Manuscript Details

Manuscript number	VETMIC_2018_1162_R1
Title	IDENTIFICATION OF A NOVEL PARVOVIRUS IN DOMESTIC CATS
Article type	Research Paper

Abstract

A novel protoparvovirus species was identified in domestic cats. The virus was distantly related to the well-known feline (feline panleukopenia virus) and canine (canine parvovirus type 2) parvoviruses, sharing low nucleotide identities in the capsid protein 2 (less than 43%). The virus was genetically similar (100% at the nucleotide level) to a newly identified canine protoparvovirus, genetically related to human bufaviruses. The feline bufavirus appeared as a common element of the feline virome, especially in juvenile cats, with an overall prevalence of 9.2%. The virus was more common in respiratory samples (9.5% to 12.2%) than in enteric samples of cats (2.2%). The role of bufaviruses in the etiology of feline respiratory disease complex, either as a primary or a secondary agents, should be defined.

Keywords	parvovirus; protoparvovirus; bufavirus; cat; respiratory infections
Manuscript category	Viruses
Corresponding Author	VIto Martella
Corresponding Author's Institution	Università di Bari Aldo Moro
Order of Authors	Georgia Diakoudi, Gianvito Lanave, Paolo Capozza, Federica Di Profio, Irene Melegari, Barbara Di Martino, Maria-Grazia Pennisi, Gabriella Elia, Alessandra Cavalli, Maria Tempesta, Michele Camero, Canio Buonavoglia, Krisztian Banyai, Vlto Martella
Suggested reviewers	annamaria pratelli, John Ikonomopoulos, Tibor Farkas, Alessio Lorusso

Submission Files Included in this PDF

File Name [File Type]

Vet. Mic. Cover letter (Revision).docx [Cover Letter]

Rebuttal.docx [Response to Reviewers]

Vet. Mic. revised MS.docx [Revised Manuscript with Changes Marked]

Highlights.docx [Highlights]

Vet. Mic. clean MS.docx [Manuscript File]

Figure 1.pptx [Figure]

Figure 2.pptx [Figure]

Table 1.docx [Table]

Table 2.docx [Table]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Università degli Studi di Bari Dipartimento di Medicina Veterinaria

To the Editor of Veterinary Microbiology

Ref: VETMIC_2018_1162

Valenzano, Bari, 10/12/2018

Dear Editor,

I am sending you the manuscript "*Identification of a novel parvovirus in domestic cats*" (VETMIC_2018_1162) by Diakoudi et al. revised following the referees' suggestions. A point-by-point reply has been prepared.

Sincerely Yours,

Martella Vito

Dr Vito Martella Dipartimento di Medicina Veterinaria -Università di Bari -S.p. per Casamassima Km 3 70010 Valenzano - Bari Tel: 080 4679805 Fax: 080 4679843 E-mail: vito.martella@uniba.it

Rebuttal

Ref: VETMIC_2018_1162 **Title**: IDENTIFICATION OF A NOVEL PARVOVIRUS IN DOMESTIC CATS **Journal**: Veterinary Microbiology

Dear Editor,

Please find herein a detailed reply to the referees' comments.

Best regards,

Vito Martella

Reviewer 1

The Authors identified a novel protoparvovirus species in archived nasal and oropharyngeal swabs and enteric samples from domestic cats with or without respiratory symptoms and with gastroenteritis. The virus was genetically similar to a newly identified canine protoparvovirus, genetically related to human bufaviruses. The virus was more common in respiratory samples than in enteric samples. Since some canine viruses can infect cats and viceversa, the Authors hypothesized that the novel canine bufavirus could circulate in the feline host.

General comments:

R1.1: Line 112-116: the authors describe here the use of a qPCR but in the results section there is no information at all on the titres (virus load). Can the authors provide some data about the viral load measured in biological samples?

Reply to R1.1: The measured virus loads ranged between 2.82×10^{-1} to 1.78×10^{5} DNA copies/10µl of template (mean 9.81×10^{3} DNA copies/10µl). We added this information in the text at pages 9, lines 166 to 167.

R1.2: Lines 236-238: the authors claim that their analysis unveiled a possible age-related pattern in BuV-infected cats, suggesting that young animals are more susceptible to BuV infection. Can the authors provide possible explanations for this? This could include fading of passive immunity or physiological changes in animals during growth.

Reply to R1.2: We added a short sentence in the discussion where we stated that the age-related pattern could be accounted for by the lingering passive immunity and/or by physiological changes. Page 12, lines 245-246: "This might be due to the immature immune system of juvenile cats, coupled with the decline of maternal immunity."

Reviewer 2

Dear Editor, I just reviewed the manuscript entitled "IDENTIFICATION OF A NOVEL PARVOVIRUS IN DOMESTIC CATS"- The authors previously identified a novel canine bufavirus (CaBuV) in dogs with respiratory signs. Aim of the present study is to investigate the prevalence of this virus in archival samples of cats stored in two different laboratories of southern Italy. This topic is certainly worth of investigation as related viruses have been already observed in both species.

Comments:

R2.1: It seems that screening of samples has been performed by a conventional PCR. According to the authors, "subsequently" (line 307) a qPCR has been done. I would have done the opposite. Indeed the results section starts with the description of the results obtained by qPCR. The authors need to clarify this point.

Reply to R2.1: In the section "Materials and Methods" we added more information on the correct workflow. This was also mentioned in the section "Results"

R2.2: Titre range of positive samples also needs to be described within the text.

Reply to R2.2: This was done, following also the request of R1.

R2.3: It is also not clear to this reviewer which amplicon has been produced for genetic analysis. A cartoon would be beneficial.

Reply to R2.3: We generated a figure (Figure 1) with information on the position of primers used for diagnostics and on the sequences generated in this study

R2.4: Molecular methods adopted for screening of other relevant pathogens need to be referenced within the M&M section.

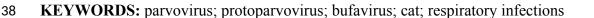
Reply to R2.4: The molecular methods used for screening of other respiratory pathogens referred in the text have been added in the "Materials and Methods" section at page 6, lines 119-121: "All of the samples of collection TR had been previously screened for feline calicivirus (FCV), feline herpesvirus type 1 (FHV-1) and *Chlamydophila felis* (*C. felis*) by conventional nested RT-PCR (Marsilio et al., 2005) and PCR (Di Martino et al., 2007)."

R2.5: Please cite Zaccaria et al., 2016 at line 647 together with Dowgier et al., 2017 and Silva et al., 2017.

Reply to R2.5: The suggested reference has been added in the manuscript.

R2.6: As for the isolation procedures, are these viruses normally isolated onto cell cultures? A sentence need to be inserted in the introduction section.

Reply to R2.6: We mentioned this in the discussion. To our knowledge, human viruses do not grow in cell cultures (Väisänen et al., 2017). We added a short comment in the discussion at page 12, lines 232-234: "Moreover, the virus could not be isolated on cell (A-72 and CRFK) cultures. Likewise, attempts to isolate human bufaviruses on cell cultures have been, thus far, unsuccessful (Väisänen et al., 2017). The reason for the non-cultivatable nature of these viruses remains unclear."


R2.7: The authors should also summarize the different sets of samples in a table. They used too many aka.

Reply to R2.7: We included this information in a new table (Table 2).

1	IDENTIFICATION	OF A NOVEL	PARVOVIRUS IN	DOMESTIC CATS	
2	Georgia Diakoudi ¹ ,	Gianvito Lanave	¹ , Paolo Capozza ¹ , ¹	Federica Di Profio ² , Irene Meleg	ari ² ,
3	Barbara Di Martino	² , Maria Grazia	Pennisi ³ , Gabriella	1 Elia ¹ , Alessandra Cavalli ¹ , M	Maria
4	Tempesta ¹ , Michele	Camero ¹ , Canio	Buonavoglia ¹ , Krisz	tián Bányai ⁴ , Vito Martella ^{1*} .	
5					
6					
7	¹ Department of Vete	rinary Medicine,	University of Bari, V	Valenzano, Italy	
8	² Faculty of Veterina	ry Medicine, Uni	versity of Teramo, Te	eramo, Italy	
9	³ Department of Vete	rinary Science, U	niversity of Messina	, Italy, Italy	
10	⁴ Institute for Vete	rinary Medical	Research, Centre fo	or Agricultural Research, Hung	arian
11	Academy of Sciences	s, Budapest, Hung	gary		
12					
13	*Corresponding auth	or:			
14	Vito Martella, Depa	rtment of Veterin	nary Medicine, Univ	ersity of Bari, S.p. per Casamas	ssima
15	Km3	70010,	Valenzano,	Bari,	Italy
16	Phone:+3908046798	05			
17	Fax:+390804679843				
18	e-mail:vito.martella@	Juniba.it			

21 ABSTRACT

A novel protoparvovirus species was identified in domestic cats. The virus was distantly related to the well-known feline (feline panleukopenia virus) and canine (canine parvovirus type 2) parvoviruses, sharing low nucleotide identities in the capsid protein 2 (less than 43%). The virus was genetically similar (100% at the nucleotide level) to a newly identified canine protoparvovirus, genetically related to human bufaviruses. The feline bufavirus appeared as a common element of the feline virome, especially in juvenile cats, with an overall prevalence of 9.2%. The virus was more common in respiratory samples (9.5% to 12.2%) than in enteric samples of cats (2.2%). The role of bufaviruses in the etiology of feline respiratory disease complex, either as a primary or a secondary agents, should be defined.

40 1. INTRODUCTION

Parvoviruses (family *Parvoviridae*) are small, nonenveloped, single-stranded DNA viruses. The
linear DNA genome is about 4.5-5.5 kb in length with complex hairpin structures at the 5' and 3'
ends and it encodes 3 or 4 proteins; non-structural (NS) 1, nucleoprotein (NP) 1, and viral protein
(VP) 1 and VP2 (Cotmore et al., 2014).

