Research Contributions

The main contribution of this study is as follows: First, this study proposes a deep
multi-order spatial-spectral feature extraction method that adaptively extracts spatial—-
spectral features of RSIs from two directions, which does not need training samples. The
proposed method further ensures that the extracted feature does not reduce in dimension
compared with the raw RSIs because it considers the comprehensive global spatial-spec-
tral information of the RSIs to achieve optimal results. Second, the proposed method can
enhance the feature recognition capability of RGB images, demonstrating the universality
of the approach. This method is not only applicable to HSI but also to RGB images.
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Based on the concept of weak information extraction from RSIs, MGSS [44] was re-
cently developed to facilitate spectral multifeatured weak information extraction technol-
ogy, specifically for feature extraction in the spectral dimension. The extracted features
can be effectively quantified to estimate accuracy, and research has shown certain success
in quantitative applications, such as the estimation of forage aboveground biomass [45]
and grass crude protein [44], and the monitoring of soil salinity [10].

However, MGSS is limited to achieving good performance in the spectral dimension
and cannot be applied to the image dimension. However, information mining using MGSS
in RSIs is yet to be explored further. The proposed method is based on LRR, MGSS, and
HORQ theories. The extracted DMSRs and DMSCs possess unique properties. The DMSR
calculates residuals of the raw image step by step, focusing on weak spatial-spectral in-
formation. By contrast, the DMSC highlights interclass boundary information by progres-
sively accumulating the product of coding matrices and magnitudes in the convergence
of the raw image. Moreover, this study employed remote sensing classification application
to test their properties to effectively understand the characteristics of the DMSR and
DMSC. Notably, this finding does not imply that the two features are exclusive to classi-
fication applications; rather, they have the potential to have a good performance in quali-
tative and quantitative applications for the purpose of weak information mining.

5.2. Limitation and Potential Future Work

This study proposed the DMSRE method for the spatial-spectral feature extraction
of RSIs. However, DMSRE has certain limitations. While its mathematical foundations
have been established, certain gaps in the understanding of its underlying mechanisms
exist. Particularly, at lower orders, DMSRE constitutes the dominant factor in the image,
yet the specific information represented by each order remains uncertain. For instance,
similar to the tasseled cap transformation [55], which explicitly defines the first, second,
and third components as brightness, greenness, and wetness, respectively, a similar com-
prehensive interpretation for DMSRE is still lacking. Furthermore, the investigation into
the amplitude values (denoted as “w”) in the DMSCs of RSIs requires further exploration.
This issue has also been addressed in the work of Kang [44], signifying the ongoing need
for additional in-depth research in this area. Moreover, to fully consider spatial-spectral
characteristics, this study handles spatial features in one dimension. The extraction of
multidimensional spatial-spectral features is possible, as it also handles some spatial fea-
tures to some extent; thus, the discussion of its practicality and universality for other ap-
plications should be conducted in an actual RS task in the near future. For a similar prob-
lem, Truong et al. [56] extracted spatiotemporal features with deep learning for land cover
classification, and achieved a high-accuracy land cover classification. Therefore, we will
focus on how to use the extracted features to improve the application performance in the
next work.

The DMSR and DMSC exhibit distinct characteristics and hold varying application
potentials in remote sensing. This investigation not only delves into their potential in clas-
sification but also acknowledges their possible promising prospects in remote sensing es-
timation and inversion due to the DMSR’s weak information extraction capabilities.

6. Conclusions

This study considers the three-dimensional structural properties and global infor-
mation of RSIs, and without training samples during FE process, this study proposed an
adaptive DMSRE method based on LRR, MGSS, and HORQ that can extract features of RSIs
in two directions (DMSRs and DMSCs). Classification experiments with DMSRs and
DMSCs from three datasets (CK, ZY, and PT datasets) with different attributes showed that
the DMSR can improve the classification accuracy of individual classes in fine classification
applications, and the DMSC can improve the overall accuracy in rough classification appli-
cations. Moreover, the proposed method is not only applicable to HSI but extends to remote
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sensing RGB images, which has the potential to promote the RSI processing of weak ex-
tracted information, and then extend the application of RSIs in different fields.

Author Contributions: Methodology, X.Z.; Software, H.P.; Validation, X.Z.; Data curation, Y.C. and
J.Z.; Writing—original draft, X.Z.; Writing —review & editing, A.Z., JW., J.P.,, V.G, T.G.L. and X.X;
Supervision, Y.S.; Project administration, A.Z. and C.S.; Funding acquisition, A.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
Number 42071303), the National Key Research and Development Program of China (Grant Number
2021YFD1300505), the Joint program of Beijing Municipal Education Commission and Beijing Mu-
nicipal Natural Science Foundation of China (Grant Number KZ202110028044) and the Science and
Technology Program of Qinghai Province of China (Grant Number 2022-NK-136).

