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Simple Summary: In recent years, due to industry and market preferences, local animal breeds
have been exposed to genetic erosion and extinction risk. Effective strategies for their recovery
and conservation are needed. Gentile di Puglia (GdP) is an autochthonous sheep breed, typical of
Southern Italy, with an aptitude for wool, meat, and milk production and considerable historical
and cultural value. The development of a GdP gamete and embryo cryobank could help to support
the numerical reimplementation of this population. Animal germplasm conservation is mainly
performed through sperm cryopreservation, whereas strategies on the female side are developed in a
limited way. In this study, the dual purpose of monitoring the reproductive efficiency in one pilot GdP
farm in the Apulia region and setting up a cryopreservation protocol, by vitrification, of immature
cumulus-oocyte complexes (COCs) recovered from pre-pubertal lambs, followed by an analysis
of their in vitro maturation potential and bioenergetic-oxidative status, was pursued. The results
indicated that traditional reproductive management leads to progressive offspring reduction and that
ex situ biotechnological conservation strategies, through immature oocyte vitrification and in vitro
maturation, can support in situ conservation, leading to in vitro embryo production and transfer.

Abstract: Gentile di Puglia (GdP) is an autochthonous sheep breed of Southern Italy included among
ovine breeds threatened by genetic erosion and extinction risk, which have been given attention by
local and international institutions, thus emphasizing the need for germplasm conservation actions.
In the present study, two assisted reproduction approaches, finalized for GdP conservation, were
performed: (1) on-farm reproductive efficiency evaluation, expressed as pregnancy rate (PR), twin
pregnancy rate (tPR), and body condition score (BCS), for three consecutive breeding cycles and
(2) pre-pubertal lambs’ immature cumulus–oocyte complex (COC) retrieval, vitrification, in vitro
maturation (IVM), and assessment of meiotic stage and bioenergetic-oxidative status compared with
those of other Italian and European commercial breeds. PR and tPR were progressively reduced over
time. In all clinical examination times, BCS was significantly lower in nonpregnant ewes compared
with pregnant ones. Fresh GdP pre-pubertal lamb COCs achieved meiotic maturation and showed
healthy bioenergetic–oxidative status after IVM. Vitrification reduced the oocyte maturation rate in all
groups. However, mature oocytes retained their cytoplasmic maturity, expressed as a mitochondria
distribution pattern and activity, indicating promising developmental competence. In conclusion,
clinical- and biotechnological-assisted reproduction approaches can support conservation strategies
of GdP and other local sheep breeds in Southern Italy.
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1. Introduction

At a global level, many local breeds are at risk of genetic erosion and extinction due to
their very localized distribution, replacement with more productive commercial breeds,
and high inbreeding rates [1]. In Southern Italy, the rearing of local breeds is strongly linked
to the territory for gastronomic, historical, and cultural aspects. This provides inimitable
typical foods and leads to emerging and broad industry and market outcomes [2]. However,
current agricultural policies tend to not effectively support rearing programs of local breeds,
and farmers are turning their interest to more productive breeds, including those from
other countries. This has led to a significant reduction in animal number with consequent
genetic erosion and, in some cases, to the risk of extinction with a negative impact not only
on typical local products that characterize and qualify the regional agro-farming activities
but also and mainly on the ecosystemic services that the breeding activities provide to the
communities, particularly in marginal areas.

Gentile di Puglia (GdP), literally “Gentle Apulian” because of its fine wool, is an
autochthonous sheep breed of millenary origins on the Southern Italy territory, mainly bred
in the area of Foggia (Tavoliere delle Puglie and Monti Dauni) [2,3]. GdP is characterized
by its aptitude for wool, meat, and milk production and has been shown to be genetically
adapted and resilient to the environmental conditions of marginal areas where it is normally
reared [4]. In the last 50 years, due to the wool market crisis and indiscriminate crossbreed-
ing, a significant numerical contraction has been observed in this local ovine breed [3].
Indeed, the last census of GdP population for the year 2022, carried out by ASSONAPA
(Associazione Nazionale della Pastorizia; Italian Pastoral Farming Association), reported
that the number of heads of this breed is very limited in Italy, consisting of approximately
4000 animals, including about 250 rams and 3500 ewes (P. Fresi, personal communication).
Therefore, GdP needs to be preserved for the productive, historical, and cultural value that
it represents for the Southern Italy community and worldwide biodiversity.