Parvoviruses (Feline parvovirus, FPV, Protoparvovirus genus) have long been known in cats. 45 46 FPV has been identified as the cause of diseases in cats, raccoons and some related carnivores for many years (Verge and Cristoforoni, 1928; Hindle and Findlay, 1932). FPV is associated 47 48 with severe panleukopenia and enteritis in cats and cerebellar ataxia in kittens (Csiza et al., 49 1971). FPV is genetically and antigenically similar to the canine parvovirus type 2 (CPV-2) (Stuetzer and Hartmann, 2014). CPV-2 emerged in dogs in the 1970s in Europe and North 50 America, when severe haemorrhagic gastroenteritis and myocarditis were reported in puppies 51 (Appel et al., 1979). The original CPV-2 type, shortly after its identification, started generating 52 antigenic variants, termed 2a, 2b and 2c (Parrish et al., 1985; Parrish et al., 1991; Buonavoglia et 53 al., 2001). Whilst the original CPV-2 type did not replicate in cats, its later variants gained the 54 ability to replicate and cause FPV-like disease in cats (Truyen et al., 1996; Hueffer and Parrish, 55 2003). 56

Recently, new parvoviruses of the genus *Bocaparvovirus* were described in cats (Lau et al.,
2012; Ng et al., 2014; Zhang et al., 2014) (Table 1). Genome sequencing of feline
bocaparvoviruses (FBoVs) has revealed a marked diversity between the FBoV strains FBD1
(FBoV-3) and POR1 (FBoV-2) and the prototype FBoV strain (FBoV-1) (Lau et al., 2012),

which has been proposed as carnivore bocaparvovirus-3 species (Cotmore et al., 2014). Whether
FBoVs are associated with any disease in cats and to what extent the observed genetic diversity
affects the biological properties of the various FBoV species is not known yet.

In 2016, a novel protoparvovirus (canine protoparvovirus 2), similar to human bufaviruses (BuVs) and denominated canine bufavirus (CaBuV), was identified in dogs with respiratory signs (Martella et al., 2018). The virus was more common in juvenile dogs and a possible association between respiratory signs and virus presence was observed. Since CPV-2 variants CPV-2 a, b and c, but not the original type, are able to infect cats and to induce FPV-like clinical signs, we hypothesized that cats might also serve as host species for the newly discovered CaBuV. In order to better understand the ecology of this novel animal protoparvovirus, in this study we extended the research of BuVs to biological samples of cats available in our laboratory.

82 2. MATERIALS AND METHODS

83 2.1 Origin of Samples

84 Archived nasal and oropharyngeal (NOP) swab samples and enteric samples (stool and rectal 85 swabs) obtained from young and adult domestic cats, collected at the Department of Veterinary Medicine, University of Bari, Italy, during 2016-2017 and 2012-2015 respectively, were 86 screened for CaBuV. The collection included 180 NOP samples from animals with or without 87 respiratory signs (collection BR) and 90 enteric samples (collection BE) from cats with 88 89 gastroenteritis. For a subset of 68 samples of collection BR (collection sBR), information about the age and the health condition of the animals was available; 51 animals had clinical respiratory 90 signs and 17 cats were asymptomatic. 91

Moreover, a collection of 304 NOP archival samples (collection TR) from cats with respiratory signs (n=179) (collection STR) or without clinical signs (n=125) (collection ATR), was screened for BuV. Collection TR was obtained in Italy during 2012-2013 and stored at the Faculty of Veterinary Medicine, University of Teramo, Italy. Detailed information about the age, the health status of the animals and the co-infection with other pathogens causing respiratory disease were available for TR samples.

98

99 2.2 DNA Extraction

Both NOP and fecal samples were homogenized in 10% Dulbecco's modified Eagle's medium
(DMEM) and then centrifuged at 10,000 x g for 3 min. <u>Viral DNANucleic acids wereas</u>

102	extracted from 200 µl of the supernatants using the QIAamp cador Pathogen Mini Kit (Qiagen	
103	S.p.A., Milan, Italy), following the manufacturer's protocol and the nucleic acid templates were	
104	stored at -80°C until use.	Commented [1]: R2.4
105		
100		
106	2.3 Screening of Samples in Conventional and Quantitative PCR	
107	To assess the presence of CaBuV, all samples were testedscreened in real-time PCR (qPCR)	
108	(CPPV-L3-for 5' TGAACAAGAAATAGACAACATTGTCAT 3', CPPV-L3-rev 5'	
109	AAAGAGCAGTTAGGTCA	
110	TTGTTGT 3', and CPPV-L3 Pb 5' Fam CCAAACAAGGTACAGGACAGGAAGAAACAAC-	
111	ACAA BHQ1 3') for the quantitative calculation of BuV DNA copy numbers (Martella et al.,	
112	2018) (Figure 1). The CaBuV DNA copy numbers were calculated on the basis of standard	Commented [2]: R2.3
113	curves generated by 10-fold dilutions of a plasmid standard TOPO XL PCR containing a 500-nt	
114	fragment of the VP2 region of CaBuV strain ITA/2011/297-15 (GenBank accession no.	
115	<u>MF198244).</u>	
116	The positive samples were tested in PCR using specific primers (CPPV 165F 5'	
117	CTGGTTTAATCCAGCAGACT 3' and CPPV 371R 5' TGAAGACCAAGGTAGTAGGT 3') to	
118	amplify and sequence a 2027-nucleotide (nt) fragment of the VP2 (Martella et al., 2018) (Figure	
119	1). For PCR amplification, the AccuPrime Taq DNA polymerase (Life Technologies) and the	Commented [3]: R2.3
120	suggested cycling thermal conditions were used.	Commented [4]: R2.1
121		

122	All of the samples of collection TR werehad been previously screened for feline calicivirus
123	(FCV), feline herpesvirus type 1 (FHV-1) and Chlamydophila felis (C. felis) by conventional
124	nested RT-PCR (Marsilio et al., 2005) and PCR (Di Martino et al., 2007). Subsequently, the
125	positive samples were tested in real-time PCR (qPCR) (CPPV-L3-for 5'
126	TGAACAAGAAATAGACAACATTGTCAT 3', CPPV-L3-rev 5' AAAGAGCAGTTAGGTCA
127	TTGTTGT-3', and CPPV-L3-Pb-5' Fam-CCAAACAAGGTACAGGACAGGAAGAAACAAC-
128	ACAA BHQ1-3') for the quantitative calculation of BuV DNA copy numbers (Martella et al.,
129	2018).
130	
404	2.4 Amplification of the VP2-coding region
131	2.4 Amplification of the VF2-coung region
131	In order to amplify the full-length VP2-coding gene (Figure 1), BuV-positive samples were
132	In order to amplify the full-length VP2-coding gene (Figure 1), BuV-positive samples were
132 133	In order to amplify the full-length VP2-coding gene (Figure 1), BuV-positive samples were selected on the basis of their concentration (DNA >10 ³ copies/10 μ l). The selected samples were
132 133 134	In order to amplify the full-length VP2-coding gene (Figure 1), BuV-positive samples were selected on the basis of their concentration (DNA >10 ³ copies/10 μ l). The selected samples were tested using two different primer pairs: the forward primer CPPV 165F and the reverse primer
132 133 134 135	In order to amplify the full-length VP2-coding gene (Figure 1), BuV-positive samples were selected on the basis of their concentration (DNA >10 ³ copies/10 µl). The selected samples were tested using two different primer pairs: the forward primer CPPV 165F and the reverse primer CPPV 1571R (5'-TTATAGAGTAATATTAGGC-3'); the forward primer CPPV 1409F (5'-
132 133 134 135 136	In order to amplify the full-length VP2-coding gene (Figure 1), BuV-positive samples were selected on the basis of their concentration (DNA >10 ³ copies/10 µl). The selected samples were tested using two different primer pairs: the forward primer CPPV 165F and the reverse primer CPPV 1571R (5'-TTATAGAGTAATATTAGGC-3'); the forward primer CPPV 1409F (5'-TCATATTCCTGGAGAAACATCA-3') and the reverse primer CPPV 1414R (5'-
132 133 134 135 136 137	In order to amplify the full-length VP2-coding gene (Figure 1), BuV-positive samples were selected on the basis of their concentration (DNA >10 ³ copies/10 µl). The selected samples were tested using two different primer pairs: the forward primer CPPV 165F and the reverse primer CPPV 1571R (5'-TTATAGAGTAATATTAGGC-3'); the forward primer CPPV 1409F (5'-TCATATTCCTGGAGAAACATCA-3') and the reverse primer CPPV 1414R (5'-ATATGTCTGTTAGATTGCCAGT-3'). The two primer pairs were designed based on available
132 133 134 135 136 137 138	In order to amplify the full-length VP2-coding gene (Figure 1), BuV-positive samples were selected on the basis of their concentration (DNA >10 ³ copies/10 µl). The selected samples were tested using two different primer pairs: the forward primer CPPV 165F and the reverse primer CPPV 1571R (5'-TTATAGAGTAATATTAGGC-3'); the forward primer CPPV 1409F (5'-TCATATTCCTGGAGAAACATCA-3') and the reverse primer CPPV 1414R (5'-ATATGTCTGTTAGATTGCCAGT-3'). The two primer pairs were designed based on available CaBuV genome sequences to amplify overlapping fragments of the VP2-coding region of 1350

Germain-en-Laye, France). 142

122

2.5 Statistical Analysis 143

Commented [5]: R2.4

Commented [6]: R2.3

The association among clinical signs, age and presence of the virus in the NOP samples of collections sBR and TR was evaluated using the chi-squared test. Logistic regression was used to identify possible bivariate associations between the presence of BuV DNA and the presence of other pathogens in the samples of collection TR.

Statistical analysis of the variables was performed using the software R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria; https://www.R-project.org/) and the statistical significance was set at p < 0.05.

151

152 *2.6 Sequence and Phylogenetic Analyses*

Genome sequences of the complete VP2-coding region from 64 protoparvovirus strains were retrieved from GenBank. The alignment of the sequences was conducted using the MAFFT multiple alignment program version 7.388 plugin of the Geneious software. Sequence and phylogenetic analyses were performed with Geneious version 10.2.4. software (Biomatters Ltd., Auckland, New Zealand). Phylogenetic analysis was performed using the neighbor-joining method, the Jukes-Cantor genetic distance model and bootstrapping over 1,000 replicates.

159

160 2.7 Virus Cultivation

BuV-positive samples were selected on the basis of virus load (DNA >10³ copies/10 μ l), as determined by qPCR. NOP and enteric samples were homogenized in 10% DMEM and then centrifuged at 10,000 x g. The supernatant was filtered with 0.22- μ m filters and inoculated onto freshly seeded Crandell Rees Feline Kidney (CRFK) cell line and canine fibroblastic tumor (A- 72) cells at 37°C in 5% CO₂. Viral growth was evaluated through 6 serial passages in CRFK and
A-72 cells, by monitoring the onset of cellular cytopathic effect and by testing the cell
supernatant by qPCR.

