
SEGREGATED SOLUTIONS FOR NONLINEAR SCHRÖDINGER

SYSTEMS WITH WEAK INTERSPECIES FORCES

ANGELA PISTOIA AND GIUSI VAIRA

Abstract. We find positive non-radial solutions for a system of Schrödinger equations
in a weak fully attractive or repulsive regime in presence of an external radial trapping
potential that exhibits a maximum or a minimum at infinity.

1. Introduction

We are interested in finding positive solutions to the system

−∆ui + λiui + Vi(x)ui = µiu
3
i + ui

d∑
j=1
j 6=i

βiju
2
j in Rn, i = 1, . . . , d (1.1)

where µi > 0, λi > 0, βij = βji ∈ R, Vi ∈ C0(Rn), d ∈ N, n = 2, 3. This system has
been proposed as a mathematical model for multispecies Bose-Einstein condensation in
m different states:

− ι∂tφi = ∆φi − Vi(x)φi + µi|φi|2φi +

m∑
j=1
j 6=i

βij |φj |2φi, i = 1, . . . , d (1.2)

where the complex valued functions φi’s are the wave functions of the i−th condensate,
|φi| is the amplitude of the i−th density, µi describes the interaction between particles
of the same component and βij , i 6= j, describes the interaction between particles of
different components, which can be attractive if βij > 0 or repulsive if βij < 0. To obtain

solitary wave solutions of the Gross-Pitaevskii system (1.2) we set φi(t, x) = e−ιλitui(x)
and we find real functions ui’s which solve the system (1.1). We refer to [4, 5, 6, 10] for
a detailed physical motivation.

There are different kind of solutions to (1.1). The trivial solution has all trivial
components, i.e. ui ≡ 0 for any i. A non-trivial solution has some trivial components,
i.e. ui ≡ 0 for some i and in this case the system (1.1) reduces to a system with a less
number of components. The most interesting solutions are the so-called fully non-trivial
solutions whose components are all non-trivial, i.e. ui 6≡ 0 for any i. Among the set
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of fully non-trivial solutions we can distinguish among synchronized solutions and non-
synchronized solutions. We say that u = (u1, . . . , um) is a synchronized solution to the
system (1.1) (if, for example, λi = λ and Vi(x) = 0 for any index i), if u = (γ1U, . . . , γkU)
where γi > 0 and U is a positive solution to the single equation

−∆U + λU = U3 in Rn. (1.3)

In this case the system (1.1) reduces to the algebraic system

γi = µiγ
3
i + γi

m∑
j=1
j 6=i

βijγ
2
j , i = 1, . . . ,m.

Now, let us recall some known results. First, let us focus on the system with two
components {

−∆u+ λ1u = µ1u
3 + βuv2 in Rn,

−∆v + λ2v = µ2v
3 + βu2v in Rn

(1.4)

It is immediate to check that if λ = λ1 = λ2, the system (1.4) has a synchronized solution

(u, v) = (γ1U, γ2U) , γ1 =

√
β − µ2

β2 − µ1µ2
, γ2 =

√
β − µ1

β2 − µ1µ2
(1.5)

where U solves (1.3) provided

−√µ1µ2 < β < min{µ1, µ2} or β > max{µ1, µ2}. (1.6)

In the attractive case, i.e. β > 0, all the positive solutions of (1.4) are radially symmetric
(up to translation) and both components are decreasing in the radial variable (see for
example [14]). On the other hand, in the repulsive case, i.e. β < 0, there exists a large
variety of solutions. In fact radial solutions has been found by Wei & Weth [16], who
proved that if β ≤ −1 for any integer k there exists a radial solution (u1, u2) to the
system (1.4) with λi = 1 and µi = 1 such that the difference u1 − u2 has exactly k − 1
zeroes and converges as β → −∞ to a function W which is radial changing-sign solutions
of the scalar equation (1.3). Bartsch, Dancer & Wang [2] extend this result to a larger
range of parameters β, µ1, µ2. The case of an arbitrary number of components d ≥ 3
has been studied by Terracini & Verzini [13]. Problem (1.4) can also have non-radial
solutions. When the coupling parameter β < 0 is small, Lin & Wei [7] found solutions
with one component peaking at the origin and the other having a finite number of peaks
on a k-polygon in the plane R2. Wei & Weth [15] proved the existence of infinitely many
non radial solutions which are are invariant under the action of a finite subgroup of O(n)
(for example they satisfy (2.7)).

The general case has been firstly considered by Lin & Wei [8] where they study the
autonomous system

−∆ui + λiui = µiu
3
i +

d∑
j=1
j 6=i

βiju
2
j in Rn, i = 1, . . . , d (1.7)
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They prove the existence of a ground state solution whose components are positive, ra-
dially symmetric and strictly decreasing when all the βij ’s are positive and the matrix
(βij)i,j=1,...,d (here we set βii = µi) is positively definite and also that the ground state

solution does not exist anymore if all the βij ’s are negative. A systematic analysis of
system (1.7) under the assumption that it admits mixed couplings and the components
are organized into different groups has been recently developed by Wei & Wu [17] . The
first result concerning existence of non-radial solutions for systems with 3 components
goes back to Lin & Wei [8] who proved the existence of non-radial solutions to (1.7) if
all the coupling parameters are small and repulsion is much stronger than attraction.
Recently, Peng, Wang & Wang [12] consider system (1.7) in the case the repulsive cou-
plings are small and obtain solutions with some of the components synchronized between
them while being segregated with the rest of the components.

All the previous results deal with the autonomous case. The non-autonomous case
has been studied by Peng & Wang [11], who considered the system{

−∆u1 + V1(x)u1 = µ1u
3
1 + βu1u

2
2 in Rn,

−∆u2 + V2(x)u2 = µ2u
3
2 + βu2

1u2 in Rn

and found infinitely many non-radial positive solutions when the potentials V1 and V2

are radially symmetric and satisfy

Vi(x) ∼ 1 +
vi∞
|x|qi

as |x| → ∞, i = 1, 2. (1.8)

They build synchronized solutions (if q1 < q2, v1
∞ > 0 or q1 > q2, v2

∞ > 0 and the
coupling parameter β satisfies (1.6)) and segregated solutions (if q1 = q2, v

1
∞, v

2
∞ > 0

and β < β0 for some β0 > 0). The synchronized solutions look like a sum of k copies of
the syncronized solution (1.5)

(u1, u2) ∼

(
γ1

k∑
i=1

U(x− ρξi), γ2

k∑
i=1

U(x− ρξi)

)
as k →∞

where the peaks satisfy

ξi =

(
cos

2(i− 1)π

k
, sin

2(i− 1)π

k
, 0

)
, where the radius ρ ∼ Rk ln k for some R > 0.