The conservation of genetic animal resources can be performed in situ and ex situ,
depending on whether animals are kept within their natural environments or production
systems [5]. As an in situ approach, pregnancy diagnosis (PD) is a key aspect of flock man-
agement. PD during early gestation allows sheep breeders to make important economic
decisions. These include identifying nonpregnant or sick ewes for treatment, rebreeding
or culling, and improving the nutritional plane of pregnant ones to optimize offspring
weights, prevent pregnancy toxemia, and increase milk production [6]. Transabdominal
B-mode ultrasound is a quick, non-invasive, and accurate reproductive technology used in
small ruminants for PD, determination of fetal number and viability, and detection of patho-
logical condition [7]. Ex situ strategies can be divided into in vivo and in vitro, depending
on whether the animal germplasm is kept in the form of live animals or cryopreserved
through a gene-banking strategy [5]. By setting up a cryobank, it is possible to collect
and cryopreserve different kinds of cells and tissues, such as semen, oocytes, embryos,
ovarian/testicular tissue, somatic, stem, and induced pluripotent stem cells, and, thanks to
the advancements in reproductive biotechnologies, it is possible to obtain live animals from
these cells in different times and places [1,8,9]. Gene banking of animal genetic resources
is a strategic priority of the Global Plan of Action for Animal Genetic Resources, which
was developed and adopted by the Food and Agriculture Organization (FAO) Member
Nations (2007), and of the Sustainable Development Goals (SDGs), which were adopted by
the United Nations (UN) (2015) with the goal of achievement by 2030, specifically under
Target 2.5 of maintaining the biodiversity of plants and animals. In Italy, there is not yet a
national animal genetic resources gene bank “https://www.eugena-erfp.net/en/ (accessed
on 7 June 2023)”, and the set-up of these initiatives is still at an initial stage and localized
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at the regional level. In 2023, the Animal Germplasm Cryobank created by the Institute
of Agricultural Biology and Biotechnology of the National Research Council (IBBA-CNR),
in collaboration with the Department of Veterinary Medicine and Animal Sciences of the
University of Milan (DIVAS-UNIMI), has been registered to the Italian National Registry of
biodiversity for agriculture and food, as an ex situ conservation center and/or Germplasm
Banks for genetic resources, through Ministerial Decree No. 207219, dated 17 April 2023.
Regarding Apulia, regional law n.39 was approved in 2013 with the aim of conserving
zootechnical autochthonous genetic resources that are threatened by genetic erosion or
risk of extinction and for which environmental, cultural, scientific, and economic interests
exist. In this context, the proposal for a cryobank of GdP genetic resources is innovative,
as it meets the need to seek effective strategies for the recovery, conservation, and use of
genetic resources of native animal breeds aiming to obtain sustainable products of intra-
and extra-regional interest with technologies that guarantee quality, traceability, and safety.

Oocyte cryopreservation offers the possibility of storing and spreading female germplasm
from endangered breeds and individuals of great value. This is a versatile tool, in combina-
tion with selected semen samples, allowing offspring to be created that will fill a current
need at the time of use [9,10]. Female gametes can be retrieved from live animals or isolated
ovaries after slaughter or unexpected death. Slow freezing and vitrification are the two
main techniques developed for oocyte cryopreservation. However, the success rate is still
challenging because of the large oocyte size, low surface-to-volume ratio, cytoskeleton
structure, lipid content, and meiosis stage [9,10].

The cryopreservation of immature oocytes at the germinal vesicle (GV) stage allows
the obtainment of a significant number of female gametes without hormonal stimulation
or in vitro maturation (IVM) right after collection. Moreover, through the vitrification
procedure, it is possible to preserve them directly in farms located in marginal areas, where
equipped laboratories are too far or not available. Immature oocytes are usually cryop-
reserved as cumulus–oocyte complexes (COCs) because cumulus cells (CCs) are crucial
for oocyte meiotic resumption and developmental competence [11]. However, IVM is
challenging for cryopreserved immature COCs due to membrane damage to CCs [12]
and their physical/functional detachment from the oocyte, caused by transzonal projec-
tions’ sensitivity to cryoprotectants and low temperatures [12,13]. In the last 20 years,
the vitrification/warming of immature COCs from adult subjects has been applied to
several domestic large (sheep [12,14–22], cow [23–27], buffalo [28–30], goat [31], pig [32–35],
horse [36–41], donkey [42]) and small (cat [43–48], dog [49]) animal species, with various
results, depending on intrinsic species-specific oocyte features. Although the results of
IVM, embryo development, and blastocyst rate following immature COC vitrification are
still less satisfactory compared to fresh COCs, live births have been reported in bovine [50],
swine [33], equine [38,41], and domestic feline [43] species.

Immature COC vitrification from pre-pubertal animals offers additional interesting
features. In Southern Italy, the high consumption of lamb meat, for traditional and cultural
reasons, allows germplasm to be obtained and recovered, which would otherwise be
discarded, from a significant quantity of slaughtered pre-pubertal ovaries. Moreover, the
use of this kind of ovaries allows the generation interval to be reduced, the rate of genetic
gain to be increased, and more COCs to be obtained than from adult ewe ovaries [51,52]. To
the best of our knowledge, there is only one study focusing on immature COC vitrification
using pre-pubertal lamb ovaries [53] and only one aimed at local breed conservation in the
autochthonous Vietnamese Ban Pig breed [54].

According to the previous considerations, since the use of high-quality germplasm
is closely linked with the tracking of productive and reproductive data, the first aim of
the present study was to monitor the reproductive efficiency of a GdP farm with a tradi-
tional breeding system. Then, with the aim of developing a cryobank of GdP germplasm,
in vitro reproductive potential and cryotolerance after the vitrification of pre-pubertal
immature COCs from a GdP local sheep breed, assessed in terms of the maturation rate and
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bioenergetic-oxidative status, was investigated. Data were compared with those obtained
from oocytes recovered from Italian and European commercial-breed lamb ovaries.