- 168
- 169
- 170 3. RESULTS
- 171 3.1 Molecular screening

Molecular screening by qPCR detected BuV DNA in 22/180 (12.2%) NOP samples of collection 172 BR, in 2/90 (2.2%) enteric samples of collection BE and in 29/304 (9.5%) NOP samples of 173 collection TR (Table 2). The viral loads of the collections ranged from 2.82×10^{-1} to 1.78×10^{5} 174 DNA copies/10µl of template (mean 9.81×10^3 DNA copies/10µl). More specifically, when 175 testing collection sBR, BuV DNA was detected in 13/51 (25.5%) of the cats with respiratory 176 177 signs and in 4/17 (23.5%) of healthy animals. When testing the NOP samples of collection TR, BuV DNA was detected in 13/179 (7.3%) cats with respiratory signs and in 16/125 (12.8%) 178 179 asymptomatic cats (Table 2). Statistical analysis showed no association between the presence of 180 the virus and clinical signs (p > 0.05). 181 Moreover, we re-analyzed the results based on the age of the animals (0-12 months and older

than 1 year). In the collection sBR BuV DNA was detected in 12/51 (23.5%) of the juvenile (0-12 months) group of animals and in 5/17 (29.4%) of the cats older than 1 year, but this difference was not statistically significant (p > 0.05). However, on the collection TR the presence of BuV DNA was detected in 18/120 (15.0%) of the juvenile cats and in 11/166 (6.6%) of the cats older than 1 year, and this difference was statistically significant (p = 0.03). Commented [7]: R2.7

Commented [8]: R1.1 + R2.2

Commented [9]: R2.7

The collection TR was also screened for the presence of other pathogens causing respiratory 187 188 signs. In this screening, 14/304 (4.6%) samples were positive for feline calicivirus (FCV), 58/304 (19.1%) were positive for feline herpesvirus (FHV-1) and 15/304 (4.9%) were positive 189 190 for Chlamydophila felis (C. felis). Logistic regression analysis was performed to evaluate 191 possible bivariate association between the presence of BuV and co-infection with FCV, FHV-1 and/or C. felis. The results of the analysis showed that co-infection of BuV and FCV and co-192 193 infection of BuV and FHV-1 had no association (p > 0.05). Instead, possible bivariate correlation was found in samples co-infected with BuV and C. felis (p = 0.00). 194

195 3.2 Sequence analysis of BuV identified in cats

Amplicons (2027-nt in length) obtained with the diagnostic PCR for BuV were sequenced. The obtained sequences were highly similar to their cognate CaBuV strains, sharing 99.5-100.0% nt identity. The complete or nearly complete consensus sequence of the VP2-coding region (1707 bp) of feline BuV was generated for three strains (ITA/2012/TE109, ITA/2015/BA509 and ITA/2017/BA291) (GenBank accession no. MK030121 - MK030123). Those three sequences were identical to the Italian and the Hungarian canine BuV strains sharing \geq 99.9% amino acid (aa) and nt identity.

Upon phylogenetic analysis based on the VP2-coding region, the feline BuV strains clustered tightly with the Italian and the Hungarian CaBuV strains (Figure 24). Interestingly, the carnivore BuV (protoparvovirus) strains were rooted along with a novel sea otter parvovirus (GenBank accession no. KU561552), with which they shared 70.0-70.4% nt identity. Both the carnivore BuVs and the sea otter parvovirus were related to the human bufavirus strains, sharing 67.2-70.8% nt identity. However, the feline BuV displayed low nt identity (42.0-42.7%) to CPV-2/FPV and to other carnivore protoparvovirus-1 strains (42.1-42.8%).

Commented [10]: R2.3

211 3.3 Virus Cultivation

The inoculated monolayers of CRFK and A-72 cell lines were visually inspected through 6 serial passages. The virus titer was monitored in cellular supernatant by qPCR. Evidence of viral growth was not observed in the cells.

215

228

216 4. DISCUSSION

Several novel parvoviruses have been identified in domestic carnivores in recent years, taking 217 advantage of massive sequencing technologies and meta-genomic approach for virus 218 219 characterization and discovery. A novel protoparvovirus, genetically unrelated to FPV/CPV-2, was identified in 2016 in dogs. The virus was found to resemble a group of parvoviruses first 220 221 identified in human and non-human primates and commonly known as bufaviruses (Martella et 222 al., 2018). Since some canine viruses can infect cats and vice versa (Martella et al., 2002; Matthijnssens et al., 2011; Di Martino et al., 2016; Di Martino et al., 2018), we hypothesized that 223 224 the novel canine BuV could circulate in the feline host. Using primer sets and probes specific for canine BuV, we screened a total of 574 archival feline samples collected from the respiratory and 225 enteric tract. Overall, the screening revealed BuV DNA in 9.2% of the samples (53/574), 226 227 indicating that BuVs are common component of the feline virome (Table 2).

Commented [11]: R2.7

- A major limit of our investigation was the missing information/metadata for most of the samples
- 230 of collection BR and, more in general, the relatively small numbers of samples included in the

231	screening as we tested archival samples available in our laboratories. However, the data were
232	informative enough to suggest a possible age-related pattern of the infection. Also, the virus was
233	relatively infrequent (2.2%) in the enteric tract of cats whilst the prevalence in respiratory
234	samples was about 5 to 6 times (9.5% to 12.2%) higher, suggesting that BuVs are more common
235	in the respiratory tract of cats. Indeed, the virus was rather common in the NOP samples of
236	collections BR (12.2%, 22/180) and TR (9.5%, 29/304). In humans, BuVs have been identified
237	almost exclusively in the enteric tract (Väisänen et al., 2016). However, investigations in dogs
238	(Martella et al., 2018), monkeys (Handley et al., 2012), shrews (Sasaki et al., 2015) and in sea
239	otters (Siqueira et al., 2017), also suggest the possibility of extra-intestinal and/or systemic
240	infections of BuVs. In our study, the virus appeared a common component of feline respiratory
241	virome, thus hinting at a preferential tropism of carnivore BuVs for the respiratory tract.
242	Moreover, the virus could not be isolated on cell (A-72 and CRFK) cultures. Likewise, attempts
243	to isolate human bufaviruses on cell cultures have been, thus far, unsuccessful (Vaisanen et al.,
244	2017). The reason for the non-cultivatable nature of these viruses remains unclear.in-order-to
245	better understand the virus pathogenesis, a trial to isolate the virus was performed, but so far
246	these viruses grow poorly in cell cultures.

Commented [12]: R2.6

For a subset of NOP samples from collection BR (sBR), we had detailed information on the age and health status of the animals but we did not find any significant difference in terms of prevalence between cats with respiratory signs (25.5%, 13/51) and without respiratory signs (23.5%, 4/17) and with respect to the age of the animals, although 12 of 17 (70.6%) BuVinfected animals were \leq 1 year of age. When analyzing the NOP samples of collection TR, we also did not found any statistically significant difference in terms of prevalence between cats

with (7.3%, 13/179) and without (12.9%, 16/125) respiratory signs. When analyzing virus 254 255 distribution on the basis of the age, the virus was more common in juvenile animals. Eighteen of 29 (62.1%) BuV-infected animals were ≤ 1 year of age (p = 0.03). A similar age-related pattern 256 was observed in BuV-infected dogs (Martella et al., 2018) and could indicate that young animals 257 are more susceptible to BuV infection. This might be due to the immature immune system of 258 juvenile cats, couped with after the decline of maternal immunity. In addition, in the collection 259 260 TR a possible correlation was found between co-infection with BuV and C. felis (p = 0.00). This possible association is worth additional, tailored investigations, in order to decipher mechanisms 261 262 of synergism between some micro-organisms, as already described (Zaccaria et al., 2016; 263 Dowgier et al., 2017; Silva et al., 2017). Also, this will be helpful to understand whether BuVs 264 are able to play a role in feline respiratory disease complex.

265

266 The nearly complete VP2-coding region, of 1.7 kb in length, was sequenced for three strains (ITA/2012/TE109, ITA/2015/BA509, ITA/2017/BA291). The viruses displayed > 99.9% nt 267 identity to each other and to canine BuVs. Interestingly, no aa mutation was observed between 268 269 the VP2 of feline and canine BuVs. This finding is interesting, as a few aa mutations in the VP2 have been found to affect the host range of the carnivore protoparvoviruses FPV and CPV-2. 270 271 For these viruses, the capsid is the major determinant of host range (Hueffer et al., 2003) and subject to antibody-mediated selection (Nelson et al., 2007). The fact that the feline and canine 272 BuVs displayed strong sequence conservation could suggest that the virus has recently crossed 273 the species barrier from a yet unidentified source, with a recent bottleneck event in the evolution 274 of BuVs in domestic carnivores. On the contrary, a marked genetic heterogeneity has been 275 276 observed within human BuVs, with at least 3 distinct genotypes (Yahiro et al., 2014), differing Commented [13]: R1.2

mostly in the VP2 (65-73% aa identity) (Väisänen et al., 2017). Upon phylogenetic analysis, the canine/feline BuVs segregated apart from but close to BuVs discovered in human and nonhuman primates. Interestingly, the canine/feline group was strictly rooted with a sea otter BuV (KU561552) identified in 2017 in USA (Siqueira et al., 2017). Analysis by PCR of archival necropsy samples suggested that this virus is endemic in sea otter population, with 60% of the examined animals being positive. Accordingly, it is possible that similar viruses infect other wildlife mammals.