Here U is the unique positive radial solution to the single equation

−∆U + U = U3 in Rn. (1.9)

On the other hand, the profile of each component of the segregated solutions looks like
a sum of k copies of the solution to (1.9)

(u1, u2) ∼

(
k∑
i=1

U(x− ρ1ξi),
k∑
i=1

U(x− ρ2ηi)

)
as k →∞

where the peaks ξi of the first component are as above, while the peaks ηi of the second
component are nothing but the peaks of the first one rotated by an angle π

k and the
radii ρi ∼ Rik ln k for some Ri > 0. The proof of their result relies on the idea by Wei
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& Yan [18] who found infinitely many solutions (positive if v∞ > 0 and sign-changing if
v∞ < 0) to the single Schrödinger equation

−∆u+ V (x)u = |u|p−1u in Rn

when the potential V is radially symmetric and satisfy (1.10).

We will focus on the existence of segregated solutions and we will ask a couple of
questions which naturally arise.

(Q1) Peng & Wang’s result holds when the system has only two components. Can we
find segregated solutions when the system has at least three components?

(Q2) Peng & Wang’s result holds when all the vi∞’s in (1.8) are positive. Do there
exist any solutions when some vi∞’s are negative?

We will give some partial positive answers in the particular case when all the param-
eters µi’s are equal to 1, all the βij ’s are equal to a real number β and all the potentials
Vi’s coincide with the radial potential V ∈ C1(Rn) which satisfies for some v∞ ∈ R,
ν > 1 and ε > 0

V (|x|) = 1 +
v∞
|x|ν

+O
(

1

|x|ν+ε

)
C1-uniformly as |x| → +∞, (1.10)

so that the system (1.1) reduces to

−∆ui + V (x)ui = u3
i + βui

d∑
j=1
j 6=i

u2
j inRn, i = 1, . . . , d. (1.11)

Our main result is the following one.

Theorem 1.1. Let d ≥ 3 and ν > 2
d−2 . There exists k0 > 0 such that for any integer

k ≥ k0 there exists βk > 0 such that for any β ∈ (0, βk) if v∞ > 0 or for any β ∈ (−βk, 0)
if v∞ < 0 the system (1.11) has a positive solution (u1, . . . , ud) whose components satisfy

ui(x) ≡ u(Θix)

where

Θi :=


cos 2(i−1)π

dk sin 2(i−1)π
dk 0

− sin 2(i−1)
dk cos 2(i−1)π

dk 0

0 0 I(n−2)×(n−2)


and

u1(x) ∼
k∑
`=1

U(x− ρξ`) as k →∞

with

ξ` =

(
cos

2(`− 1)π

k
, sin

2(`− 1)π

k
, 0

)
, ρ ∼ Rk ln k as k →∞ for some R > 0.



SEGREGATED SOLUTIONS 5

2π
3k

2π
k

ξ1

The case of 3 components

u1
u2
u3

π
2k

2π
k

ξ1

The case of 4 components

u1
u2
u3
u4

The proof of our result is given in Section 2. First, using the symmetry, we write the
system (1.11) as a single non-local equation (2.4). Next, we build a solution whose main
term is the sum of a large number of copies of solutions to problem (1.9) (see (2.8))
whose peaks are the vertices of a regular polygon with k edges at distance ρ = ρ(k) from
the origin. Due to the linear coupling term, the ansatz has to be improved by adding
the solution of the linear problem (2.12). Then we perform a classical Ljapunov-Schmidt
procedure to reduce the problem to that of finding a radius ρ which is the zero of the
one-dimensional function (2.32). This reduced 1D function consists of four main terms
(see Lemma 2.9). The first term v∞

k
ρν+1 arises from the potential effect and its sign

depends on v∞, the second term (which contains e−
2πρ
k ) is due to the interplay between

peaks of the same component and is always negative, the third term (which contains

βe−
4πρ
dk ) is due to the interaction among the peaks of different components and its sign

depends on the coupling parameter β. If d ≥ 3 the third term prevails the second one,
while if d = 2 the second term dominates the third one. The asymptotic expansion of the
last term Υ which is produced by the correction of the ansatz is really difficult to catch
and, unfortunately, we believe its presence is not an innocence matter, since it could
give a contribution to the second and the third terms. We are only able to provide the
rough estimate (2.33). That is why we need to choose the coupling parameter β small
enough so that Υ is an higher order term in the expansion of the reduced 1D function.
It is clear that it would be extremely interesting to find the leading term of Υ. At this
aim it is worthwhile to point out that such an expansion relies on the asymptotic decay
of the solution of (2.12) and this is the key point we are not able to solve.
Now, let us go back to the reduced 1D function (2.32). We observe that Peng and
Wang (using a different approach) prove that if the system has only two components
the interaction among peaks of different components is negligible with respect to the
interaction among peaks of the same component and since such an interaction is always
negative (and does not depend on β), the existence of segregated solutions is ensured
as soon as the potential V has a minimum at infinity, i.e. v∞ > 0. We conjecture that
if the number of components is higher the interaction among peaks of different compo-
nents should prevail. In such a case the existence of segregated solutions would depend
on the behaviour of the potential V at ∞ and the sign of the coupling parameter β,
namely they should exist if either in an attractive regime (i.e. β > 0) V has a mini-
mum at ∞ or in a repulsive regime (i.e. β < 0) V has a maximum at ∞ (i.e. v∞ < 0).
Actually, this is what happens when the coupling parameter β is small as in Theorem 1.1.
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It is also true for the more general variational system

−∆ui + V (x)ui = |ui|p−1ui + β|ui|
p−3
2 ui

d∑
j=1
j 6=i

|uj |
p−1
2 uj inRn, i = 1, . . . , d, (1.12)

when p > 3 if n = 2 or p ∈
(

3, n+2
n−2

)
if n ≥ 3 (the system (1.12) with p = 3 reduces to

(1.11)). In fact, in Section 3 we show the following result.

Theorem 1.2. Assume (1.10) and

(i) d > p+1
2 , p > 5 and either v∞ > 0 if β > 0 or v∞ < 0 if β < 0

(ii) d ≤ p−1
2 and v∞ > 0.

There exists k0 > 0 such that for any integer k ≥ k0 the system (1.11) has a solution
(u1, . . . , ud) whose components satisfy the properties listed in Theorem 1.1.

The situation in this case is easier, because the correction of the ansatz is not needed
and the reduced 1D function reads as (3.5) in case (i) or (3.6) in case (ii). To conclude,
we highlight the fact that if we were able to approximate the 1D function in Lemma 2.9
as (3.5) or (3.6), then we would have the existence of solutions of system (1.11) without
any assumptions on the smallness of the interspecies force β.

The paper is organized as follows. Section 2 and Section 3 contain the proof of The-
orem 1.1 and Theorem 1.2, respectively. Appendix A contains some ausiliary results.
Appendix B contains the proof of Proposition 2.2.

Notation. In what follows we agree that f . g means |f | ≤ c|g|(1 + o(1)) for some
positive constant c indipendent from k and f ∼ g means f = g(1 + o(1)).

2. Proof of Theorem 1.1

2.1. Reducing the system to a non-local equation. First of all, we introduce some
symmetries which allow to reduce the system (1.11) to a non-local equation.

Given θ ∈ [0, 2π], let Θθ : Rn → Rn be the rotation of an angle θ in the first two
components, i.e.