2. Materials and Methods
2.1. Routine Veterinary Checkups
On-Farm Evaluation of Reproductive Efficiency

During 2021 and 2022, PDs were performed in one farm (partner of the PhD Program
2020 FSC—Piano Stralcio “R&I 2015–2017”, University of Bari Aldo Moro, Italy), located in
the area of Monti Dauni (Southern Italy), a place with a historical vocation for GdP-breeding
activities. The farm was established in the 20th century, and about six hundred GdP sheep,
including around 20 rams, are kept through family-based traditional breeding systems
(pasture plus barn-concentrate integration, if needed). The owner reported that, besides the
male effect, no assisted reproductive technologies (synchronization, artificial insemination,
PD) are implemented in the farm. According to traditional local consumption, 60-day-old
lambs are sold three times per year: (i) Easter time, (ii) mid-August, and (iii) Christmas
time. Therefore, breeding cycles are scheduled in September, January, and May, respectively.
PDs were performed using an 8–10 MHz convex probe (MyLab, Esaote ultrasound device),
starting from 40 days after the removal of rams from the ewe flock. The transabdominal
approach was used: ewes were restrained in stanchions similar to cattle chutes with
headgates, and the probe was positioned at the right inguinal level, near the base of the
udder. The observations of a fluid-filled uterus with placentomes and at least one fetus
were considered positive signs of pregnancy [7,55]. Figure 1 shows GdP ewes during the
different stages of the PD procedure and lambs. In addition, the ewes’ body condition score
(BCS) was evaluated (through the manual palpation at the lumbar vertebrae) in pregnant
and nonpregnant ewes, providing a score from 0 to 5 and considering 2.75–3 as the ideal
value [56].
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Figure 1. On-farm reproductive monitoring in one Gentile di Puglia (GdP) flock: (a) flock in the
pasture; (b) two GdP ewes; (c) ruminal bolus reading; (d) transabdominal ultrasound; (e) pregnancy
diagnosis based on fetus (I) and cotyledon (II) identification; (f) suckling GdP lamb.

2.2. In Vitro Study
2.2.1. Chemicals

All chemicals for in vitro cultures and analyses were purchased from Sigma-Aldrich
(Milan, Italy), unless otherwise indicated.

2.2.2. Collection of Ovaries and COC Retrieval

Ovaries from pre-pubertal lambs (less than 6 months of age) were recovered at local
slaughterhouses from animals subjected to routine veterinary inspection in accordance with
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the specific health requirements stated in Council Directive 89/556/ECC and subsequent
modifications. Ovaries were transported to the laboratory at room temperature within
4 h of collection. For COC retrieval, ovaries underwent the slicing procedure [57]. The
follicular contents were released in sterile Petri dishes containing phosphate-buffered saline
(PBS) and observed under a Nikon SMZ18 stereomicroscope equipped with a transparent
heating stage set up at 38.5 ◦C (Okolab S.r.l., Napoli, Italy). Only COCs with at least three
intact cumulus cell layers and homogenous cytoplasm were selected for culturing [58].

2.2.3. Vitrification and Warming Procedures

Vitrification and warming were performed according to the procedures reported by
dos Santos-Neto et al., 2020 [21], with some modifications (Figure 2). In order to counteract
cryoprotectant toxicity, all vitrification media were used at room temperature, except for the
warming solution, which was used at 38.5 ◦C. Briefly, selected immature COCs, in groups
of 5, were incubated for 10 min in 300 µL drops of equilibration solution (ES) containing
7.5% (v/v) ethylene glycol (EG) and 7.5% (v/v) dimethyl sulfoxide (DMSO) and dissolved
in base medium (BM), containing 20% (v/v) fetal calf serum (FCS) added to Hepes-buffered
TCM 199. After equilibration, the oocytes were placed into 300 µL drops of vitrification
solution (VS) containing 15% (v/v) EG, 15% (v/v) DMSO, and 0.5 mol/L sucrose dissolved
in BM. Oocyte vitrification was performed in two steps/drops in less than 60 s. After that,
oocytes were loaded into an Open Pulled Straw (OPS) (Minitube) or onto a Rapid-i™ Kit
(Vitrolife) with a minimum volume (e.g., <0.1 µL) and plunged quickly into liquid nitrogen.
Warming was performed by submerging the vitrification device directly into warming
solution (WS) containing 1 mol/L sucrose dissolved in BM at 38.5 ◦C for 1 min. Warmed
oocytes were transferred to a 300 µL drop of dilution solution (DS) with BM plus sucrose
0.5 mol/L for 3 min and then washed twice in 300 µL drops of BM for 5 min.
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Figure 2. Schematic representation of vitrification protocol for pre-pubertal lambs’ immature
cumulus-oocyte complexes (COCs): (a) vitrification; (b) warming. DMSO = dimethyl sulfoxide;
EG = ethylene glycol.

2.2.4. In Vitro Maturation (IVM)

IVM medium was prepared based on TCM-199 medium with Earle’s salts. It was
buffered with 5.87 mmol/L HEPES and 33.09 mmol/L sodium bicarbonate and supple-
mented with 0.1 g/L L-glutamine, 2.27 mmol/L sodium pyruvate, calcium lactate pen-
tahydrate (1.62 mmol/L Ca2+, 3.9 mmol/L Lactate), 50 µg/mL gentamicin, 20% (v/v)
fetal calf serum (FCS), 10 µg/mL of porcine follicle stimulating hormone and luteinizing
hormone (FSH/LH; Pluset®, Calier, Balcellona, Spain) [59], and 1 µg/mL 17β estradiol [57].
IVM medium was pre-equilibrated for 1 h under 5% CO2 in air at 38.5 ◦C, then loaded
(400 µL/well) in a 4-well dish (Nunc Intermed, Roskilde, Denmark) and covered with
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pre-equilibrated lightweight paraffin oil. In each experiment, 20–25 COCs/well were added
to a 4-well dish and cultured for 22–24 h at 38.5 ◦C under 5% CO2 in air.

2.2.5. Assessment of Cumulus Expansion and Oocyte Denuding

After IVM, COCs were recovered, and cumulus expansion was checked. COCs show-
ing cumuli with continuous edges, consisting of cells in close contact each other, were
classified as compact, whereas cumuli showing discontinuous edges following cell detach-
ment and the production of a viscous extracellular matrix were classified as expanded.
Even though the cumulus expansion does not fully ensure that maturation is achieved,
the percentage of expanded COCs was recorded because it represents the response of
immature COCs to the presence of gonadotropins in the culture medium. For oocyte
denuding, COCs underwent cumulus cell removal by incubation in TCM-199 with 20%
FCS containing 80 IU hyaluronidase/mL and aspiration in and out of finely drawn glass
pipettes. Denuded oocytes were evaluated for their meiotic stage, and mature ones were
used to assess bioenergetic/oxidative status.