284

285

286 In conclusion, we gathered evidence that cats may be infected from at least two distinct 287 protoparvovirus species. The pathogenic role, if any, of this novel feline protoparvovirus, herewith indicated as canine/feline or carnivore BuV, should be investigated more in detail, by 288 including systematically BuVs in the diagnostic algorithms of feline viral agents, chiefly for cats 289 with respiratory infectious diseases. Also, the feline and canine BuVs were virtually identical, 290 suggesting the possibility of inter-species circulation between the two carnivore species. The fact 291 that dogs and cats may share the same viruses should not be ignored when devising measures of 292 prophylaxis in shelters and clinics. 293

294

295 **5. REFERENCES**

Appel, M.J., Scott, F.W., Carmichael, L.E., 1979. Isolation and immunisation studies of a canine
 parco-like virus from dogs with haemorrhagic enteritis. Vet. Rec. doi:10.1136/vr.105.8.156

- Binn, L.N., Lazar, E.C., Eddy, G.A., Kajima, A.M., 1970. Recovery and characterization of a
- 299 minute virus of canines. Infect. Immun. 1(5), 503-508
- 300 Buonavoglia, C., Martella, V., Pratella, A., Tempesta, M., Cavalli, A., Buonavoglia, D., Bozzo,
- 301 G., Elia, G., Decaro, N., Carmichael, L., 2001. Evidence for evolution of canine parvovirus
- 302 type 2 in Italy. J. Gen. Virol. doi:10.1099/0022-1317-82-12-3021
- 303 Cotmore, S.F., Agbandje-McKenna, M., Chiorini, J.A., Mukha, D. V., Pintel, D.J., Qiu, J.,
- 304 Soderlund-Venermo, M., Tattersall, P., Tijssen, P., Gatherer, D., Davison, A.J., 2014. The
- family Parvoviridae. Arch. Virol. doi:10.1007/s00705-013-1914-1
- Csiza, C.K., Scott, F.W., De Lahunta, A., Gillespie, J.H., 1971. Pathogenesis of feline
 panleukopenia virus in susceptible newborn kittens I. Clinical signs, hematology, serology,
 and virology. Infect. Immun. 3(6), 833-837
- 309 Di Martino, B., Di Francesco, C.E., Meridiani, I., Marsilio, F., 2007. Etiological investigation of
- 310 multiple respiratory infections in cats. New Microbiol. 30, 455-461
- Di Martino, B., Di Profio, F., Melegari, I., Sarchese, V., Cafiero, M.A., Robetto, S., Aste, G.,
- Lanave, G., Marsilio, F., Martella, V., 2016. A novel feline norovirus in diarrheic cats.
- 313 Infect. Genet. Evol. doi:10.1016/j.meegid.2015.12.019
- 314 Di Martino, B., Di Profio, F., Melegari, I., Sarchese, V., Massirio, I., Luciani, A., Lanave, G.,
- 315 Marsilio, F., Martella, V., 2018. Serological and molecular investigation of 2117-like
- 316 vesiviruses in cats. Arch. Virol. doi:10.1007/s00705-017-3582-z

Commented [14]:

Commented [15]: R2.4

318	Dowgier, G., Lorusso, E., Decaro, N., Desario, C., Mari, V., Lucente, M.S., Lanave, G.,
319	Buonavoglia, C., Elia, G., 2017. A molecular survey for selected viral enteropathogens
320	revealed a limited role of Canine circovirus in the development of canine acute
321	gastroenteritis. Vet. Microbiol. doi:10.1016/j.vetmic.2017.04.007

- 322 Handley, S.A., Thackray, L.B., Zhao, G., Presti, R., Miller, A.D., Droit, L., Abbink, P.,
- 323 Maxfield, L.F., Kambal, A., Duan, E., Stanley, K., Kramer, J., MacRi, S.C., Permar, S.R.,
- 324 Schmitz, J.E., Mansfield, K., Brenchley, J.M., Veazey, R.S., Stappenbeck, T.S., Wang, D.,
- Barouch, D.H., Virgin, H.W., 2012. Pathogenic simian immunodeficiency virus infection is
- associated with expansion of the enteric virome. Cell. doi:10.1016/j.cell.2012.09.024
- Hindle, E., Findlay, G.M., 1932. Studies on Feline Distemper. J. Comp. Pathol. Ther. 45, 11–26.
 doi:https://doi.org/10.1016/S0368-1742(32)80002-0
- Hueffer, K., Govindasamy, L., Agbandje-McKenna, M., Parrish, C.R., 2003. Combinations of
 two capsid regions controlling canine host range determine canine transferrin receptor
 binding by canine and feline parvoviruses. J Virol. doi:10.1128/JVI.77.18.1009910105.2003
- Hueffer, K., Parrish, C.R., 2003. Parvovirus host range, cell tropism and evolution. Curr. Opin.
 Microbiol. doi:10.1016/S1369-5274(03)00083-3
- Kapoor, A., Mehta, N., Dubovi, E.J., Simmonds, P., Govindasamy, L., Medina, J.L., Street, C.,
 Shields, S., Ian Lipkin, W., 2012. Characterization of novel canine bocaviruses and their
 association with respiratory disease. J. Gen. Virol. doi:10.1099/vir.0.036624-0

338	Lau, S.K.P., Woo, P.C.Y., Yeung, H.C., Teng, J.L.L., Wu, Y., Bai, R., Fan, R.Y.Y., Chan, K.H.,	
339	Yuen, K.Y., 2012. Identification and characterization of bocaviruses in cats and dogs	
340	reveals a novel feline bocavirus and a novel genetic group of canine bocavirus. J. Gen.	
341	Virol. doi:10.1099/vir.0.042531-0	
342	Li, L., Pesavento, P.A., Leutenegger, C.M., Estrada, M., Coffey, L.L., Naccache, S.N., Samayoa,	
343	E., Chiu, C., Qiu, J., Wang, C., Deng, X., Delwart, E., 2013. A novel bocavirus in canine	
344	liver. Virol. J. doi:10.1186/1743-422X-10-54	
345	Marsilio, F., Di Martino, B., Decaro, N., Buonavoglia, C., 2005. A novel nested PCR for the	
346	diagnosis of calicivirus infections in the cat. Vet. Microbiol.	
347	doi:10.1016/j.vetmic.2004.09.017	Commented [16]: R2.4
348	Martella, V., Pratelli, A., Gentile, M., Buonavoglia, D., Decaro, N., Fiorente, P., Buonavoglia,	
349	C., 2002. Analysis of the capsid protein gene of a feline-like calicivirus isolated from a dog.	
350	Vet. Microbiol. doi:10.1016/S0378-1135(01)00521-1	

351 Martella, V., Lanave, G., Mihalov-Kovács, E., Marton, S., Varga-Kugler, R., Kaszab, E., Di

352 Martino, B., Camero, M., Decaro, N., Buonavoglia, C., Bányai, K., 2018. Novel parvovirus

related to primate bufaviruses in dogs. Emerg. Infect. Dis. doi:10.3201/eid2406.171965

Matthijnssens, J., De Grazia, S., Piessens, J., Heylen, E., Zeller, M., Giammanco, G.M., Bányai,
K., Buonavoglia, C., Ciarlet, M., Martella, V., Van Ranst, M., 2011. Multiple reassortment
and interspecies transmission events contribute to the diversity of feline, canine and
feline/canine-like human group A rotavirus strains. Infect. Genet. Evol.
doi:10.1016/j.meegid.2011.05.007

359	Nelson, C.D.S., Palermo, L.M., Hafenstein, S.L., Parrish, C.R., 2007. Different mechanisms of
360	antibody-mediated neutralization of parvoviruses revealed using the Fab fragments of
361	monoclonal antibodies. Virology. doi:10.1016/j.virol.2006.11.032
362	Ng, T.F.F., Mesquita, J.R., Nascimento, M.S.J., Kondov, N.O., Wong, W., Reuter, G., Knowles,
363	N.J., Vega, E., Esona, M.D., Deng, X., Vinjé, J., Delwart, E., 2014. Feline fecal virome
364	reveals novel and prevalent enteric viruses. Vet. Microbiol.
365	doi:10.1016/j.vetmic.2014.04.005
366	Parrish, C.R., O'Connell, P.H., Evermann, J.F., Carmichael, L.E., 1985. Natural variation of
367	canine parvovirus. Science. doi:10.1126/science.4059921
368	Parrish, C.R., Charles, F., Strassheim, M.L., Evermann, J.F., Sgro, J.Y., Mohammed, H.O., 1991.
369	Rapid antigenic-type replacement and DNA sequence evolution of canine parvovirus. J.
370	Virol. doi:10.12720/jcm.8.8.505-511
371	
372	Sasaki, M., Orba, Y., Anindita, P.D., Ishii, A., Ueno, K., Hang'Ombe, B.M., Mweene, A.S., Ito,
373	K., Sawa, H., 2015. Distinct lineages of bufavirus in wild shrews and nonhuman primates.
374	Emerg. Infect. Dis. doi:10.3201/eid2107.141969
375	Silva, R.O.S., Dorella, F.A., Figueiredo, H.C.P., Costa, É.A., Pelicia, V., Ribeiro, B.L.D.,
376	Ribeiro, M.G., Paes, A.C., Megid, J., Lobato, F.C.F., 2017. Clostridium perfringens and C.
377	difficile in parvovirus-positive dogs. Anaerobe. doi:10.1016/j.anaerobe.2017.07.001

378	Siqueira, J.D., Ng, T.F., Miller, M., Li, L., Deng, X., Dodd, E., Batac, F., Delwart, E., 2017.
379	Endemic infection of stranded southern sea otters (Enhydra lutris nereis) with novel
380	parvovirus, poluomavirus, and adenovirus. J. Wildl. Dis. doi:10.7589/2016-04-082
381	Stuetzer, B., Hartmann, K., 2014. Feline parvovirus infection and associated diseases. Vet. J.
382	doi:10.1016/j.tvjl.2014.05.027
383	Truyen, U., Evermann, J.F., Vieler, E., Parrish, C.R., 1996. Evolution of canine parvovirus
384	involved loss and gain of feline host range. Virology. doi:10.1006/viro.1996.0021
385	Vaïsänen, E., Paloniemi, M., Kuisma, I., Lithovius, V., Kumar, A., Franssila, R., Ahmed, K.,
386	Delwart, E., Vesikari, T., Hedman, K., Söderlund-Venermo, M., 2016. Epidemiology of two
387	human protoparvoviruses, bufavirus and tusavirus. Sci. Rep. doi:10.1038/srep39267
388	Väisänen, E., Fu, Y., Hedman, K., Söderlund-Venermo, M., 2017. Human protoparvoviruses.
389	Viruses. doi:10.3390/v9110354
390	Verge, J., Cristoforoni, N., 1928. La gastroenterite infectieuse des chats est elle due a un virus
391	filtrable?. C. r. Séam. Soc. Biol. (Paris), 99, 312
392	Yahiro, T., Wangchuk, S., Tshering, K., Bandhari, P., Zangmo, S., Dorji, T., Tshering, K.,

bufavirus genotype 3 in children with severe diarrhea, Bhutan. Emerg. Infect. Dis.
doi:10.3201/eid2006.131430

393

Matsumoto, T., Nishizono, A., Söderlund-Venermo, M., Ahmed, K., 2014. Novel human