Θθ :=


cos θ sin θ 0

− sin θ cos θ 0

0 0 In−2×n−2

 . (2.1)

Now, let k ≥ 2 and set

Θ̂i := Θ 2π
dk

(i−1), for any i = 1, . . . , d. (2.2)

Note that Θ̂1 = In×n.

We look for a solution to (1.11) as u = (u1, . . . , ud) ∈ (H1(Rn))d whose components
satisfy

ui(x) ≡ u(Θ̂ix) for any i = 1, . . . , d. (2.3)
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It is immediate to check that such a u solves the system (1.11) if and only if u solves
the non-local equation

−∆u+ V (x)u = u3 + βu

d∑
j=2

u2(Θ̂jx), in Rn. (2.4)

2.2. The ansatz for the non-local equation. We look for a solution to (2.4) in the
space

H :=
{
u ∈W 1,2(Rn) : u satisfies (2.6) and (2.7)

}
, (2.5)

i.e.

u(x1, . . . , xi, . . . ) = u(x1, . . . ,−xi, . . . ) for any i = 2, . . . , n (2.6)

and

u(x) = u
(

Θ 2π
k

(h−1)x
)

for any h = 1, . . . , k (see (2.1)). (2.7)

We are going to find a solution of (2.4) whose main term looks like

Wρ(x) :=
k∑

h=1

Uh(x) and Uh(x) := U(x− ρξh) solves (1.9), (2.8)

where the peaks satisfy

ξh := Θ 2π
k

(h−1)ξ1, h = 1, . . . , k, with ξ1 := (1, 0, 0) ∈ R2 × Rn−2, (2.9)

and

ρ ∈ Dk := [r1k ln k, r2k ln k] for some r2 > r1 > 0. (2.10)

It is useful to remind that U is the unique positive radial solution to (1.9) and decays
exponentially together with its radial derivatives U ′, i.e.

lim
r→+∞

r
n−1
2 erU(r) = u > 0 and lim

r→+∞

U ′(r)

U(r)
= −1, (2.11)

where u is a positive constant depending on n.
It turns out that the error which comes from the interaction term

βWρ(x)
d∑
i=2

W 2
ρ (Θ̂ix)

is too large and we need to refine the ansatz adding the function Ψρ = βYρ where Yρ ∈H
solves

L(Yρ) = Wρ

d∑
i=2

W 2
ρ (Θ̂i·)− γρ∂ρWρ in Rn (2.12)

where the linear operator L is defined in (2.17) and

γρ :=

∫
Rn
Wρ(x)

∑d
i=2W

2
ρ (Θ̂i(x))∂ρWρ(x)dx∫

Rn
(∂ρWρ(x))2 dx

. (2.13)

The existence of Ψρ follows by Proposition (2.2).
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Then we will build a solution to (2.4) as

u = Wρ + Ψρ + Φ, with Wρ as in (2.8) and Ψρ as in (2.12). (2.14)

Moreover the higher order term Φ ∈H satisfies the orthogonality condition∫
Rn

∂ρWρΦ = 0. (2.15)

2.3. Rewriting the single equation via the finite dimensional reduction method.
It is useful to rewrite problem (2.4) in terms of Φ, i.e.

L(Φ) = N (Φ) + E in Rn, (2.16)

where the linear operator L is defined by

L(Φ) = −∆Φ + V (x)Φ− 3W 2
ρΦ−βΦ

d∑
i=2

W 2
ρ (Θ̂ix)− 2βWρ

d∑
i=2

Wρ(Θ̂ix)Φ(Θ̂ix), (2.17)

the error term E is defined by

E :=(1− V (x))Wρ

+ ∆Wρ −Wρ +W 3
ρ −L(Ψρ) + βWρ

d∑
i=2

W 2
ρ (Θ̂ix)︸ ︷︷ ︸

=γρ∂ρWρ (see (2.13))

+Ψ3
ρ + 3WρΨ

2
ρ

+ βΨρ

d∑
i=2

2Wρ(Θ̂ix)Ψρ(Θ̂ix) + βΨρ

d∑
i=2

Ψ2
ρ(Θ̂ix) + βWρ

d∑
i=2

Ψ2
ρ(Θ̂ix)

(2.18)

and the higher order term N (Φ) is defined by

N (Φ) := Φ3 + 3WρΦ
2 + 3ΨρΦ

2 + 3Ψ2
ρΦ + 6WρΨρΦ

+ βΦ

d∑
i=2

[
2Wρ(Θ̂ix)

(
Ψρ(Θ̂ix) + Φ(Θ̂ix)

)
+
(

Ψρ(Θ̂ix) + Φ(Θ̂ix)
)2
]

+ βΨρ

d∑
i=2

2Φ(Θ̂ix)
(
Wρ(Θ̂ix) + Ψρ(Θ̂ix)

)
+ βΨρ

d∑
i=2

Φ2(Θ̂ix)

+ βWρ

d∑
i=2

Φ2(Θ̂ix) + 2βWρ

d∑
i=2

Ψρ(Θ̂ix)Φ(Θ̂ix).

(2.19)

In order to solve (2.16) we use the classical Lyapunov-Schmidt procedure:

(i) first, given ρ ∈ Dk (see (2.10)) we find a function Φ ∈H such that, for a certain
c ∈ R, it solves the intermediate nonlinear problem

L(Φ) = N (Φ) + E + c∂ρWρ in Rn and

∫
Rn

∂ρWρΦ = 0. (2.20)

(ii) next, we find ρ ∈ Dk (see (2.10)) so that c in (2.20) is equal to zero.
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2.4. The linear theory. We will find the solution Φ to (2.20) in a suitable Banach
space where the linear operator L defined in (2.17) is invertible.

We introduce the Banach space (see also [9, Section 3])

B∗ := {h ∈ L∞(Rn) : ‖h‖∗ < +∞}, ‖h‖∗ := sup
x∈Rn

 d∑
i=1

k∑
j=1

e−α|x−ρηij |

−1

|h(x)|.

for some α ∈ (0, 1). The points ηi` := Θ̂−1
i ξ` are the peaks of the bubble U

(
Θ̂i · −ρξ`

)
,

namely U
(

Θ̂ix− ρξ`
)

= U
(
x− ρΘ̂−1

i ξ`

)
.

It is worthwhile to point out that all the peaks ηij ’s are different among them.

Lemma 2.1. It holds true

min
h=2,...,k

|ξ1 − ξh| = |ξ1 − ξ2| = 2 sin
π

k
(2.21)

and
min
i=2,...,d
h,`=1,...,k

|ξh − ηi`| = |ξ1 − η21| = 2 sin
π

dk
. (2.22)

Proof. (2.21) is immediate. Let us check (2.22). By (2.2) and (2.7)

ηi` = Θ−1
i ξ` = Θ 2π

k
(`−1)− 2π

dk
(i−1)ξ1 and ξh = Θ 2π

k
(h−1)ξ1

and they coincide if and only if

2π

dk
(i− 1) =

2π

k
(`− h) ⇐⇒ i = d(`− h) + 1 ⇐⇒ i = 1 and ` = h.