2.2.6. Oocyte Mitochondria and ROS Staining

Oocytes were washed three times in PBS with 3% BSA and incubated for 30 min
in the same medium containing 280 nmol/L MitoTracker Orange CMTM Ros (Thermo
Fisher Scientific, Waltham, MA, USA) at 38.5 ◦C under 5% CO2 in air. After incuba-
tion with MitoTracker, oocytes were washed in PBS with 0.3% BSA and incubated for
15 min, at 38.5 ◦C under 5% CO2, in air in the same medium containing 10 µmol/L
2, 7—dichlorodihydrofluorescein diacetate (H2DCF-DA) to detect the dichlorofluorescein
(DCF) and localize intracellular sources of ROS [60]. After incubation, oocytes were washed
in PBS without BSA and fixed overnight at 4 ◦C in 4% paraformaldehyde (PFA) solution
in PBS [61]. Particular attention was applied to avoid sample exposure to the light during
staining and fixing procedures and to reduce photobleaching.

2.2.7. Oocyte Nuclear Chromatin Evaluation

To evaluate oocytes’ nuclear chromatin, after the fixation in 4% PFA in PBS, oocytes
were stained with 2.5 µg/mL Hoechst 33258 in 3:1 (v/v) glycerol/PBS mounted on mi-
croscope slides with coverslips, sealed with nail polish, and kept at 4 ◦C in the dark until
observation. Slides were examined under the epifluorescence microscope (Nikon Eclipse
600; Nikon Instruments, Firenze; ×400 magnification) equipped with a B-2A (346 nm
excitation/460 nm emission) filter. Oocytes were evaluated in relation to their meiotic stage
and classified as germinal vesicle (GV), metaphase to telophase I (MI to TI), and MII with
the first polar body (PB) extruded [62]. Oocytes showing either multipolar meiotic spindle,
irregular chromatin clumps, or the absence of chromatin were considered abnormal [63].

2.2.8. Assessment of Mitochondrial Distribution Pattern and Intracellular ROS Localization

Oocytes at the MII stage were observed at ×600 magnification in oil immersion with
a Nikon C1/TE2000-U laser scanning confocal microscope (Nikon Instruments, Firenze,
Italy). A 543 nm helium/neon laser and a G-2A filter were used to detect the MitoTracker
Orange CMTM Ros (551 nm excitation and 576 nm emission). A 488 nm argon ion laser and
a B-2A filter were used to detect DCF (495 nm excitation and 519 nm emission). Scanning
was conducted with 25 optical sections from the top to the bottom of the oocytes, with a
step size of 0.45 µm to allow for 3D distribution analysis. The mitochondrial distribution
pattern was evaluated on the basis of previous studies: (1) finely granular, with small
mitochondria aggregates spread throughout the cytoplasm, typical of immature oocytes;
(2) perinuclear and subcortical (P/S) distribution of mitochondria forming large granules,
which is an indicator of cytoplasmic maturity; and (3) abnormal, with irregular distribution
of mitochondria [61]. Concerning intracellular ROS localization, oocytes with intracellular
ROS distributed throughout the cytoplasm, together with areas/sites of mitochondria/ROS
overlapping, were considered healthy.
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2.2.9. Quantification of Bioenergetic/Oxidative Parameters

In each individual oocyte, MitoTracker and DCF fluorescence intensities were mea-
sured at the equatorial plane and at the excitation/emission, as described above, using
the EZ-C1 Gold Version 3.70 image analysis software platform for Nikon C1 confocal
microscope. A circular area was drawn in order to measure only the region including cell
cytoplasm. The fluorescence intensity within the programmed scan area was recorded
and plotted against the conventional pixel unit scale (0–255). Mitochondrial activity and
intracellular ROS levels were recorded as MitoTracker Orange CMTM Ros and DFC fluores-
cence intensity in arbitrary densitometric units (ADUs). Parameters related to fluorescence
intensity, such as laser energy, signal detection (gain), and pinhole size, were maintained
at constant values for all measurements. The degree of mitochondria/ROS colocalization,
reported as a biomarker of healthy oocytes [61,62], was quantified by the overlap coefficient
between MitoTraker Orange CMTM Ros and the DCF fluorescence intensity signals.

2.2.10. Statistical Analysis

The percentage of pregnant ewes and those carrying out twin pregnancies, in the three
examined periods (July 2021, November 2021, and February 2022), were compared through
the Chi-Square test. Unpaired Student’s t-test was performed to compare, at each time
period, the BCS between pregnant and nonpregnant ewes. One-way ANOVA (followed by
Tukey’s Multiple Comparison Test) was performed to compare the BCS in pregnant and
nonpregnant ewes in the three time periods.

The proportions of oocytes showing different chromatin configurations and mito-
chondria distribution patterns were compared between groups using the Chi-square test.
Mitochondria and ROS quantification analysis was conducted on oocytes at the MII stage.
Data (mean ± standard deviation (s.d.) of bioenergetic parameters) were compared using
the unpaired Student’s t-test or one-way analysis of variance ANOVA followed by Tukey’s
Multiple Comparison Test, according to comparison groups. Differences with p < 0.05 were
statistically significant.