 Zaccaria, G., Malatesta, D., Scipioni, G., Di Felice, E., G. Sabatino, D., Lorusso, A., 2016. Circovirus in dom opportunistic agent? Virology. doi:10.1016/j.virol.2 Zhang, W., Li, L., Deng, X., Kapusinszky, B., Pesaventa of cats in an animal shelter. J. Gen. Virol. doi:10.101 	mestic and wild carnivores: An important 2016.01.007 to, P.A., Delwart, E., 2014. Faecal virome
 398 <u>opportunistic agent? Virology. doi:10.1016/j.virol.2</u> 399 Zhang, W., Li, L., Deng, X., Kapusinszky, B., Pesavente 	2016.01.007 to, P.A., Delwart, E., 2014. Faecal virome
399 Zhang, W., Li, L., Deng, X., Kapusinszky, B., Pesavent	to, P.A., Delwart, E., 2014. Faecal virome
400 of cats in an animal shelter. J. Gen. Virol. doi:10.10	
	099/vir.0.069674-0
401	
402	
403	
404	
405 FIGURE AND TABLES CAPTIONS	
406 Table 1: Parvoviruses identified in dog and cats and the	their classification (Cotmore et al. 2014)
-	
	are indicated by asterisks. Common of
408 widely used names for the viruses are also indicated.	
409 Table 2: Collections of samples used for the study.	Gray color indicates the subsets of the
Fault 2. Concentions of samples used for the study.	
409 Collections BR and TR respectively .	Commented [17]: R2.7
410 collections BR and TR respectively.	
 410 collections BR and TR respectively. 411 Figure 1: Genome organization of the CaBuV strain II 	TA/2011/297-15 (GenBank accession no.
 410 collections BR and TR respectively. 411 Figure 1: Genome organization of the CaBuV strain II 412 MF198244). Arrows demonstratenducate the positions 	TA/2011/297-15 (GenBank accession no.
 410 collections BR and TR respectively. 411 Figure 1: Genome organization of the CaBuV strain II 	TA/2011/297-15 (GenBank accession no. of primers and probe used for diagnostic f the VP2-coding region generated in our

415	Figure <u>2</u> 4: Capsid-based phylogenetic tree displaying the diversity of protoparvoviruses. The
416	protoparvoviruses officially recognized by the International Committee on Taxonomy of Viruses
417	are included along with nonclassified (NC) protoparvoviruses. GenBank accession numbers are
418	provided for reference strains; Gray Fox amdovirus (GenBank accession no. JN202450) was
419	used as outgroup. The tree was generated using the neighbor-joining method with the Jukes-
420	Cantor algorithm of distance correction, with bootstrapping up to 1,000 replicates. Bootstrap
421	values >70% are shown. Gray color indicates feline protoparvovirus strains.

Commented [19]: R2.3

1 HIGHLIGHTS

2	•	A novel p	otoparvovirus	(bufavirus)) was identified in cats.
~	-	11 no voi pi	010pui 10111 us	(Ouru II us	, was rachtlined in cats.

- The feline bufavirus was more common in respiratory samples of juvenile cats.
- The feline bufavirus was highly similar to a canine bufavirus.
- The carnivore bufaviruses were phylogenetically related to primate bufaviruses.
- Carnivore bufaviruses are genetically distinct from feline/canine protoparvovirus-1
- 7 8 9
- 10
- 11

1	IDENTIFICATION OF A NOVEL PARVOVIRUS IN DOMESTIC CATS					
2	Georgia Diakoudi ¹ , Gianvito Lanave ¹ , Paolo Capozza ¹ , Federica Di Profio ² , Irene Melegari ² ,					
3	Barbara Di Martino ² , Maria Grazia Pennisi ³ , Gabriella Elia ¹ , Alessandra Cavalli ¹ , Maria					
4	Tempesta ¹ , Michele Camero ¹ , Canio Buonavoglia ¹ , Krisztián Bányai ⁴ , Vito Martella ^{1*} .					
5						
6						
7	¹ Department of Veterinary Medicine, University of Bari, Valenzano, Italy					
8	² Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy					
9	³ Department of Veterinary Science, University of Messina, Italy, Italy					
10	⁴ Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian					
11	Academy of Sciences, Budapest, Hungary					
12						
13	*Corresponding author:					
14	Vito Martella, Department of Veterinary Medicine, University of Bari, S.p. per Casamassima					
15	Km3 70010, Valenzano, Bari, Italy					
16	Phone:+390804679805					
17	Fax:+390804679843					
18	e-mail:vito.martella@uniba.it					
	1					

21 ABSTRACT

A novel protoparvovirus species was identified in domestic cats. The virus was distantly related to the well-known feline (feline panleukopenia virus) and canine (canine parvovirus type 2) parvoviruses, sharing low nucleotide identities in the capsid protein 2 (less than 43%). The virus was genetically similar (100% at the nucleotide level) to a newly identified canine protoparvovirus, genetically related to human bufaviruses. The feline bufavirus appeared as a common element of the feline virome, especially in juvenile cats, with an overall prevalence of 9.2%. The virus was more common in respiratory samples (9.5% to 12.2%) than in enteric samples of cats (2.2%). The role of bufaviruses in the etiology of feline respiratory disease complex, either as a primary or a secondary agents, should be defined.

KEYWORDS: parvovirus; protoparvovirus; bufavirus; cat; respiratory infections

1. INTRODUCTION

Parvoviruses (family *Parvoviridae*) are small, nonenveloped, single-stranded DNA viruses. The linear DNA genome is about 4.5-5.5 kb in length with complex hairpin structures at the 5' and 3' ends and it encodes 3 or 4 proteins; non-structural (NS) 1, nucleoprotein (NP) 1, and viral protein (VP) 1 and VP2 (Cotmore et al., 2014).

Parvoviruses (Feline parvovirus, FPV, Protoparvovirus genus) have long been known in cats. FPV has been identified as the cause of diseases in cats, raccoons and some related carnivores for many years (Verge and Cristoforoni, 1928; Hindle and Findlay, 1932). FPV is associated with severe panleukopenia and enteritis in cats and cerebellar ataxia in kittens (Csiza et al., 1971). FPV is genetically and antigenically similar to the canine parvovirus type 2 (CPV-2) (Stuetzer and Hartmann, 2014). CPV-2 emerged in dogs in the 1970s in Europe and North America, when severe haemorrhagic gastroenteritis and myocarditis were reported in puppies (Appel et al., 1979). The original CPV-2 type, shortly after its identification, started generating antigenic variants, termed 2a, 2b and 2c (Parrish et al., 1985; Parrish et al., 1991; Buonavoglia et al., 2001). Whilst the original CPV-2 type did not replicate in cats, its later variants gained the ability to replicate and cause FPV-like disease in cats (Truyen et al., 1996; Hueffer and Parrish, 2003).

Recently, new parvoviruses of the genus Bocaparvovirus were described in cats (Lau et al., 2012; Ng et al., 2014; Zhang et al., 2014) (Table 1). Genome sequencing of feline bocaparvoviruses (FBoVs) has revealed a marked diversity between the FBoV strains FBD1 (FBoV-3) and POR1 (FBoV-2) and the prototype FBoV strain (FBoV-1) (Lau et al., 2012),

which has been proposed as carnivore bocaparyovirus-3 species (Cotmore et al., 2014). Whether FBoVs are associated with any disease in cats and to what extent the observed genetic diversity affects the biological properties of the various FBoV species is not known yet.

In 2016, a novel protoparvovirus (canine protoparvovirus 2), similar to human bufaviruses (BuVs) and denominated canine bufavirus (CaBuV), was identified in dogs with respiratory signs (Martella et al., 2018). The virus was more common in juvenile dogs and a possible association between respiratory signs and virus presence was observed. Since CPV-2 variants CPV-2 a, b and c, but not the original type, are able to infect cats and to induce FPV-like clinical signs, we hypothesized that cats might also serve as host species for the newly discovered CaBuV. In order to better understand the ecology of this novel animal protoparvovirus, in this study we extended the research of BuVs to biological samples of cats available in our laboratory.

82 2. MATERIALS AND METHODS

2.1 Origin of Samples

Archived nasal and oropharyngeal (NOP) swab samples and enteric samples (stool and rectal swabs) obtained from young and adult domestic cats, collected at the Department of Veterinary Medicine, University of Bari, Italy, during 2016-2017 and 2012-2015 respectively, were screened for CaBuV. The collection included 180 NOP samples from animals with or without respiratory signs (collection BR) and 90 enteric samples (collection BE) from cats with gastroenteritis. For a subset of 68 samples of collection BR (collection sBR), information about the age and the health condition of the animals was available; 51 animals had clinical respiratory signs and 17 cats were asymptomatic.

Moreover, a collection of 304 NOP archival samples (collection TR) from cats with respiratory signs (n=179) (collection STR) or without clinical signs (n=125) (collection ATR), was screened for BuV. Collection TR was obtained in Italy during 2012-2013 and stored at the Faculty of Veterinary Medicine, University of Teramo, Italy. Detailed information about the age, the health status of the animals and the co-infection with other pathogens causing respiratory disease were available for TR samples.

99 2.2 DNA Extraction

Both NOP and fecal samples were homogenized in 10% Dulbecco's modified Eagle's medium (DMEM) and then centrifuged at 10,000 x g for 3 min. Nucleic acids were extracted from 200 μ l

of the supernatants using the QIA amp *cador* Pathogen Mini Kit (Qiagen S.p.A., Milan, Italy), following the manufacturer's protocol and stored at -80°C until use. 2.3 Screening of Samples in Conventional and Quantitative PCR To assess the presence of CaBuV, all samples were tested in real-time PCR (qPCR) (CPPV-L3-for 5′ TGAACAAGAAATAGACAACATTGTCAT 3', CPPV-L3-rev 5′ CPPV-L3 Pb 5′ AAAGAGCAGTTAGGTCATTGTTGT 3', and Fam CCAAACAAGGTACAGGACAGGAAGAAACAAC-ACAA BHQ1 3') (Martella et al., 2018) (Figure 1). The CaBuV DNA copy numbers were calculated on the basis of standard curves generated by 10-fold dilutions of a plasmid standard TOPO XL PCR containing a 500-nt fragment of the VP2 region of CaBuV strain ITA/2011/297-15 (GenBank accession no. MF198244). The positive samples were tested in PCR using specific primers (CPPV 165F 5' CTGGTTTAATCCAGCAGACT 3' and CPPV 371R 5' TGAAGACCAAGGTAGTAGGT 3') to amplify and sequence a 202-nucleotide (nt) fragment of the VP2 (Martella et al., 2018) (Figure 1). For PCR amplification, the AccuPrime Taq DNA polymerase (Life Technologies) and the suggested cycling thermal conditions were used. All of the samples of collection TR had been previously screened for feline calicivirus (FCV), feline herpesvirus type 1 (FHV-1) and Chlamydophila felis (C. felis) by conventional nested RT-PCR (Marsilio et al., 2005) and PCR (Di Martino et al., 2007).