Moreover, when i ≥ 2 the distance |ξh − ηi`| is minimal when the angle

2π

dk
(i− 1)− 2π

k
(`− h) =

2π

k

(
1

d
(i− 1)− (`− h)

)
is minimal, that is if ` = h and i = 2 and in this case

|ξh − ηih| = |ξ1 − η21| = 2 sin
π

dk
.

�

It is also useful to remark that

‖h‖L∞≤ C‖h‖∗ and ‖h‖Lq≤ C‖h‖∗, ∀ 1 ≤ q <∞. (2.23)

Actually, the linear operator L defined in (2.17) is invertible in B∗ as shown in the
following proposition whose proof can be obtained arguing as in [3, Section 3] and is
postponed in the Appendix B.

Proposition 2.2. For any compact set B ⊂ B (see Remark 2.3), there exists k0 > 0
such that for any β ∈ B, for any k ≥ k0, ρ ∈ Dk and h ∈ B∗ which satisfy (2.6) and
(2.7), the linear problem

L(Φ) = h+ c∂ρWρ in Rn and

∫
Rn

∂ρWρΦ = 0
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admits a unique solution Φ = Φ(ρ, k) ∈H ∩B∗ and c = c(ρ, k) ∈ R such that

‖Φ‖∗ . ‖h‖∗ and |c| . ‖h‖∗. (2.24)

Remark 2.3. Let Λκ be the sequence of eigenvalues of the problem

−∆ϕ+ ϕ = ΛκU
2ϕ in Rn.

It is well known that Λ1 = 1 is simple and the associated eigenfunction is U. The second
eigenvalue Λ2 has multiplicity n and the associated eigenfunctions are ∂xiU , i = 1, . . . , n.
Set B := R \ {Λκ, κ ∈ N}.
2.5. The weighted norm. We introduce the sector

Σ :=
{

(r cos θ, r sin θ, x3) : x3 ∈ R, r ≥ 0, θ ∈
[
−π
k
,
π

k

]}
so that if u satisfies (2.7) then

‖u‖∗ = sup
x∈Σ

 k∑
j=1

d∑
i=1

e−α|x−ρηij |

−1

|u(x)|.

Moreover, it is useful to decompose Σ into d sectors (if d is odd i ∈ I := {−d−1
2 , . . . , 0, . . . , d−1

2 })
or in d+ 1 sectors (if d is even and i ∈ I := {−d

2 , . . . , 0, . . . ,
d
2})

Σ̃i :=

{
(r cos θ, r sin θ, x3) ∈ Σ : x3 ∈ R, r ≥ 0, θ ∈

[
− π

dk
+

2π

dk
i,
π

dk
+

2π

dk
i

]}
, i ∈ I,

so that each sector Σ̃i contains only one point η`κ which will be denoted by η̃i. In
particular η̃0 = ξ1. Therefore, to estimate the weighted norm ‖u‖∗ it will be enough to
select the points η̃i which belong to the sector Σ, i.e.

‖u‖∗ = sup
x∈Σ

 k∑
j=1

d∑
i=1

e−α|x−ρηij |

−1

|u(x)| ≤ sup
x∈Σ

(∑
i∈I

e−α|x−ρη̃i|

)−1

|u(x)|.

Moreover, since

x ∈ Σ ⇒ |x− ρξh| ≥
ρ

2
|ξh − ξ1| if h ≥ 2 (2.25)

and
x ∈ Σ̃i ⇒ |x− ρη̃`| ≥

ρ

2
|η̃` − η̃i| if ` 6= i, (2.26)

in the sector Σ the main term of Wρ(x) =
∑k

j=1 U(x−ρξj) is the first bubble U(x−ρξ1)

whose peak lies in Σ, while in each subsector Σ̃` the main term of Wρ(Θix) =
∑k

j=1 U(x−
ρΘ−1

i ξj) is the bubble U(x − ρη̃`) whose peak ηij = Θ−1
i ξj = η̃` is the unique which

belongs to Σ̃`. This can be made rigorous in the following lemma (whose proof can be
found in [18, Lemma A.1]).

Lemma 2.4. For any σ ∈ (0, 1) for any j ≥ 2

U(x− ρξj) . e−σ
πρ
k e−(1−σ)|x−ρξ1| for any x ∈ Σ

and for any ηij 6∈ Σ̃`

U(x− ρηij) . e−σ
πρ
dk e−(1−σ)|x−ρη̃`| for any x ∈ Σ̃`.
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2.6. The size of the error. First, by Proposition (2.2), Lemma 2.5 and Lemma 2.6
the function Ψρ = βYρinH which solves (2.12) satisfies

‖Ψρ‖∗ = β‖Yρ‖∗ . β‖Wρ

d∑
i=2

W 2
ρ (Θ̂i·)‖∗ . e−(1−α) 2πρ

dk . (2.27)

Lemma 2.5. If α ∈ (0, 1) it holds true that∥∥∥∥∥Wρ

d∑
i=2

W 2
ρ (Θ̂i·)

∥∥∥∥∥
∗

. e−(1−α) 2πρ
dk (2.28)

and ∥∥∥∥∥Wρ(·)
d∑
i=2

Wρ(Θ̂i·)

∥∥∥∥∥
∗

. e−(1−α) 2πρ
dk . (2.29)

Proof. We only prove (2.28), because the proof of (2.29) is similar.

Let x ∈ Σ. There exists ` ∈ I such that x ∈ Σ̃` and so∑
j∈I

e−α|x−ρη̃j |

−1

|Wρ(x)
d∑
i=2

W 2
ρ (Θ̂ix)|

=

e−α|x−ρη̃`| +∑
j∈I
6=`

e−α|x−ρη̃j |


−1

|Wρ(x)

d∑
i=2

W 2
ρ (Θ̂ix)|

≤ eα|x−ρη̃`||Wρ(x)

d∑
i=2

W 2
ρ (Θ̂ix)|.

Now, by Lemma 2.4

Wρ(x)
d∑
i=2

W 2
ρ (Θ̂ix) . U(x− ρη̃0)

∑
i∈I
i 6=0

U2(x− ρη̃i)

. e−α|x−ρη̃`|
∑
i∈I
i 6=0

e−|x−ρη̃0|−2|x−ρη̃i|+α|x−ρη̃`|

. e−α|x−ρη̃`|e−(1−α) 2πρ
dk .

Indeed if ` = 0

|x− ρη̃0|+ 2|x− ρη̃i| − α|x− ρη̃`| = (1− α)|x− ρη̃0|+ 2|x− ρη̃i|
≥ (1− α)ρ|η̃i − η̃0| − (1− α)|x− ρη̃i|+ 2|x− ρη̃i|
≥ (1− α)ρmin

i∈I
i 6=0

|η̃i − η̃0|
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and if ` 6= 0 since |x− ρη̃0| ≥ |x− ρη̃`|

|x− ρη̃0|+ 2|x− ρη̃i| − α|x− ρη̃`| ≥ (1− α)|x− ρη̃0|+ 2|x− ρη̃i|
≥ (1− α)ρ|η̃i − η̃0| − (1− α)|x− ρη̃i|+ 2|x− ρη̃i|
≥ (1− α)ρmin

i∈I
i 6=0

|η̃i − η̃0|.