3. Results
3.1. On-Farm Evaluation of Reproductive Efficiency

The pregnancy rate (PR), twin pregnancy rate (tPR), and BCS of ewes reared at the
farm at different evaluation times are reported in Table 1. Between months, significant
reductions were found in PR and tPR. The BCS was significantly lower in nonpregnant
animals compared with pregnant ones, in all time groups. Moreover, it was significantly
higher in the last examined period (February 2022), as compared to the first one (July 2021),
in both the pregnant and the nonpregnant groups.

Table 1. Clinical examinations in one Gentile di Puglia (GdP) flock reared in a pilot farm in the Apulia
region: pregnancy rates and body condition scores (BCS).

Time of Clinical
Examination

N. of Visited
Ewes

N. of Pregnant
Ewes (%)

N. of Ewes with Twin
Pregnancy (%)

BCS of Pregnant
Ewes Mean ± s.d.

BCS of Nonpregnant
Ewes Mean ± s.d.

July 2021 232 136 (59) 25 (18) a 2.69 ± 0.28 aA 2.42 ± 0.48 aD

November 2021 78 51 (65) a 6 (12) 2.76 ± 0.22 A 2.6 ± 0.31 B

February 2022 303 157 (52) b 15 (10) b 2.82 ± 0.28 cA 2.65 ± 0.32 eE

Table legend: BCS = Body condition score; Chi-Square test: Within the “Pregnant Ewes” and “Ewes with Twin
Pregnancy” columns, comparisons were made between the July 2021, November 2021, and February 2022 clinical
evaluation times; a, b = p < 0.05; one-way ANOVA, followed by Tukey’s Multiple Comparison Test. Within the
“BCS of Pregnant Ewes” and “BCS of nonpregnant ewes” columns, comparisons were made among the three time
periods: a, c = p < 0.01; a, e = p < 0.0001. Unpaired Student’s t-test: between the “BCS of Pregnant Ewes” and “BCS
of nonpregnant ewes” columns, comparisons were made for each time of clinical examination: A, B = p < 0.05;
A, D = p < 0.001; A, E = p < 0.0001.
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3.2. GdP Pre-Pubertal Lamb COCs Achieve Meiotic Maturation after IVM

COCs recovered from the ovaries of GdP pre-pubertal lambs, reared and slaugh-
tered in Apulia region, underwent IVM in order to evaluate their in vitro developmental
potential. Data were compared with those of Italian (Comisana, Sardinian, and mixed
breeds) and European (Merino and mixed breeds from Hungary and France) commercial
cosmopolite sheep populations. Regardless of the sheep breed, pre-pubertal lamb ovary
size ranged between about 0.5 and 1.5 cm showing follicles in different stages of growth,
from 1 mm to approximately 5 mm. On the other hand, differences were found in the
number of follicles and the COC recovery rate. Indeed, from GdP and Italian commercial
breeds’ ovaries, it was possible to isolate around 20 good-quality COCs/ovary compared
to 10 from the European ones. Pre-pubertal lamb COCs were analyzed in seven to eight
independent IVM runs, followed by staining with Hoechst 33258 for nuclear chromatin
evaluation. GdP COCs achieved cumulus expansion at significantly higher rates compared
with other breeds (p < 0.05 and p < 0.001 with European and Italian populations, respec-
tively; Table 2). Moreover, they achieved significantly higher maturation rates, showing
the second metaphase plate and the first PB extruded, in comparison with the other sheep
populations (p < 0.05 and p < 0.001 for European and Italian, respectively). Correspondingly,
the percentage of oocytes that remained arrested at the GV stage was significantly reduced
in GdP compared with other breeds (p < 0.001 and p < 0.00001, for European and Italian,
respectively). Figure 3 shows specimens of the reproductive system of a GdP pre-pubertal
lamb: a female reproductive tract with the two uterine horns, oviducts, and ovaries; ovaries
showing several developing follicles isolated for COC retrieval; COCs with compact or
expanded cumulus observed before and after 22–24 h IVM under inverted phase contrast
microscopy; and denuded oocytes and a matured oocyte with the first PB extruded in the
perivitelline space.

Table 2. Nuclear and cytoplasmic parameters of Gentile di Puglia (GdP) pre-pubertal lamb oocytes
after in vitro maturation (IVM) compared with commercial sheep breeds.

Sheep
Population

N. of Cultured
COCs

(Replicates)

Cumulus
Expansion Rate

N. (%)

N. of
Evaluated

COCs

Nuclear Chromatin Configurations
N. (%) P/S Mitochondrial

Distribution Pattern
N. (%)GV MI to TI MII+PB Abnormal

GdP 176
(7)

172
(97.7) a 172 16

(9.3) a
20

(11.6)
115

(66.9) a
21

(12.2)
53/113
(46.9)

Italian 188
(8)

163
(86.7) d 178 50

(28.1) e
16

(9.0)
88

(49.4) d
24

(13.5)
38/64
(59.4)

European 201
(8)

180
(89.6) b 188 41

(21.8) d
14

(7.4)
105

(55.9) b
28

(14.9)
57/105
(54.3)

Table legend: COC = Cumulus–oocyte complex; GV = Germinal vesicle; M = Metaphase; PB = Polar body;
P/S = Perinuclear/Subcortical. Chi-Square test: within each column, comparisons were made between GdP and
commercial, Italian, or European, groups: a, b = p < 0.05; a, d = p < 0.001; a, e = p< 0.00001.