2.4 Amplification of the VP2-coding region

In order to amplify the full-length VP2-coding gene (Figure 1), BuV-positive samples were selected on the basis of their concentration (DNA $>10^3$ copies/10 µl). The selected samples were tested using two different primer pairs: the forward primer CPPV 165F and the reverse primer CPPV 1571R (5'-TTATAGAGTAATATTAGGC-3'); the forward primer CPPV 1409F (5'-TCATATTCCTGGAGAAACATCA-3') and the reverse primer CPPV 1414R (5'-ATATGTCTGTTAGATTGCCAGT-3'). The two primer pairs were designed based on available CaBuV genome sequences to amplify overlapping fragments of the VP2-coding region of 1350 nt and 962 nt in length, respectively. The primers were designed using the software Primer 3 implemented in Geneious version 10.2.4 (Biomatters Ltd., Auckland, New Zealand). The PCR assays were performed with TaKaRa La Taq polymerase (Takara Bio Europe S.A.S. Saint-Germain-en-Laye, France).

366 135

136 2.5 Statistical Analysis

The association among clinical signs, age and presence of the virus in the NOP samples of collections sBR and TR was evaluated using the chi-squared test. Logistic regression was used to identify possible bivariate associations between the presence of BuV DNA and the presence of other pathogens in the samples of collection TR.

Statistical analysis of the variables was performed using the software R version 3.5.1 (R
Foundation for Statistical Computing, Vienna, Austria; https://www.R-project.org/) and the
statistical significance was set at p < 0.05.

- 388 144

2.6 Sequence and Phylogenetic Analyses

Genome sequences of the complete VP2-coding region from 64 protoparvovirus strains were retrieved from GenBank. The alignment of the sequences was conducted using the MAFFT multiple alignment program version 7.388 plugin of the Geneious software. Sequence and phylogenetic analyses were performed with Geneious version 10.2.4. software (Biomatters Ltd., Auckland, New Zealand). Phylogenetic analysis was performed using the neighbor-joining method, the Jukes-Cantor genetic distance model and bootstrapping over 1,000 replicates.

2.7 Virus Cultivation

BuV-positive samples were selected on the basis of virus load (DNA $>10^3$ copies/10 µl), as determined by qPCR. NOP and enteric samples were homogenized in 10% DMEM and then centrifuged at 10,000 x g. The supernatant was filtered with 0.22-um filters and inoculated onto freshly seeded Crandell Rees Feline Kidney (CRFK) cell line and canine fibroblastic tumor (A-72) cells at 37°C in 5% CO₂. Viral growth was evaluated through 6 serial passages in CRFK and A-72 cells, by monitoring the onset of cellular cytopathic effect and by testing the cell supernatant by qPCR.

3. RESULTS

3.1 Molecular screening

Molecular screening by qPCR detected BuV DNA in 22/180 (12.2%) NOP samples of collection BR, in 2/90 (2.2%) enteric samples of collection BE and in 29/304 (9.5%) NOP samples of

collection TR (Table 2). The viral loads of the collections ranged from 2.82×10^{-1} to 1.78×10^{5} DNA copies/10µl of template (mean 9.81×10^3 DNA copies/10µl). More specifically, when testing collection sBR, BuV DNA was detected in 13/51 (25.5%) of the cats with respiratory signs and in 4/17 (23.5%) of healthy animals. When testing the NOP samples of collection TR, BuV DNA was detected in 13/179 (7.3%) cats with respiratory signs and in 16/125 (12.8%) asymptomatic cats (Table 2). Statistical analysis showed no association between the presence of the virus and clinical signs (p > 0.05). Moreover, we re-analyzed the results based on the age of the animals (0-12 months and older than 1 year). In the collection sBR BuV DNA was detected in 12/51 (23.5%) of the juvenile (0-12 months) group of animals and in 5/17 (29.4%) of the cats older than 1 year, but this difference was not statistically significant (p > 0.05). However, on the collection TR the presence of BuV DNA was detected in 18/120 (15.0%) of the juvenile cats and in 11/166 (6.6%) of the cats older than 1 year, and this difference was statistically significant (p = 0.03). The collection TR was also screened for the presence of other pathogens causing respiratory signs. In this screening, 14/304 (4.6%) samples were positive for FCV, 58/304 (19.1%) were positive for FHV-1 and 15/304 (4.9%) were positive for C. felis. Logistic regression analysis was performed to evaluate possible bivariate association between the presence of BuV and co-infection with FCV, FHV-1 and/or C. felis. The results of the analysis showed that co-infection of BuV and FCV and co-infection of BuV and FHV-1 had no association (p > 0.05). Instead, possible bivariate correlation was found in samples co-infected with BuV and C. felis (p = 0.00). 3.2 Sequence analysis of BuV identified in cats

Amplicons (202-nt in length) obtained with the diagnostic PCR for BuV were sequenced. The obtained sequences were highly similar to their cognate CaBuV strains, sharing 99.5-100.0% nt identity. The complete or nearly complete consensus sequence of the VP2-coding region (1707 bp) of feline BuV was generated for three strains (ITA/2012/TE109, ITA/2015/BA509 and ITA/2017/BA291) (GenBank accession no. MK030121 - MK030123). Those three sequences were identical to the Italian and the Hungarian canine BuV strains sharing $\geq 99.9\%$ amino acid (aa) and nt identity. Upon phylogenetic analysis based on the VP2-coding region, the feline BuV strains clustered tightly with the Italian and the Hungarian CaBuV strains (Figure 2). Interestingly, the carnivore BuV (protoparvovirus) strains were rooted along with a novel sea otter parvovirus (GenBank accession no. KU561552), with which they shared 70.0-70.4% nt identity. Both the carnivore BuVs and the sea otter parvovirus were related to the human bufavirus strains, sharing 67.2-70.8% nt identity. However, the feline BuV displayed low nt identity (42.0-42.7%) to CPV-2/FPV and to other carnivore protoparvovirus-1 strains (42.1-42.8%).

3.3 Virus Cultivation

The inoculated monolayers of CRFK and A-72 cell lines were visually inspected through 6 serial passages. The virus titer was monitored in cellular supernatant by qPCR. Evidence of viral growth was not observed in the cells.

207 4. DISCUSSION

Several novel parvoviruses have been identified in domestic carnivores in recent years, taking advantage of massive sequencing technologies and meta-genomic approach for virus characterization and discovery. A novel protoparyovirus, genetically unrelated to FPV/CPV-2, was identified in 2016 in dogs. The virus was found to resemble a group of parvoviruses first identified in human and non-human primates and commonly known as bufaviruses (Martella et al., 2018). Since some canine viruses can infect cats and vice versa (Martella et al., 2002; Matthijnssens et al., 2011; Di Martino et al., 2016; Di Martino et al., 2018), we hypothesized that the novel canine BuV could circulate in the feline host. Using primer sets and probes specific for canine BuV, we screened a total of 574 archival feline samples collected from the respiratory and enteric tract. Overall, the screening revealed BuV DNA in 9.2% of the samples (53/574), indicating that BuVs are common component of the feline virome (Table 2). A major limit of our investigation was the missing information/metadata for most of the samples

of collection BR and, more in general, the relatively small numbers of samples included in the screening as we tested archival samples available in our laboratories. However, the data were informative enough to suggest a possible age-related pattern of the infection. Also, the virus was relatively infrequent (2.2%) in the enteric tract of cats whilst the prevalence in respiratory samples was about 5 to 6 times (9.5% to 12.2%) higher, suggesting that BuVs are more common in the respiratory tract of cats. Indeed, the virus was rather common in the NOP samples of collections BR (12.2%, 22/180) and TR (9.5%, 29/304). In humans, BuVs have been identified almost exclusively in the enteric tract (Väisänen et al., 2016). However, investigations in dogs (Martella et al., 2018), monkeys (Handley et al., 2012), shrews (Sasaki et al., 2015) and in sea otters (Siqueira et al., 2017), also suggest the possibility of extra-intestinal and/or systemic infections of BuVs. In our study, the virus appeared a common component of feline respiratory

virome, thus hinting at a preferential tropism of carnivore BuVs for the respiratory tract.
Moreover, the virus could not be isolated on cell (A-72 and CRFK) cultures. Likewise, attempts
to isolate human bufaviruses on cell cultures have been, thus far, unsuccessful (Väisänen et al.,
2017). The reason for the non-cultivatable nature of these viruses remains unclear.

For a subset of NOP samples from collection BR (sBR), we had detailed information on the age and health status of the animals but we did not find any significant difference in terms of prevalence between cats with respiratory signs (25.5%, 13/51) and without respiratory signs (23.5%, 4/17) and with respect to the age of the animals, although 12 of 17 (70.6%) BuV-infected animals were ≤ 1 year of age. When analyzing the NOP samples of collection TR, we also did not found any statistically significant difference in terms of prevalence between cats with (7.3%, 13/179) and without (12.9%, 16/125) respiratory signs. When analyzing virus distribution on the basis of the age, the virus was more common in juvenile animals. Eighteen of 29 (62.1%) BuV-infected animals were ≤ 1 year of age (p = 0.03). A similar age-related pattern was observed in BuV-infected dogs (Martella et al., 2018) and could indicate that young animals are more susceptible to BuV infection. This might be due to the immature immune system of juvenile cats, coupled with the decline of maternal immunity. In addition, in the collection TR a possible correlation was found between co-infection with BuV and C. felis (p = 0.00). This possible association is worth additional, tailored investigations, in order to decipher mechanisms of synergism between some micro-organisms, as already described (Zaccaria et al., 2016; Dowgier et al., 2017; Silva et al., 2017). Also, this will be helpful to understand whether BuVs are able to play a role in feline respiratory disease complex.

The nearly complete VP2-coding region, of 1.7 kb in length, was sequenced for three strains (ITA/2012/TE109, ITA/2015/BA509, ITA/2017/BA291). The viruses displayed > 99.9% nt

identity to each other and to canine BuVs. Interestingly, no as mutation was observed between the VP2 of feline and canine BuVs. This finding is interesting, as a few aa mutations in the VP2 have been found to affect the host range of the carnivore protoparvoviruses FPV and CPV-2. For these viruses, the capsid is the major determinant of host range (Hueffer et al., 2003) and subject to antibody-mediated selection (Nelson et al., 2007). The fact that the feline and canine BuVs displayed strong sequence conservation could suggest that the virus has recently crossed the species barrier from a yet unidentified source, with a recent bottleneck event in the evolution of BuVs in domestic carnivores. On the contrary, a marked genetic heterogeneity has been observed within human BuVs, with at least 3 distinct genotypes (Yahiro et al., 2014), differing mostly in the VP2 (65-73% aa identity) (Väisänen et al., 2017). Upon phylogenetic analysis, the canine/feline BuVs segregated apart from but close to BuVs discovered in human and non-human primates. Interestingly, the canine/feline group was strictly rooted with a sea otter BuV (KU561552) identified in 2017 in USA (Siqueira et al., 2017). Analysis by PCR of archival necropsy samples suggested that this virus is endemic in sea otter population, with 60% of the examined animals being positive. Accordingly, it is possible that similar viruses infect other wildlife mammals.