Data Availability Statement: Data is unavailable due to privacy.

Acknowledgments: The authors gratefully acknowledge Space Application Laboratory, Department
of Advanced Interdisciplinary Studies, University of Tokyo for providing the hyperspectral data.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script; or in the decision to publish the results.

References

1.

10.

11.

12.

13.

14.

15.

Shen, H.; Li, X.; Cheng, Q.; Zeng, C.; Yang, G.; Li, H.; Zhang, L. Missing Information Reconstruction of Remote Sensing Data: A
Technical Review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 61-85. https://doi.org/10.1109/MGRS.2015.2441912.

Qin, P.; Cai, Y.; Liu, J.; Fan, P.; Sun, M. Multilayer Feature Extraction Network for Military Ship Detection from High-Resolution
Optical Remote Sensing Images. IEEE ] Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11058-11069.
https://doi.org/10.1109/JSTARS.2021.3123080.

Shirmard, H.; Farahbakhsh, E.; Miiller, R.D.; Chandra, R. A Review of Machine Learning in Processing Remote Sensing Data
for Mineral Exploration. Remote Sens. Environ. 2022, 268, 112750. https://doi.org/10.1016/j.rse.2021.112750.

Chen, H; Qi, Z.; Shi, Z. Remote Sensing Image Change Detection with Transformers. I[EEE Trans. Geosci. Remote Sens. 2022, 60,
5607514. https://doi.org/10.1109/TGRS.2021.3095166.

Ozdogan, M,; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote
Sens. 2010, 2, 2274-2304. https://doi.org/10.3390/rs2092274.

Yu, S.; De Backer, S.; Scheunders, P. Genetic Feature Selection Combined with Composite Fuzzy Nearest Neighbor Classifiers
for High-Dimensional Remote Sensing Data. In Proceedings of the SMC 2000 International Conference on Systems, Man and
Cybernetics. “Cybernetics Evolving to Systems, Humans, Organizations, and their Complex Interactions” (Cat. No.00CH37166),
Nashville, TN, USA, 8-11 October 2000; Volume 3, pp. 1912-1916.

Bhuvaneswari, K.; Dhamotharan, R.; Radhakrishnan, N. Information Extraction from Remote Sensing Image (RSI) for a Coastal
Environment Along a Selected Coastline of Tamilnadu. IJCSET Board Memb. 2011, 95.

Han, W.; Li, J.; Wang, S.; Wang, Y.; Yan, J.; Fan, R.; Zhang, X.; Wang, L. A Context-Scale-Aware Detector and a New Benchmark
for Remote Sensing Small Weak Object Detection in Unmanned Aerial Vehicle Images. Int. . Appl. Earth Obs. Geoinf. 2022, 112,
102966. https://doi.org/10.1016/j.jag.2022.102966.

Sun, Y.; Cai, W.; Shao, X. Chemometrics: An Excavator in Temperature-Dependent Near-Infrared Spectroscopy. Molecules 2022,
27,452 https://doi.org/10.3390/molecules27020452.

Fan, X.; Kang, X.; Gao, P.; Zhang, Z.; Wang, J.; Zhang, Q.; Zhang, M.; Ma, L.; Lv, X.; Zhang, L. Soil Salinity Estimation in Cotton
Fields in Arid Regions Based on Multi-Granularity Spectral Segmentation (MGSS). Remote Sens. 2023, 15, 3358.
https://doi.org/10.3390/rs15133358.

Wang, J.; Zhen, J.; Hu, W.; Chen, S; Lizaga, I.; Zeraatpisheh, M.; Yang, X. Remote Sensing of Soil Degradation: Progress and
Perspective. Int. Soil Water Conserv. Res. 2023, 11, 429-454. https://doi.org/10.1016/j.iswcr.2023.03.002.

Abdollahi, A.; Pradhan, B.; Shukla, N.; Chakraborty, S.; Alamri, A. Deep Learning Approaches Applied to Remote Sensing
Datasets for Road Extraction: A State-Of-The-Art Review. Remote Sens. 2020, 12, 1444. https://doi.org/10.3390/rs12091444.

Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, ].; Benediktsson, J.A. Feature Extraction for Hyperspectral Im-
agery: The Evolution from Shallow to Deep: Overview and Toolbox. IEEE Geosci. Remote Sens. Mag. 2020, 8, 60-88.
https://doi.org/10.1109/MGRS.2020.2979764.

Ebied, H. M. Feature Extraction Using PCA and Kernel-PCA for Face Recognition. In Proceedings of the 2012 8th International
Conference on Informatics and Systems (INFOS), Giza, Egypt, 14-16 May 2012; p. MM-72.