3.3. GdP Pre-Pubertal Lamb MII Oocytes Show Healthy Bioenergetic/Oxidative Status after IVM

In GdP MII oocytes obtained after IVM, qualitative and quantitative parameters of the
bioenergetic/oxidative status were analyzed as a measure of oocytes’ cytoplasmic maturity
and competence to undergo fertilization and development. The percentages of MII oocytes
showing a heterogeneous perinuclear and subcortical mitochondrial distribution pattern
(P/S) did not vary among sheep population, indicating that a good rate of GdP oocytes,
like those of other sheep populations, reached cytoplasmic maturity in the culture system
used (Table 2). The mitochondrial membrane potential (∆Ψ) in GdP MII oocytes was
significantly lower in comparison to other sheep populations (p < 0.05 and p < 0.001 for
European and Italian, respectively; Figure 4a). Intracellular ROS levels and the overlap
coefficient, indicating mitochondria/ROS colocalization, were lower in GdP MII oocytes
compared with Italian ones (p < 0.05 and p < 0.001 for ROS levels and overlap coefficient,
respectively; Figure 4b,c) whereas no differences were found compared with oocytes of the
European sheep population.
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Figure 3. GdP female reproductive system specimens: (a) female reproductive tract with the two
uterine horns, oviducts, and ovaries. Scale bar represents 1 cm; (b) ovaries isolated for cumulus–
oocyte complex (COC) retrieval. Scale bar represents 1 cm; (c) COCs with compact or (d) expanded
cumuli observed under inverted-phase contrast microscopy before and after 22–24 h IVM. Scale bars
represent 40 µm; (e) denuded oocytes. Scale bar represents 40 µm. (f) Matured oocyte with the first
polar body (PB) extruded. Scale bar represents 40 µm.
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Figure 4. Quantification data of (a) mitochondrial membrane potential (∆Ψ), (b) intracellular reactive
oxygen species (ROS) levels, and (c) mitochondria/ROS colocalization in GdP MII oocytes compared
with Italian and European ones. Values are presented as percentages of the signal of GdP samples.
Means ± SD of fluorescence intensity of the MitoTracker Orange CMTM Ros, DCF, and overlap
coefficient are presented. The numbers of analyzed oocytes per sheep population are indicated
at the bottom of each bar. One-way analysis of variance (ANOVA) followed by Tukey’s multiple
comparison test: * p < 0.05; *** p < 0.001.

3.4. Vitrification of GdP Pre-Pubertal Lambs’ Immature COCs Reduce Their Meiotic Maturation
after IVM

With the aim of developing a germplasm cryobank, the effects of vitrification on
GdP immature COCs were evaluated. Indeed, in biodiversity-conservation programs,
the development of cryopreservation strategies using immature COCs represents the only
method for female germplasm rescue when activities are performed in areas remote from an
equipped reproductive biotechnology laboratory. GdP and other pre-pubertal lamb COCs,
in six to ten independent runs, were cryopreserved by vitrification. Vitrified COCs were
subsequently warmed and subjected to IVM. After culture, cumulus expansion and oocyte
maturation rates were compared between the fresh and vitrified samples of each population
group (GdP, Italian, and European). In all three sheep populations, the cumulus-expansion
rate was significantly reduced upon vitrification (p < 0.00001 for all groups, between
fresh and vitrified/warmed samples; Table 3). Figure 5 shows GdP COCs after vitrifica-
tion/warming as observed before (Figure 5a,c) and after (Figure 5b,d) IVM. At warming,
the majority of COCs displayed complete compact and multilayered cumulus. After IVM,
the majority of GdP vitrified/warmed COCs underwent regular cumulus expansion even
though some of them still showed compact or partially/completely removed cumulus.
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Moreover, cumulus cells maintained the integrity of their cytoplasmic protrusions, which
are very important structures for cell-to-cell and cell-to-oocyte communications. In addition,
for all sheep population groups, vitrified/warmed (V/W) COCs showed a significantly
reduced maturation rate, and corresponding increased rates of oocytes remained at the GV
stage (p < 0.00001; Table 3).

Table 3. Nuclear and cytoplasmic parameters of Gentile di Puglia (GdP) pre-pubertal lamb vitri-
fied/warmed immature cumulus–oocyte complexes (COCs) after IVM compared with commercial
sheep breeds.

Sheep
Population

COC
Vitrification

N. of Cultured
COCs

(Replicates)

Cumulus
Expansion
Rate N. (%)

N. of
Evaluated
Oocytes

Nuclear Chromatin Configurations N. (%) P/S Mitochondrial
Distribution

PatternGV MI to TI MII+PB Abnormal

GdP
− 146

(6)
142

(97.3) a 135 25
(18.5) a

23
(17.0)

71
(52.6) a

16
(11.9)

38/58
(65.5)

+ 131
(6)

79
(60.3) e 120 72

(60.0) e
14

(11.7)
14

(11.7) e
20

(16.6)
7/14
(50.0)

Italian
− 163

(7)
160

(98.2) a 158 10
(6.3) a

26
(16.5)

92
(58.2) a

30
(19.0)

38/91
(41.8) a

+ 127
(7)

64
(50.4) e 116 60

(51.7) e
21

(18.1)
14

(12.1) e
21

(18.1)
1/14

(7.1) b

European
− 200

(10)
191

(95.5) a 192 25
(13.0) a

32
(16.7)

105
(54.7) a

30
(15.6)

60/104
(57.7)

+ 146
(10)

51
(34.9) e 140 82

(58.6) e
16

(11.4)
11

(7.9) e
31

(22.1)
4/8

(50.0)

Table legend: COC = Cumulus–oocyte complex; GV = Germinal vesicle; M = Metaphase; PB = Polar body;
P/S = Perinuclear/Subcortical. Chi-Square test: within each group, comparisons were made between fresh and
vitrified/warmed COCs, after IVM: a, b = p < 0.05; a, e = p < 0.00001.
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breeds but not in Italian ones, in which this percentage was significantly lower (p < 0.05; 
Table 3). In COCs of all three sheep populations, bioenergetic/oxidative quantification pa-
rameters did not vary based on the vitrification procedure as no differences were observed 
for mitochondria activity, ROS levels, or overlap coefficient between fresh and vitrified 
oocytes. Figure 6 shows representative photomicrographs of GdP MII oocytes obtained 
after IVM of fresh and vitrified/warmed COCs and observed for nuclear chromatin, mito-
chondria pattern and activity, intracellular ROS localization and levels, and mitochon-
dria/ROS colocalization (panel a) and quantification analysis of the effects of vitrifica-
tion/warming on oocyte bioenergetic/oxidative status (panels b–d). 