In conclusion, we gathered evidence that cats may be infected from at least two distinct protoparvovirus species. The pathogenic role, if any, of this novel feline protoparvovirus, herewith indicated as canine/feline or carnivore BuV, should be investigated more in detail, by including systematically BuVs in the diagnostic algorithms of feline viral agents, chiefly for cats with respiratory infectious diseases. Also, the feline and canine BuVs were virtually identical, suggesting the possibility of inter-species circulation between the two carnivore species. The fact

that dogs and cats may share the same viruses should not be ignored when devising measures of prophylaxis in shelters and clinics.

5. REFERENCES

Appel, M.J., Scott, F.W., Carmichael, L.E., 1979. Isolation and immunisation studies of a canine parco-like virus from dogs with haemorrhagic enteritis. Vet. Rec. doi:10.1136/vr.105.8.156

Binn, L.N., Lazar, E.C., Eddy, G.A., Kajima, A.M., 1970. Recovery and characterization of a minute virus of canines. Infect. Immun. 1(5), 503-508

Buonavoglia, C., Martella, V., Pratella, A., Tempesta, M., Cavalli, A., Buonavoglia, D., Bozzo, G., Elia, G., Decaro, N., Carmichael, L., 2001. Evidence for evolution of canine parvovirus type 2 in Italy. J. Gen. Virol. doi:10.1099/0022-1317-82-12-3021

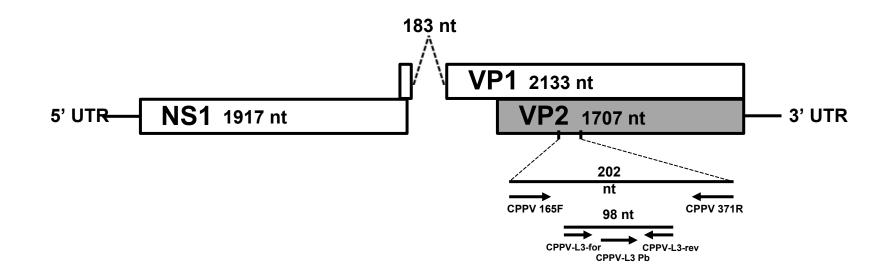
Cotmore, S.F., Agbandje-McKenna, M., Chiorini, J.A., Mukha, D. V., Pintel, D.J., Qiu, J., Soderlund-Venermo, M., Tattersall, P., Tijssen, P., Gatherer, D., Davison, A.J., 2014. The family Parvoviridae. Arch. Virol. doi:10.1007/s00705-013-1914-1

Csiza, C.K., Scott, F.W., De Lahunta, A., Gillespie, J.H., 1971. Pathogenesis of feline panleukopenia virus in susceptible newborn kittens I. Clinical signs, hematology, serology, and virology. Infect. Immun. 3(6), 833-837

Di Martino, B., Di Francesco, C.E., Meridiani, I., Marsilio, F., 2007. Etiological investigation of multiple respiratory infections in cats. New Microbiol. 30, 455-461

785 786		
787	005	Di Martina D. Di Draffa F. Malagari I. Sanahara V. Caffara M.A. Dahatta S. Asta C.
788	295	Di Martino, B., Di Profio, F., Melegari, I., Sarchese, V., Cafiero, M.A., Robetto, S., Aste, G.,
789 790	296	Lanave, G., Marsilio, F., Martella, V., 2016. A novel feline norovirus in diarrheic cats.
791 792 793	297	Infect. Genet. Evol. doi:10.1016/j.meegid.2015.12.019
794 795 796	298	Di Martino, B., Di Profio, F., Melegari, I., Sarchese, V., Massirio, I., Luciani, A., Lanave, G.,
797 798	299	Marsilio, F., Martella, V., 2018. Serological and molecular investigation of 2117-like
799 800 801	300	vesiviruses in cats. Arch. Virol. doi:10.1007/s00705-017-3582-z
802 803	301	Dowgier, G., Lorusso, E., Decaro, N., Desario, C., Mari, V., Lucente, M.S., Lanave, G.,
804 805	302	Buonavoglia, C., Elia, G., 2017. A molecular survey for selected viral enteropathogens
806 807	303	revealed a limited role of Canine circovirus in the development of canine acute
808 809 810 811	304	gastroenteritis. Vet. Microbiol. doi:10.1016/j.vetmic.2017.04.007
812 813	305	Handley, S.A., Thackray, L.B., Zhao, G., Presti, R., Miller, A.D., Droit, L., Abbink, P.,
814 815	306	Maxfield, L.F., Kambal, A., Duan, E., Stanley, K., Kramer, J., MacRi, S.C., Permar, S.R.,
816 817	307	Schmitz, J.E., Mansfield, K., Brenchley, J.M., Veazey, R.S., Stappenbeck, T.S., Wang, D.,
818 819	308	Barouch, D.H., Virgin, H.W., 2012. Pathogenic simian immunodeficiency virus infection is
820 821 822	309	associated with expansion of the enteric virome. Cell. doi:10.1016/j.cell.2012.09.024
823 824	310	Hindle, E., Findlay, G.M., 1932. Studies on Feline Distemper. J. Comp. Pathol. Ther. 45, 11–26.
825 826 827 828	311	doi:https://doi.org/10.1016/S0368-1742(32)80002-0
829 830	312	Hueffer, K., Govindasamy, L., Agbandje-McKenna, M., Parrish, C.R., 2003. Combinations of
831 832	313	two capsid regions controlling canine host range determine canine transferrin receptor
833 834	314	binding by canine and feline parvoviruses. J Virol. doi:10.1128/JVI.77.18.10099-
835 836	315	10105.2003
837 838 839 840		15
040		

841 842							
843 844	316	Hueffer, K., Parrish, C.R., 2003. Parvovirus host range, cell tropism and evolution. Curr. Opin					
845 846 847	317	Microbiol. doi:10.1016/S1369-5274(03)00083-3					
848 849 850	318	Kapoor, A., Mehta, N., Dubovi, E.J., Simmonds, P., Govindasamy, L., Medina, J.L., Street, C.,					
851 852	319	Shields, S., Ian Lipkin, W., 2012. Characterization of novel canine bocaviruses and their					
853 854 855	320	association with respiratory disease. J. Gen. Virol. doi:10.1099/vir.0.036624-0					
856 857	321	Lau, S.K.P., Woo, P.C.Y., Yeung, H.C., Teng, J.L.L., Wu, Y., Bai, R., Fan, R.Y.Y., Chan, K.H.,					
858 859	322	Yuen, K.Y., 2012. Identification and characterization of bocaviruses in cats and dogs					
860 861 862	323	reveals a novel feline bocavirus and a novel genetic group of canine bocavirus. J. Gen.					
863 864 865	324	Virol. doi:10.1099/vir.0.042531-0					
866 867	325	Li, L., Pesavento, P.A., Leutenegger, C.M., Estrada, M., Coffey, L.L., Naccache, S.N., Samayoa,					
868 869	326	E., Chiu, C., Qiu, J., Wang, C., Deng, X., Delwart, E., 2013. A novel bocavirus in canine					
870 871 872	327	liver. Virol. J. doi:10.1186/1743-422X-10-54					
873 874	328	8 Marsilio, F., Di Martino, B., Decaro, N., Buonavoglia, C., 2005. A novel nested PCR for th					
875 876	329	diagnosis of calicivirus infections in the cat. Vet. Microbiol.					
877 878 879 880	330	doi:10.1016/j.vetmic.2004.09.017					
881 882	331	Martella, V., Pratelli, A., Gentile, M., Buonavoglia, D., Decaro, N., Fiorente, P., Buonavoglia,					
883 884	332	C., 2002. Analysis of the capsid protein gene of a feline-like calicivirus isolated from a dog					
885 886 887 888 889 890 891 892	333	Vet. Microbiol. doi:10.1016/S0378-1135(01)00521-1					
893 894 895 896		16					


898						
899 900	334	Martella, V., Lanave, G., Mihalov-Kovács, E., Marton, S., Varga-Kugler, R., Kaszab, E., Di				
901 902	335	Martino, B., Camero, M., Decaro, N., Buonavoglia, C., Bányai, K., 2018. Novel parvoviru				
903 904 905	336	related to primate bufaviruses in dogs. Emerg. Infect. Dis. doi:10.3201/eid2406.171965				
906 907	337	Matthijnssens, J., De Grazia, S., Piessens, J., Heylen, E., Zeller, M., Giammanco, G.M., Bányai,				
908 909 910	338	K., Buonavoglia, C., Ciarlet, M., Martella, V., Van Ranst, M., 2011. Multiple reassortment				
911 912	339	and interspecies transmission events contribute to the diversity of feline, canine and				
913 914	feline/canine-like human group A rotavirus strains. Infect. Genet. Evol.					
915 916 917	341	doi:10.1016/j.meegid.2011.05.007				
918 919	342	Nelson, C.D.S., Palermo, L.M., Hafenstein, S.L., Parrish, C.R., 2007. Different mechanisms of				
920 921	343	antibody-mediated neutralization of parvoviruses revealed using the Fab fragments of				
922 923 924 925	344	monoclonal antibodies. Virology. doi:10.1016/j.virol.2006.11.032				
926 927	345	Ng, T.F.F., Mesquita, J.R., Nascimento, M.S.J., Kondov, N.O., Wong, W., Reuter, G., Knowles,				
928 929	346	N.J., Vega, E., Esona, M.D., Deng, X., Vinjé, J., Delwart, E., 2014. Feline fecal virome				
930 931	347	reveals novel and prevalent enteric viruses. Vet. Microbiol.				
932 933 934	348	doi:10.1016/j.vetmic.2014.04.005				
935 936	349	Parrish, C.R., O'Connell, P.H., Evermann, J.F., Carmichael, L.E., 1985. Natural variation of				
937 938 939 940	350	canine parvovirus. Science. doi:10.1126/science.4059921				
940 941 942	351	Parrish, C.R., Charles, F., Strassheim, M.L., Evermann, J.F., Sgro, J.Y., Mohammed, H.O., 1991				
943 944	352	Rapid antigenic-type replacement and DNA sequence evolution of canine parvovirus. J				
945 946 947 948 949 950	353	Virol. doi:10.12720/jcm.8.8.505-511 17				
951 952		17				