Finally, the claim follows.
�

Lemma 2.6. It holds true that

∫
Rn

Wρ(x)
d∑
i=2

W 2
ρ (Θ̂ix)∂ρWρ(x)dx =


− C

(
k

ρ

)2

e−4ρ π
dk ln ln k + h.o.t. if n = 3

− C

√
k

ρ
e−4ρ π

dk + h.o.t. if n = 2

for some positive constant C.

Proof. We prove the claim when n = 3. The proof in the case n = 2 is similar. By Lemma
A.1, Lemma A.2 and Lemma 2.4 and setting ηij := Θ̂−1

i ξj and Uij(x) = U(x− ρηij)

∫
R3

(
k∑

h=1

Uh

)
d∑
i=2

 k∑
j=1

Uj(Θ̂ix)

2

∂ρWρ

= k

∫
Σ

(
U1 +

k∑
h=2

Uh

)
d∑
i=2

 k∑
j=1

Uij

2(
∂ρU1 +

k∑
i=2

∂ρUi

)

= k

∫
Σ
U1∂ρU1

d∑
i=2

k∑
j=1

U2
ij + h.o.t.

= k
∑
`∈I
6̀=0

∫
Σ
U(x− ρξ1)U ′(x− ρξ1)

〈x− ρξ1,−ξ1〉
|x− ρξ1|

U2(x− ρη̃`)dx+ h.o.t.

= k
∑
`∈I
6̀=0

∫
R3

U(x+ ρ(η̃` − ξ1))U ′(x+ ρ(η̃` − ξ1))
〈x+ ρ(η̃` − ξ1),−ξ1〉
|x+ ρ(η̃` − ξ1)|︸ ︷︷ ︸

=−〈 1
2
∇ζΓ22(ζ),ξ1〉, ζ=ρ(η̃`−ξ1)

U2(x)dx+ h.o.t.

= −kc
∑
`∈I
` 6=0

1

2

〈
ξ1 − η̃`
|ξ1 − η̃`|

, ξ1

〉
e−2ρ|ξ1−η̃`| ln(ρ|ξ1 − η̃`|)

|ρ (ξ1 − η̃`) |2
+ h.o.t.

= −c d
8π
k2 e

−4ρ π
dk

ρ2
ln ln k + h.o.t.
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because of (2.22), the choice of ρ ∈ Dk (2.10) and the fact that

min
`∈I
6̀=0

|η̃` − ξ1| = |η21 − ξ1| ∼
2π

dk
and 〈ξ1 − η21, ξ1〉 = 1− cos

2π

dk
∼ 1

2

(
2π

dk

)2

. (2.30)

�

Finally, we find the size of the error.

Lemma 2.7. For any α ∈ (0, 1), it holds true that

‖E‖∗ .
1

ρν
+ e−(1−α) 4πρ

dk .

Proof. By (2.18) taking into account that the functions Wρ, ∂ρWρ and the weight in the
norm are bounded we get

‖E‖∗ . ‖ (1− V (x))Wρ‖∗︸ ︷︷ ︸
:=E1

+ ‖∆Wρ −Wρ +W 3
ρ ‖∗︸ ︷︷ ︸

:=E2

+ |γρ|︸︷︷︸
:=E3

+ ‖Ψρ‖3∗ + ‖Ψρ‖2∗︸ ︷︷ ︸
.e−(1−α) 4πρ

dk because of (2.27)

.
1

ρν
+ e−(1−α) 4πρ

dk .

• Estimate of E1. Let x ∈ Σ then there is ` ∈ I such that x ∈ Σ̃`. Then∑
j∈I

e−α|x−ρη̃j |

−1

|E1(x)| . eα|x−ρη̃`||V (x)− 1|e−|x−ρη̃0|.

We note that if |x| < ρ
2 then |x− ρη̃0| ≥ ρ

2 . Now if x ∈ Σ̃0 ∩
{
|x| < ρ

2

}
then

−α|x− ρη̃`|+ |x− ρη̃0| = (1− α)|x− ρη̃0| ≥ (1− α)
ρ

2
.

If x ∈ Σ̃` ∩
{
|x| < ρ

2

}
with ` 6= 0 then |x− ρη̃0| ≥ |x− ρη̃`| and hence

−α|x− ρη̃`|+ |x− ρη̃0| = (1− α)|x− ρη̃0|+ α (|x− ρη̃0| − |x− ρη̃`|)

≥ (1− α)|x− ρη̃0| ≥ (1− α)
ρ

2
.

Then, since V ∈ L∞(Rn) we get that in
{
|x| < ρ

2

}
∑
j∈I

e−α|x−ρη̃j |

−1

|E1(x)| . e−(1−α) ρ
2 .

If |x| ≥ ρ
2 by (1.10) |V (x)− 1| . 1

ρν and so for x ∈ Σ̃0 ∩
{
|x| ≥ ρ

2

}
−α|x− ρη̃`|+ |x− ρη̃0| = (1− α)|x− ρη̃0| ≥ 0.

For x ∈ Σ̃` ∩
{
|x| ≥ ρ

2

}
with ` 6= 0 since |x− ρη̃0| ≥ |x− ρη̃`| we get

−α|x− ρη̃`|+ |x− ρη̃0| = (1− α)|x− ρη̃0|+ α (|x− ρη̃0| − |x− ρη̃`|) ≥ 0.
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Hence in
{
|x| ≥ ρ

2

}
we get∑
j∈I

e−α|x−ρη̃j |

−1

|E1(x)| . 1

ρν
.

This implies

‖E1‖∗ .
1

ρν
.

• Estimate of E2. Let x ∈ Σ then there is ` ∈ I such that x ∈ Σ̃`. Now since

∆Wρ −Wρ +W 3
ρ =

(
k∑

h=1

Uh

)3

−
k∑

h=1

U3
h

we get that(∑
i∈I

e−α|x−ρη̃i|

)−1

|E2(x)| . eα|x−ρη̃`|
∣∣∣∣∣∣
(

k∑
h=1

Uh

)3

−
k∑

h=1

U3
h

∣∣∣∣∣∣.
Now by Lemma 2.4( k∑

h=1

Uh

)3

−
k∑

h=1

U3
h


=

U3
1 + 3U2

1

k∑
h≥2

Uh + 3U1

 k∑
h≥2

Uh

2

+

 k∑
h≥2

Uh

3

− U3
1 −

k∑
h≥2

U3
h


. U2

1

k∑
h≥2

Uh

. e−α|x−ρη̃`|
k∑

h≥2

eα|x−ρη̃`|−2|x−ρξ1|−|x−ρξh|

. e−α|x−ρη̃`|e−
2πρ
k

because (remind that ξ1 = η̃0) if x ∈ Σ̃0

− α|x− ρη̃`|+ 2|x− ρξ1|+ |x− ρξh|
= (2− α)|x− ρξ1|+ |x− ρξh|
≥ ρ|ξ1 − ξh|+ (1− α)|x− ρξ1| ≥ ρ|ξ1 − ξh|

while if x ∈ Σ̃` with ` 6= 0 then |x− ρη̃0| ≥ |x− ρη̃`| and

− α|x− ρη̃`|+ 2|x− ρξ1|+ |x− ρξh|
≥ ρ|ξ1 − ξh|+ |x− ρξ1| − α|x− ρη̃`|
= ρ|ξ1 − ξh|+ (1− α)|x− ρξ1|+ α (|x− ρη̃0| − |x− ρη̃`|)
≥ ρ|ξ1 − ξh|.
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Then by (2.21)

k∑
h=2

eα|x−ρη̃`|−2|x−ρξ1|−|x−ρξh| .
k∑

h=2

e−ρ|ξ1−ξh| . e−ρ
2π
k .