Aliyari Ghassabeh, Y.; Rudzicz, F.; Moghaddam, H.A. Fast Incremental LDA Feature Extraction. Pattern Recognit. 2015, 48, 1999—
2012. https://doi.org/10.1016/j.patcog.2014.12.012.



Remote Sens. 2024, 16, 1957 21 of 22

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

Prasad, S.; Bruce, L.M. Limitations of Principal Components Analysis for Hyperspectral Target Recognition. IEEE Geosci. Remote
Sens. Lett. 2008, 5, 625-629. https://doi.org/10.1109/LGRS.2008.2001282.

Kumar, B.; Dikshit, O.; Gupta, A.; Singh, M.K. Feature Extraction for Hyperspectral Image Classification: A Review. Int. |. Remote
Sens. 2020, 41, 6248-6287. https://doi.org/10.1080/01431161.2020.1736732.

Ye, Z.; Bai, L.; He, M. Review of Spatial-Spectral Feature Extraction for Hyperspectral Image. ]. Image Graph. 2021, 26, 1737-1763.
Candes, EJ; Li, X; Ma, Y; Wright, J. Robust Principal Component Analysis? ]. ACM 2011, 58, 1-37.
https://doi.org/10.1145/1970392.1970395.

Zou, H., Hastie, T, Tibshirani, R. Sparse Principal Component Analysis. J. Comput. Graph. Stat. 2006, 15, 265-286.
https://doi.org/10.1198/106186006X113430.

Yang, J; Yang, J. Why Can LDA Be Performed in PCA Transformed Space? Pattern Recognit. 2003, 36, 563-566.
https://doi.org/10.1016/50031-3203(02)00048-1.

Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of Hyperspectral Images with Regularized Linear Discriminant Anal-
ysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862-873. https://doi.org/10.1109/TGRS.2008.2005729.

Du, Q. Modified Fisher’s Linear Discriminant Analysis for Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2007, 4, 503—
507. https://doi.org/10.1109/LGRS.2007.900751.

Tipping, M.E.; Bishop, C.M. Probabilistic Principal Component Analysis. J. R. Stat. Soc. Ser. B: Stat. Methodol. 1999, 61, 611-622.
https://doi.org/10.1111/1467-9868.00196.

Liang, Z.; Xia, S.; Zhou, Y. Normalized Discriminant Analysis for Dimensionality Reduction. Neurocomputing 2013, 110, 153—
159. https://doi.org/10.1016/j.neucom.2012.12.007.

He, X.; Niyogi, P. Locality Preserving Projections. Adv. Neural Inf. Process. Syst. 2003, 16.

Cai, D.; He, X.; Wang, X.; Bao, H.; Han, ]. Locality Preserving Nonnegative Matrix Factorization. In Proceedings of the Twenty-
First International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 11-17 July 2009.

Lee, D.D.; Seung, H.S. Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature 1999, 401, 788-791.

Berge, A.; Solberg, A.S. Structured Gaussian Components for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote
Sens. 2006, 44, 3386-3396.

Bhagavathy, S.; Manjunath, B.S. Modeling and Detection of Geospatial Objects Using Texture Motifs. IEEE Trans. Geosci. Remote
Sens. 2006, 44, 3706-3715. https://doi.org/10.1109/TGRS.2006.881741.

Pesaresi, M.; Benediktsson, J.A. A New Approach for the Morphological Segmentation of High-Resolution Satellite Imagery.
IEEE Trans. Geosci. Remote Sens. 2001, 39, 309-320. https://doi.org/10.1109/36.905239.

Melgani, F.; Serpico, S.B. A Markov Random Field Approach to Spatio-Temporal Contextual Image Classification. IEEE Trans.
Geosci. Remote Sens. 2003, 41, 2478-2487. https://doi.org/10.1109/TGRS.2003.817269.

Akcay, H.G.; Aksoy, S. Automatic Detection of Geospatial Objects Using Multiple Hierarchical Segmentations. IEEE Trans. Ge-
osci. Remote Sens. 2008, 46, 2097-2111. https://doi.org/10.1109/TGRS.2008.916644.

Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-Based Classification Using Quickbird Imagery for Delineating
Forest Vegetation Polygons in a Mediterranean Test Site. ISPRS |]. Photogramm. Remote Sens. 2008, 63, 237-250.
https://doi.org/10.1016/j.isprsjprs.2007.08.007.

Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral-Spatial Classification of Hyper-
spectral Images. Proc. IEEE 2012, 101, 652-675.

Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of Hyperspectral Data from Urban Areas Based on Extended
Morphological Profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480—-491. https://doi.org/10.1109/TGRS.2004.842478.

Kang, X; Li, S.; Benediktsson, ]J.A. Feature Extraction of Hyperspectral Images with Image Fusion and Recursive Filtering. [EEE
Trans. Geosci. Remote Sens. 2014, 52, 3742-3752. https://doi.org/10.1109/TGRS.2013.2275613.

LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436—444.

Chen, Y,; Jiang, H.; Li, C; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convo-
lutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232—-6251. https://doi.org/10.1109/TGRS.2016.2584107.

Chen, Y.; Zhao, X;; Jia, X. Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network. IEEE ]. Sel. Top.
Appl. Earth Obs. Remote Sens. 2015, 8, 2381-2392. https://doi.org/10.1109/J]STARS.2015.2388577.

Ma, X.; Wang, H.; Geng, ]. Spectral-Spatial Classification of Hyperspectral Image Based on Deep Auto-Encoder. IEEE ]. Sel. Top.
Appl. Earth Obs. Remote Sens. 2016, 9, 4073-4085. https://doi.org/10.1109/JSTARS.2016.2517204.

Kavitha, M.; Gayathri, R.; Polat, K.; Alhudhaif, A.; Alenezi, F. Performance Evaluation of Deep E-CNN with Integrated Spatial-
Spectral Features in Hyperspectral Image Classification. Measurement 2022, 191, 110760. https://doi.org/10.1016/j.measure-
ment.2022.110760.

Xiao-yan, K.; Ai-wu, Z. A Novel Method for High-Order Residual Quantization-Based Spectral Binary Coding. Spectrosc. Spectr.
Anal. 2019, 39, 3013-3020.

Kang, X.; Zhang, A. Hyperspectral Remote Sensing Estimation of Pasture Crude Protein Content Based on Multi-Granularity
Spectral Feature. Trans. Chin. Soc. Agric. Eng 2019, 35, 161-169.

Kang, X.-Y.; Zhang, A.-W.; Pang, H.-Y. Estimation of Grassland Aboveground Biomass from UAV-Mounted Hyperspectral Im-
age by Optimized Spectral Reconstruction. Spectrosc. Spectr. Anal. 2021, 41, 250-256.



Remote Sens. 2024, 16, 1957 22 of 22

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Pang, H.; Zhang, A.; Yin, S.; Zhang, ].; Dong, G.; He, N.; Qin, W.; Wei, D. Estimating Carbon, Nitrogen, and Phosphorus Contents
of West-East Grassland Transect in Inner Mongolia Based on Sentinel-2 and Meteorological Data. Remote Sens. 2022, 14, 242.
https://doi.org/10.3390/rs14020242.

Li, Z.; Ni, B.; Zhang, W.; Yang, X.; Gao, W. Performance Guaranteed Network Acceleration via High-Order Residual Quantiza-
tion. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22-29 October 2017;
pp. 2603-2611.

Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-Net: Imagenet Classification Using Binary Convolutional Neural Networks;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 525-542.

Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep Neural Networks
with Weights and Activations Constrained to +1 or —1. arXiv 2016, arXiv:1602.02830.

Liu, G, Lin, Z; Yu, Y. Robust Subspace Segmentation by Low-Rank Representation. In Proceedings of the 27th international
conference on machine learning (ICML-10), Haifa, Israel, 21-24 June 2010; pp. 663-670.

Yokoya, N.; Iwasaki, A. Airborne Hyperspectral Data over Chikusei; Technical Report SAL-2016-05-27; Space Application Labora-
tory, The University of Tokyo: Tokyo, Japan, 2016.

Zhang, X.; Zhang, A.; Portelli, R.; Zhang, X.; Guan, H. ZY-1 02D Hyperspectral Imagery Super-Resolution via Endmember
Matrix Constraint Unmixing. Remote Sens. 2022, 14, 4034. https://doi.org/10.3390/rs14164034.

Cao, C; Yu, J.; Zhou, C; Hu, K; Xiao, F.; Gao, X. Hyperspectral Image Denoising via Subspace-Based Nonlocal Low-Rank and
Sparse Factorization. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 973-988. https://doi.org/10.1109/JSTARS.2019.2896031.
Sara, U.; Akter, M.; Uddin, M.S. Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study. J.
Comput. Commun. 2019, 7, 8-18. https://doi.org/10.4236/jcc.2019.73002.

Xiaoyang Zhang; Schaaf, C.B.; Friedl, M.A_; Strahler, A.H.; Feng Gao; Hodges, ].C.F. MODIS Tasseled Cap Transformation and
Its Utility. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24-28
June 2002; Volume 2, pp. 1063-1065.

Truong, V.T.; Hirayama, S.; Phan, D.C,; Hoang, T.T.; Tadono, T.; Nasahara, K.N. JAXA’s New High-Resolution Land Use Land
Cover Map for Vietnam Using a Time-Feature Convolutional Neural Network. Sci. Rep. 2024, 14, 3926.
https://doi.org/10.1038/s41598-024-54308-1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