953		
954		
955 956	354	Sasaki, M., Orba, Y., Anindita, P.D., Ishii, A., Ueno, K., Hang'Ombe, B.M., Mweene, A.S., Ito,
957 958	355	K., Sawa, H., 2015. Distinct lineages of bufavirus in wild shrews and nonhuman primates.
959 960 961	356	Emerg. Infect. Dis. doi:10.3201/eid2107.141969
962 963 964	357	Silva, R.O.S., Dorella, F.A., Figueiredo, H.C.P., Costa, É.A., Pelicia, V., Ribeiro, B.L.D.,
965 966	358	Ribeiro, M.G., Paes, A.C., Megid, J., Lobato, F.C.F., 2017. Clostridium perfringens and C.
967 968 969	359	difficile in parvovirus-positive dogs. Anaerobe. doi:10.1016/j.anaerobe.2017.07.001
970 971	360	Siqueira, J.D., Ng, T.F., Miller, M., Li, L., Deng, X., Dodd, E., Batac, F., Delwart, E., 2017.
972 973	361	Endemic infection of stranded southern sea otters (Enhydra lutris nereis) with novel
974 975 976	362	parvovirus, poluomavirus, and adenovirus. J. Wildl. Dis. doi:10.7589/2016-04-082
977 978 979	363	Stuetzer, B., Hartmann, K., 2014. Feline parvovirus infection and associated diseases. Vet. J.
980 981 982	364	doi:10.1016/j.tvjl.2014.05.027
983 984	365	Truyen, U., Evermann, J.F., Vieler, E., Parrish, C.R., 1996. Evolution of canine parvovirus
985 986 987	366	involved loss and gain of feline host range. Virology. doi:10.1006/viro.1996.0021
988 989	367	Vaïsänen, E., Paloniemi, M., Kuisma, I., Lithovius, V., Kumar, A., Franssila, R., Ahmed, K.,
990 991	368	Delwart, E., Vesikari, T., Hedman, K., Söderlund-Venermo, M., 2016. Epidemiology of two
992 993 994	369	human protoparvoviruses, bufavirus and tusavirus. Sci. Rep. doi:10.1038/srep39267
995 996 997	370	Väisänen, E., Fu, Y., Hedman, K., Söderlund-Venermo, M., 2017. Human protoparvoviruses.
998 999 1000	371	Viruses. doi:10.3390/v9110354
1001 1002	372	Verge, J., Cristoforoni, N., 1928. La gastroenterite infectieuse des chats est elle due a un virus
1003 1004	373	filtrable?. C. r. Séam. Soc. Biol. (Paris), 99, 312
1005 1006 1007 1008		18

1009 1010		
1010 1011 1012	374	Yahiro, T., Wangchuk, S., Tshering, K., Bandhari, P., Zangmo, S., Dorji, T., Tshering, K.,
1013	375	Matsumoto, T., Nishizono, A., Söderlund-Venermo, M., Ahmed, K., 2014. Novel human
1014 1015	0,0	
1016	376	bufavirus genotype 3 in children with severe diarrhea, Bhutan. Emerg. Infect. Dis.
1017	777	d_{ai} 10 2201/aid2006 121420
1018 1019	377	doi:10.3201/eid2006.131430
1020		
1021 1022	378	Zaccaria, G., Malatesta, D., Scipioni, G., Di Felice, E., Campolo, M., Casaccia, C., Savini, G., Di
1023	379	Sabatino, D., Lorusso, A., 2016. Circovirus in domestic and wild carnivores: An important
1024		
1025 1026	380	opportunistic agent? Virology. doi:10.1016/j.virol.2016.01.007
1027		
1028 1029	381	Zhang, W., Li, L., Deng, X., Kapusinszky, B., Pesavento, P.A., Delwart, E., 2014. Faecal virome
1029		
1031	382	of cats in an animal shelter. J. Gen. Virol. doi:10.1099/vir.0.069674-0
1032 1033		
1034	383	
1035		
1036 1037	384	
1038	304	
1039		
1040 1041	385	
1042		
1043	386	
1044 1045		
1046		
1047	387	FIGURE AND TABLES CAPTIONS
1048 1049		
1050	388	Table 1: Parvoviruses identified in dog and cats and their classification (Cotmore et al., 2014)
1051	000	and an and the iffection. Condidets are in the set of the set of the Common on
1052 1053	389	and proposed classification. Candidate novel species are indicated by asterisks. Common or
1054	390	widely used names for the viruses are also indicated.
1055		
1056 1057	004	Table 2. Callesting of complex and for the state Comparison indicates the subsets of the
1058	391	Table 2: Collections of samples used for the study. Gray color indicates the subsets of the
1059	392	collections.
1060 1061		
1062		19
1063 1064		
1004		

Figure 1: Genome organization of the CaBuV strain ITA/2011/297-15 (GenBank accession no. MF198244). Arrows indicate the positions of primers and probe used for diagnostic PCR and qPCR. Gray color illustrates the sequence of the VP2-coding region generated in our study and used for phylogenetic analysis.

Figure 2: Capsid-based phylogenetic tree displaying the diversity of protoparvoviruses. The protoparvoviruses officially recognized by the International Committee on Taxonomy of Viruses are included along with nonclassified (NC) protoparvoviruses. GenBank accession numbers are provided for reference strains; Gray Fox amdovirus (GenBank accession no. JN202450) was used as outgroup. The tree was generated using the neighbor-joining method with the Jukes-Cantor algorithm of distance correction, with bootstrapping up to 1,000 replicates. Bootstrap values >70% are shown. Grav color indicates feline protoparvovirus strains.

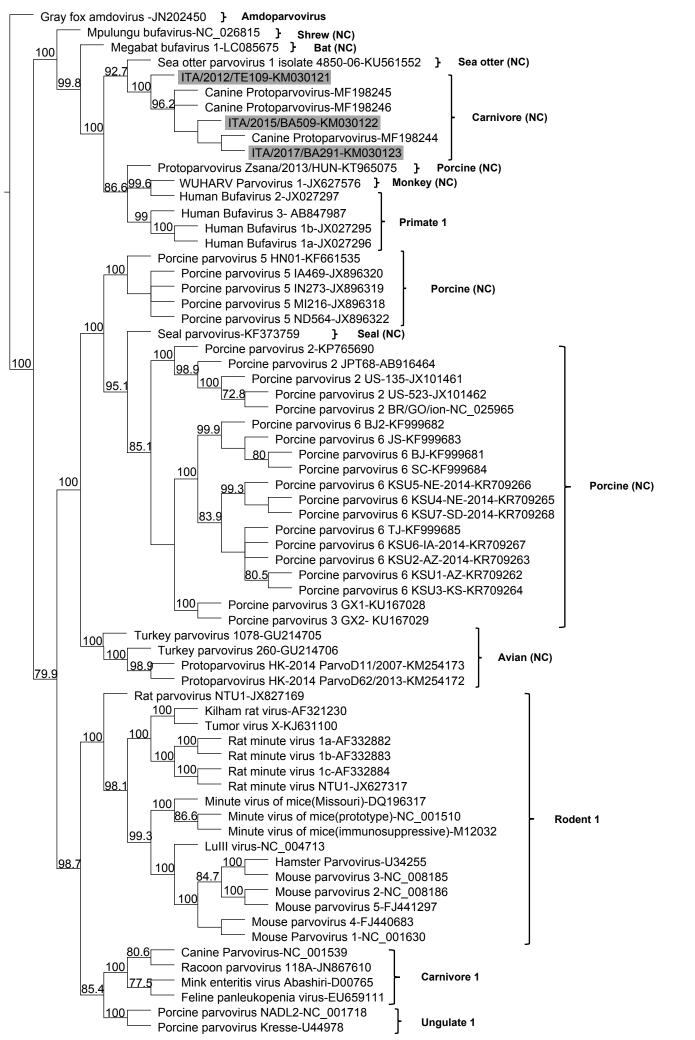


Table 1: Parvoviruses identified in dogs and cats and their classification (Cotmore et al 2014). Candidate novel species are indicated by asterisks.

Genus and species	Common/used names in literature	Year	Place	Reference	Accession
Bocaparvovirus genus					
Carnivore bocaparvovirus 1	Canine parvovirus 1 (CPV-1) or	1968	USA	Binn et al., 1970	FJ214110
	Minute Virus of Canines (MVC) or				
	CBoV-1				
Carnivore bocaparvovirus 2	Canine bocavirus (CBoV) 1 or CBoV-2	2011	USA	Kapoor <i>et al.</i> , 2012	JN648103
Carnivore bocaparvovirus 3	Feline bocaparvovirus (FBoV)	2009	USA	Lau et <i>al.</i> , 2012	JQ692585
Carnivore bocaparvovirus 4*	CBoV-3	2011	USA	Li et <i>al.</i> , 2013	KC580640
Protoparvovirus genus					
Carnivore protoparvovirus 1	Canine parvovirus 2 (CPV-2)	1978	USA	Appel et al., 1979	M19296
	CPV-2a	1983	USA	Parrish et al., 1985	M24000
	CPV-2b	1984	USA	Parrish et al., 1991	M74849
	CPV-2c	2000	Italy	Buonavoglia et al., 2001	AY380577
	Feline parvovirus (FPV)	1920	USA		
Carnivore protoparvovirus 2*	Canine bufavirus (CBuV)	2012	Italy - Hungary	Martella et al., 2018	MF198244
		-16			MF198245
					MF198246
	Feline bufavirus (FBuV)	2017	Italy	This study	

Origin	Name of collection	Nr of samples	Positive samples
	BR (Respiratory)	180	22 (12.2%)
Bari	sBR (subset of BR)	68	17 (25.0%)
	BE (Enteric)	90	2 (2.2%)
	TR (Respiratory)	304	29 (9.5%)
Teramo	ATR (Asymptomatic - subset of TR)	179	13 (7.3%)
	STR (Symptomatic - subset of TR)	125	16 (12.8%)
Total		574	53 (9.2%)

Table 2: Collections of samples used for the study. Grey color indicates subsets of the collections.