Therefore, the estimate

‖E3‖∗ . e−
2πρ
k

follows.
• Estimate of E3. By Lemma 2.6 and the fact that

∫
Rn

(∂ρWρ)
2 ∼ ck for some

positive constant c, we get

|γρ| .
k

ρ2
e−4ρ π

dk ln ln k . e−(1−α) 4π
dk
ρ.

�

2.7. Solving the intermediate non-linear problem (2.20). The next step relies on
a classical contraction mapping argument.

Proposition 2.8. For any compact set B ⊂ B (see Remark 2.3), there exists k0 > 0
such that for any β ∈ B, for any k ≥ k0 and for any ρ ∈ Dk, there is a unique
(Φ, c) ∈H × R which solves (2.20). Moreover

‖Φ‖∗ .
(

1

ρν
+ e−(1−α) 4πρ

dk

)
. (2.31)

Proof. For a given R > 0, let us consider the ball

Bk :=

{
Φ ∈ L∞(Rn) : ‖Φ‖∗ ≤ R

(
1

ρν
+ e−(1−α) 4πρ

dk

)}
which is a non-empty closed subset of B∗. Let us also introduce the map T : Bk ∩H →
Bk ∩H as

T (Φ) := −L−1 (N (Φ) + E) .

Now solving (2.20) is equivalent to find a fixed point to T .
It is quite standard to prove that T is a contraction mapping for some R provided k is
large enough. Indeed, by Proposition 2.2

‖T (Φ)‖∗ . (‖N (Φ)‖∗ + ‖E‖∗) and ‖T (Φ1)− T (Φ2)‖∗ . ‖N (Φ1)−N (Φ2)‖∗.

Moreover, by (2.19) and since Wρ . 1

‖N (Φ)‖∗ . ‖Ψρ‖∗‖Φ‖∗ + ‖Φ‖2∗ + ‖Φ‖3∗
and

‖N (Φ1)−N (Φ2)‖∗ . (‖Φ1‖∗ + ‖Φ2‖∗ + ‖Ψρ‖∗) ‖Φ1 − Φ2‖∗.
Finally, by Lemma 2.7 and (2.27) the claim follows.

�
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2.8. The reduced problem. Finally, the problem reduces to find ρ such that

Ck(ρ) :=

∫
R3

(E +N (Φ)− L(Φ)) ∂ρWρ = 0, (2.32)

where Φ = Φ(ρ, k) and c = c(ρ, k) are the solutions of (2.20) found in Proposition 2.8.

Lemma 2.9. For any compact set B ⊂ B (see Remark 2.3), there exists k0 > 0 such
that for any β ∈ B, for any k ≥ k0 and ρ ∈ Dk

Ck(ρ) =



v∞A
k

ρν+1
(1 + o(1))− B

k

ρ
e−2ρπ

k (1 + o(1))− βC
(
k

ρ

)2

e−4ρ π
dk ln ln k(1 + o(1))

+β2Υ(k, ρ) if n = 3

v∞A
k

ρν+1
(1 + o(1))− B

√
k

ρ
e−2ρπ

k (1 + o(1))− βC

√
k

ρ
e−4ρ π

dk (1 + o(1))

+β2Υ(k, ρ) if n = 2

where A, B and C are positive constants only depending on n and

|Υ(k, ρ)| . ke−(1−α) 4πρ
dk . (2.33)

Proof. We know that

∂ρWρ =
k∑

h=1

∂ρUh =
k∑

h=1

〈∇Uh, (−ξh)〉.

First, let us estimate the leading term∫
R3

E∂ρWρ :=

∫
R3

(1− V (x))Wρ∂ρWρ︸ ︷︷ ︸
=I1

+

∫
R3

(
∆Wρ −Wρ +W 3

ρ

)
∂ρWρ︸ ︷︷ ︸

=I2

+ γρ

∫
R3

(∂ρWρ)
2︸ ︷︷ ︸

=I3

+

∫
R3

3WρΨ
2
ρ∂ρWρ +

∫
R3

βWρ

d∑
i=2

Ψ2
ρ(Θ̂ix)∂ρWρ︸ ︷︷ ︸

=:Υ(k,ρ)=I4

+

∫
R3

2βΨρ

d∑
i=2

Wρ(Θ̂ix)Ψρ(Θ̂ix)∂ρWρ︸ ︷︷ ︸
=I5

+

∫
R3

(
Ψ3
ρ + βΨρ

d∑
i=2

Ψ2
ρ(Θ̂ix)

)
∂ρWρ︸ ︷︷ ︸

=I6
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• Estimate of I1.
By Lemma 2.4

I1 = k

∫
Σ

(1− V (|x|))

(
U1 +

k∑
h=2

Uh

)(
∂ρU1 +

k∑
i=2

∂ρUi

)

= k

∫
Σ

(1− V (|x|))U1∂ρU1 + h.o.t.

= k

∫
Σ

(1− V (|x|))U(x− ρξ1)U ′(x− ρξ1)
〈x− ρξ1,−ξ1〉
|x− ρξ1|

dx+ h.o.t.

= k

∫
R3

(1− V (|y + ρξ1|))U(y)U ′(y)

(
− y1

|y|

)
dy + h.o.t.

= −k
∫
R3

(1− V (|y + ρξ1|))
1

2
∂y1U

2(y)dy + h.o.t.

= −k
2

∫
R3

∂y1V (|y + ρξ1|)U2(y)dy + h.o.t.

=
k

2

ν

ρν+1
v∞

∫
R3

U2(y)dy + h.o.t.

because by (1.10)

∂x1V (|x|) = −v∞ν
1

|x|ν+1

x1

|x|
+O

(
1

|x|ν+1+ε

)
.

• Estimate of I2.
By Lemma A.1, Lemma A.2 and Lemma 2.4

I2 = k

∫
Σ

(U1 +
k∑

h=2

Uh

)3

− U3
1 −

k∑
h=2

U3
h

(∂ρU1 +
k∑
i=2

∂ρUi

)

= 3k
k∑

h=2

∫
Σ
U2

1Uh∂ρU1 + h.o.t.