Figure 5. GdP COCs after vitrification/warming as observed (a,c) before and (b,d) after IVM, (a,b) in
groups or (c,d) individually. It can be seen that, before IVM, the majority of GdPs’ vitrified/warmed
COCs show complete compact and multilayered cumulus. After IVM, the majority of GdP vitri-
fied/warmed COCs show regular cumulus expansion, with individually visible cumulus cells and
their cytoplasmic protrusions. Scale bars represent 40 µm. The arrows indicate the intact cytoplasmic
protusions of cumulus cells, after COC vitrification/warming and IVM.
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3.5. Vitrification of GdP Pre-Pubertal Lambs’ Immature COCs Does Not Affect Their
Bioenergetic/Oxidative Status after IVM

The rate of GdP MII oocytes showing P/S mitochondrial distribution patterns did not
differ between fresh and vitrified oocytes, indicating that oocyte cytoplasmic maturation
was maintained after COC vitrification. This was also observed in oocytes of European
breeds but not in Italian ones, in which this percentage was significantly lower (p < 0.05;
Table 3). In COCs of all three sheep populations, bioenergetic/oxidative quantification
parameters did not vary based on the vitrification procedure as no differences were ob-
served for mitochondria activity, ROS levels, or overlap coefficient between fresh and
vitrified oocytes. Figure 6 shows representative photomicrographs of GdP MII oocytes
obtained after IVM of fresh and vitrified/warmed COCs and observed for nuclear chro-
matin, mitochondria pattern and activity, intracellular ROS localization and levels, and
mitochondria/ROS colocalization (Figure 6a) and quantification analysis of the effects of
vitrification/warming on oocyte bioenergetic/oxidative status (Figure 6b–d).
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Figure 6. Effects of immature COC vitrification on bioenergetic/oxidative parameters in GdP MII
oocytes: (a) Photomicrographs showing representative images of one fresh (lane 1) and one vitri-
fied/warmed (V/W) (lane 2) GdP oocyte. Corresponding epifluorescence images showing nuclear
chromatin configuration (column a: Hoechst 33258) and confocal images showing the mitochondrial
distribution pattern and activity (column b: MitoTracker Orange), intracellular ROS localization and
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levels (column c: H2DCF-DA), and mitochondria/ROS colocalization (column d: Merge). Confocal
images were taken at the oocyte equatorial plane. Scale bars represent 40 µm. (b–d) Quantifica-
tion data of mitochondrial activity (∆Ψ), intracellular reactive oxygen species (ROS) levels, and
mitochondria/ROS colocalization in GdP MII oocytes, obtained after IVM of fresh and V/W COCs,
compared with Italian and European ones. Within each sheep population, values of V/W oocytes
are presented as a percentage of the signal of fresh samples. Means ± SD of fluorescence intensity
of MitoTracker Orange CMTM Ros, DCF, and overlap coefficient are presented, respectively. The
numbers of analyzed oocytes per sheep population are indicated at the bottom of each bar. Unpaired
Student’s t-test: not significant.

4. Discussion

Local breeds are important for the area in which they are reared, combining their
adaptation and resilience to the territory with the production of unique and inimitable
typical products [4]. Moreover, autochthonous breeds represent the historical and cultural
heritage of their territory and inhabitants [1]. However, these breeds are facing numeric
reduction and are at risk of extinction. Too often, the reason for such a reduction is claimed
to be low productivity. However, most of the time, it is the lack of selection programs
and the traditional breeding system that impair the obtainment of higher production. The
need to retrieve, preserve, and enhance local breeds goes through the application of genetic
improvement and assisted reproductive technologies such as ultrasonography, livestock
precision farming tools, and biotechnological approaches.

Ultrasonography (US) is a fast (less than one minute for ewes is needed), non-invasive
tool that helps in the identification of reproductive failure with large advances compared
with the traditional breeding system, where breeders notice the nonpregnant animal only
at lambing. Therefore, US could help in the evaluation and optimization of animals’ repro-
ductive performances, thus supporting animal production in marginal areas. Observed
PRs are far from the ideal situation, where more than 85% of animals should be pregnant.
Due to the problem of retrieving data about sheep reared under a traditional system, it is
difficult to explain the reason for such low PRs. Some of the ewes could have been too old
for breeding or were inserted into the mating group without a complete recovering after
parturition. The use of livestock precision farming tools, such as a real-time database (e.g.,
SementusaTech®) would allow farmers to keep track and easily monitor the reproductive
efficiency of each head of the flock using a smartphone [64]. The nutritional and health
management of animals and BCS evaluation are key aspects of reproductive efficiency;
hence, the lower BCS in nonpregnant ewes was an expected result. However, the overall
improvement in the BCS from July to February, not followed by an improvement in the PRs
or tPR, might indicate that other factors are affecting the reproductive efficiency of ewes.