= 3k

k∑
h=2

∫
Σ
U2(x− ρξ1)U ′(x− ρξ1)

〈x− ρξ1,−ξ1〉
|x− ρξ1|

U(x− ρξh)dx+ h.o.t.

= k
k∑

h=2

∫
R3

3U2(x+ ρ(ξh − ξ1))U ′(x+ ρ(ξh − ξ1))
〈x+ ρ(ξh − ξ1),−ξ1〉
|x+ ρ(ξh − ξ1)|︸ ︷︷ ︸

=−〈∇ζΓ31(ζ),ξ1〉, ζ=ρ(ξh−ξ1)

U(x)dx+ h.o.t.

= −ck
k∑

h=2

〈
ξ1 − ξh
|ξ1 − ξh|

, ξ1

〉
e−ρ|ξ1−ξh|

(ρ|ξ1 − ξh|)2 + h.o.t.

= −1

2
ck
e−2ρπ

k

ρ
+ h.o.t.
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because of (2.21) and the fact that

|ξ2 − ξ1| ∼
2π

k
d and 〈ξ1 − ξ2, ξ1〉 = 1− cos

2π

k
∼ 1

2

(
2π

k

)2

. (2.34)

• Estimate of I3. The term I3 is estimated in Lemma 2.6.
• Estimate of I4. We know that Ψρ = βYρ where Yρ solves (2.12)

I4 = β2

(∫
R3

3WρY
2
ρ ∂ρWρ +

∫
R3

βWρ

d∑
i=2

Y 2
ρ (Θ̂ix)∂ρWρ

)
. β2ke−(1−α) 4πρ

dk

because ‖Yρ‖∗ . e−(1−α) 4πρ
dk (see (2.27)).

• Estimate of I5. We observe that

|Ψρ(Θ̂ix)| ≤

 d∑
`=1

k∑
j=1

e−α|Θ̂ix−ρη`j |

 ‖Ψρ‖∗ =

 d∑
`=1

k∑
j=1

e−α|x−ρη`j |

 ‖Ψρ‖∗.

Therefore, since |∂ρWρ| .Wρ by (2.29)

I5 .
∫
R3

2|Ψρ|Wρ

d∑
i=2

Wρ(Θ̂ix)|Ψρ(Θ̂ix)|

. k‖Ψρ‖2∗

∥∥∥∥∥∥Wρ

d∑
i=2

Wρ(Θ̂ix)

 d∑
`=1

k∑
j=1

e−α|x−ρη`j |

∥∥∥∥∥∥
∗︸ ︷︷ ︸

=‖Wρ
∑d
i=2Wρ(Θ̂ix)|‖

L∞(Rn)

. ke−(1−α) 4πρ
dk e−(1−α) 2πρ

kd . ke−(1−α) 6πρ
dk .

• Estimate of I6. Using again that |∂ρWρ| . 1, by (2.27)

I6 . k‖Ψρ‖3∗ . ke−(1−α) 6πρ
dk .

Next, by (2.19)∫
R3

N (Φ)∂ρWρ . k
(
‖Φ‖3∗ + ‖Φ‖2∗ + ‖Ψρ‖∗‖Φ‖∗

)
. ke−(1−α) 6πρ

dk .

Finally, it only remains to estimate (see (2.17))∫
R3

L(Φ)∂ρWρ =

∫
R3

(V (x)− 1) Φ∂ρWρ︸ ︷︷ ︸
:=L1

+

∫
R3

(
−∆Φ + Φ− 3W 2

ρΦ
)
∂ρWρ︸ ︷︷ ︸

:=L2

−
∫
R3

βΦ

d∑
i=2

W 2
ρ (Θ̂ix)∂ρWρ − 2

∫
R3

βWρ

d∑
i=2

Wρ(Θ̂ix)Φ(Θ̂ix)∂ρWρ︸ ︷︷ ︸
:=L3

.

• Estimate of L1. Since |∂ρWρ| .Wρ and since ν > 1∫
R3

(V (x)− 1) Φ∂ρWρ . k‖ (V (x)− 1)Wρ‖∗‖Φ‖∗ . k
1

ρν
‖Φ‖∗.
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• Estimate of L2. Remind that

∂ρWρ =
k∑

h=1

∂ρUh =
k∑

h=1

〈∇Uh, (−ξh)〉

and also

−∆∂iUh + ∂iUh = ∂iU
3
h ⇒ −∆∂ρWρ + ∂ρWρ =

k∑
h=1

3U2
h〈∇Uh, (−ξh)〉

and so

L2 =

∫
R3

(
k∑

h=1

3U2
h〈∇Uh, (−ξh)〉 − 3W 2

ρ ∂ρWρ

)
Φ

. k‖Φ‖∗

∥∥∥∥∥
k∑

h=1

3U2
h〈∇Uh, (−ξh)〉 − 3W 2

ρ ∂ρWρ

∥∥∥∥∥
∗

. k‖Φ‖∗e−
2πρ
k . ke−(1−α) 6πρ

dk .

Indeed, if x ∈ Σ then there is ` ∈ I such that x ∈ Σ̃` (taking into account that
|〈∇Uh, (−ξh)〉| . Uh) arguing exactly as in the estimate of the term E2 in Lemma
2.7 we get

eα|x−ρη̃`|

(
k∑

h=1

3U2
h〈∇Uh, (−ξh)〉 − 3W 2

ρ ∂ρWρ

)

= eα|x−ρη̃`|

[
3U2

1 〈∇U1, (−ξ1)〉+

k∑
h=2

3U2
h(x)〈∇Uh(x), (−ξh)〉

−3

(
U1 +

k∑
h=2

Uh

)2(
〈∇U1, (−ξ1) +

k∑
h=2

〈∇Uh, (−ξh)〉

)
. eα|x−ρη̃`|

U2
1

k∑
h=2

Uh + U1

(
k∑

h=2

Uh

)2
 . e− 2πρ

k .

• Estimate of L3. Since ∂ρWρ .Wρ by Lemma 2.5

L3 . k‖Φ‖∗

(
‖Wρ

d∑
i=2

W 2
ρ (Θ̂ix)‖∗ + ‖Wρ

d∑
i=2

Wρ(Θ̂ix)‖∗

)
. ke−(1−α) 6πρ

dk .

We combine all the previous estimates with the size of Φ (2.31) and the size of Ψρ in
(2.27) and we get the claim.

�
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2.9. The proof of Theorem 1.1: completed. We have to find ρ = ρ(k) such that
Ck(ρ) = 0 (see (2.32)). We only consider the case n = 3. When n = 2 we argue in a
similar way. Now, by Lemma 2.9

Ck(ρ) = v∞A
k

ρν+1
(1 + o(1))− B

k

ρ
e−2ρπ

k (1 + o(1))− βC
(
k

ρ

)2

e−4ρ π
dk ln ln k(1 + o(1))

+ β2Υ(k, ρ).