The IVM culture of GdP COCs highlighted successful meiosis resumption and showed
that nuclear and cytoplasmic maturation were acquired. Indeed, GdP COCs showed good
cumulus expansion and maturation rates compared to the oocytes of commercial breeds
from Italy or Europe. Moreover, no statistically significant difference was observed in
the rate of matured oocytes exhibiting a P/S mitochondrial distribution pattern, indicat-
ing that in our culture, most MII oocytes reached cytoplasmic maturation, regardless of
the sheep’s breed and origin. Interestingly, oocyte ∆Ψ, ROS levels, and he overlap co-
efficient were shown to be lower in GdPs, usually reared under pasture-based farming
systems, compared to commercial sheep breeds, mainly managed under semi-intensive
practices with feeding based on industrial fodder and concentrates [4]. Some studies
have investigated the correlation between oocyte bioenergetic–oxidative status and unbal-
anced nutritional intakes in animal models, showing that high-fat, high-fat/high-sugar, or
low0protein dietary regimes could increase ROS production and alter oocytes’ mitochon-
drial membrane potential [65–69]. In conclusion, GdPs’ pre-pubertal lamb COCs showed
promising in vitro reproductive potential. Further studies will be needed to evaluate how
bioenergetic–oxidative status could influence embryos’ developmental competence for
GdP oocytes.
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In order to counteract genetic erosion and the possible extinction of this local breed
of millenary tradition in the territory of Southern Italy, it is necessary to carry out and
implement conservation strategies. According to the DAD-IS database by FAO, cryopre-
served semen samples from GdP rams are available; however, there is a total absence of
oocytes and embryos. Therefore, this study represents the first attempt to cryopreserve
GdP oocytes, using female pre-pubertal lambs as donors, with the aim of developing a
germplasm cryobank of this local sheep breed. Immature COC vitrification in endangered
species conservation programs represents a versatile and strategic tool, allowing female
germplasm to be recovered in large quantities, directly in farms and slaughterhouses lo-
cated in marginal areas, where these animals are normally bred. Our data are in agreement
with most previous studies in adult sheep in which it was found that the vitrification of
immature COCs significantly affected cumulus expansion [14,15] and the oocyte matu-
ration rate [12,14,15,17,20,70]. This result was associated with a statistically significant
increase in the rate of oocytes arrested at the GV stage [12,14,15,20], regardless of the
procedure used (conventional, direct, or on a solid surface) and the device (conventional
straw, open pulled straw, cryotop, or cryoloop). Other studies refer to comparable, or even
low, rates of matured oocytes between V/W and fresh COCs [22,71,72]. In line with these
observations, we found no differences in the maturation rate after using OPS or Rapid-i
vitrification devices, both in GdP samples and those of all examined ovine breeds. To
date, only one study has reported on pre-pubertal lambs [53] in which the results were
similar to those obtained in the present study. To the best of our knowledge, other studies
in pre-pubertal subjects are reported only in pigs to date. In this species, V/W immature
COCs from pre-pubertal gilts were reported to be significantly affected in their maturation
rate after vitrification [33,73], even though later studies reported the fertilization, embryo
development [74], and generation of live piglets [33] using V/W immature COCs. Finally,
there is only one study on the vitrification of immature COCs applied to local breeds. This
study was performed in the Vietnamese Ban Pig, and there was no statistically significant
difference in the maturation rate observed after vitrification between the Ban Pig and
commercially slaughtered hybrid pigs [54]. Vitrification is known to induce oxidative
stress through ROS overproduction, membrane lipid peroxidation, amino acid and nucleic
acid oxidation, gene expression alteration, and mitochondrial damage, resulting in cell
apoptosis [75]. In our study, although the maturation rate was low after IVM of V/W
immature COCs, compared with their fresh counterparts, the cytoplasmic maturation of
MII oocytes, expressed as the P/S mitochondrial distribution pattern rate and mitochondria
activity, ROS levels, and overlap coefficient quantifications, resulted in preserved COCs
comparable to fresh ones. To the best of our knowledge, this is the first study in sheep
evaluating cytoplasmic maturation, expressed as bioenergetic/oxidative status, in mature
oocytes after the IVM of vitrified immature COCs. Further studies are needed to improve
the vitrification procedure and/or IVM conditions with the aim of developing a cryobank
of the local sheep breed GdP.

5. Conclusions

In conclusion, this study represents the first attempt to establish collaborations with
Apulian farms that are located in marginal areas and still use the traditional management of
reproductive activity for the autochthonous breed GdP, to push them to modern practices
of assisted reproduction and in situ and ex situ conservation strategies. The proposal to
monitor the reproductive efficiency on the farm provides the benefits of maintaining high
levels of fertility and reproductive health in a GdP flock, and the proposal to develop
a cryobank of female germplasm could contribute to maintaining and preserving GdP
genetic diversity. Indeed, the present study showed that the ovaries of pre-pubertal lambs
slaughtered for food purposes can be used to recover oocytes without interfering with
productive and reproductive activities on the farm. After animal genotyping and oocyte
vitrification, these cells can be used with fresh or cryopreserved GdP sperm for the in vitro
production of embryos. Such strategies, in association with collecting, freezing, and using
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semen, could allow farmers to plan the maintenance or expansion of the number of animals
with a controlled and reducible environmental impact. Flock monitoring and reproductive
biotechnologies could also constitute the basis of genetic-improvement strategies in this
local breed for its valuable products [76,77]. The following final objectives of the project
were reached: (1) the realization of a GdP germplasm cryobank with a sustainable cost
that is useful to contain its genetic erosion; (2) the training of reproductive clinicians and
biotechnologists in the Apulia region capable of operating in technological, regulatory,
and managerial aspects in the conservation of native livestock germplasm; and (3) the
enhancement of Apulian livestock farms rearing the local sheep breed GdP.
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