If d = 3 and ν > 2 or d ≥ 4 and ν > 1 we choose

|β| . βk :=
1

kb
with 1 < b < ν

d− 2

2
(2.35)

such that

β2Υ(k, ρ),
k

ρ
e−2ρπ

k = o

(
β

(
k

ρ

)2

e−4ρ π
dk ln ln k

)
(2.36)

and so Ck(ρ) reduces to

Ck(ρ) = v∞A
k

ρν+1
(1 + o(1))− βC

(
k

ρ

)2

e−4ρ π
dk ln ln k(1 + o(1)).

Therefore, if ρ = rk ln k we compute

Ck(rk ln k) = v∞A
1

rν+1(ln k)ν+1

1

kν
(1 + o(1))− βC ln ln k

r2(ln k)2

1

k
4π
d
r
(1 + o(1))

and

Ck(rk ln k) < 0 if r <
dν

4π
and Ck(rk ln k) > 0 if r >

dν

4π
.

Therefore, if v∞ and β have the same sign, for any ε > 0 there exists r(k) ∈
(
dν
4π − ε,

dν
4π + ε

)
,

such that Ck(r(k)k ln k) = 0 and the claim is proved.
It only remains to prove that (2.36) holds for any ρ = rk ln k and r ∈

(
dν
4π − ε,

dν
4π + ε

)
for some ε > 0 small enough. We have

β2Υ(k, ρ)

β
(
k
ρ

)2
e−4ρ π

dk ln ln k
. βkeα

4πρ
dk . k1−b+αr 4π

d = o(1) if b > 1

and

k
ρe
−2ρπ

k

β
(
k
ρ

)2
e−4ρ π

dk ln ln k
.

1

β
e

4πρ
dk
− 2πρ

k . kb+r(
4π
d
−2π) = o(1) if b+ ν

(
1− d

2

)
< 0.

Finally, the positivity of the solutions can be proved arguing as in [11] since β is small.
That completes the proof.
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3. Proof of Theorem 1.2

We consider the more general system

−∆ui + V (x)ui = |ui|p−1ui + β|ui|q−1ui

d∑
j=1
j 6=i

|uj |r−1uj in Rn, i = 1, . . . , d (3.1)

with p ∈
(

1, n+2
n−2

)
, if n ≥ 3 or p > 1 if n = 1, 2 and q, r > 1. Arguing as above we look

for a solution to (3.1) as u = (u1, . . . , ud) ∈ (H1(Rn))d whose components satisfy (2.3)
and u solves the non-local equation

−∆u+ V (x)u = |u|p−1u+ β|u|q−1u
d∑
i=2

(|u|r−1u)(Θ̂ix), in Rn. (3.2)

We build a solution to (3.2) as u = Wρ + Φ, where Wρ is defined in (2.14). In this case
U (see also (2.11)) is the unique positive radial solution to

−∆U + U = Up in Rn.
The higher order term Φ ∈H satisfies the orthogonality condition (2.15). We follow the
same strategy developed in the previous sections. Let us point out that we are not re-
fining the ansatz as in the previous case. This will create some constraints on the choice
of the exponents p, q, r and the number of equations d. We will focus on these constraints.

First, we write the non-local equation (3.2) in terms of Φ, i.e.

L(Φ) = N (Φ) + E in Rn,
where the linear operator L is defined by

L(Φ) = −∆Φ + Φ− pW p−1
ρ Φ,

the error term E is defined by

E :=(1− V (x))Wρ + ∆Wρ −Wρ +W p
ρ + βW q

ρ

d∑
i=2

W r
ρ (Θ̂ix) (3.3)

and the higher order term N (Φ) is defined by

N (Φ) := |Wρ + Φ|p −W p
ρ − pW p−1

ρ Φ + (V (x)− 1) Φ

+ β

(
|Wρ + Φ|q

d∑
i=2

|Wρ + Φ|r(Θ̂ix)−W q
ρ

d∑
i=2

W r
ρ (Θ̂ix)

)
.

First of all, we invert the linear operator L in the Banach space introduced in [9, Section
3]

B∗ := {h ∈ L∞(Rn) : ‖h‖∗ < +∞}, ‖h‖∗ := sup
x∈Rn

 k∑
j=1

e−α|x−ρξj |

−1

|h(x)|.

Here the ξj ’s are defined in (2.9) and α ∈ (0, 1). We point out that in this case it is not
necessary to refine the choice of the weight in the norm adding the points ηij ’s.
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Proposition 3.1. There exist k0 > 0 such that for any k ≥ k0, ρ ∈ Dk and h ∈ B∗
which satisfy (2.6) and (2.7), the linear problem

L(Φ) = h+ c∂ρWρ in Rn and

∫
Rn

∂ρWρΦ = 0

admits a unique solution Φ = Φρ,k ∈H ∩B∗ and c = c(ρ, k) ∈ R such that

‖Φ‖∗ . ‖h‖∗ and |c| . ‖h‖∗.

Next, we estimate the error (3.3).

Lemma 3.2. It holds true that

‖E‖∗ .
1

ρν
+ e−min{1,(p−1−α)} 2πρ

k + e−(min{q,r}−α) 2πρ
dk .

Proof. We know that

‖E‖∗ . ‖ (1− V (x))Wρ‖∗︸ ︷︷ ︸
:=E1

+ ‖∆Wρ −Wρ +W p
ρ ‖∗︸ ︷︷ ︸

:=E2

+ ‖W q
ρ

d∑
i=2

W r
ρ (Θ̂ix)‖∗︸ ︷︷ ︸

:=E3

.

E1 and E2 can be estimated as in Lemma 2.7. Let us estimate the term E3. If x ∈ Σ we
have

eα|x−ρξ1|W q
ρ (x)

d∑
`=2

W r
ρ (Θ̂`x) . eα|x−ρξ1|U q(x− ρξ1)

∑
`∈I
` 6=0

U r(x− ρη̃`)

.
∑
`∈I
` 6=0

e−(q−α)|x−ρξ1|−r|x−ρη̃`|

. e−(q−α) 2πρ
dk ,

because

(q − α)|x− ρξ1|+ r|x− ρη̃`| ≥ (q − α)ρ|η̃0 − η̃`|+ (r − q + α)|x− ρη̃`|

≥ (q − α)ρ sin
2π

dk
if q ≤ r

and
(q − α)|x− ρξ1|+ r|x− ρη̃`| ≥ rρ|η̃0 − η̃`|+ (q − α− r)|x− ρη̃`|

≥ rρ sin
2π

dk
if q > r.

Then the estimate

‖E3‖∗ .

e
−(q−α) 2πρ

dk if q ≤ r

e−r
2πρ
dk if q > r

follows.
�
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Now, we use a standard contraction mapping argument to solve the intermediate
non-linear problem (2.20).

Proposition 3.3. There exists k0 such that for any k ≥ k0 and for any ρ ∈ Dk, there
is a unique (Φ, c) ∈H × R which solves (2.20). Moreover

‖Φ‖∗ .
1

ρν
+ e−

2πρ
k
σ, σ := min

{
1, (p− 1− α),

q − α
d

,
r − α
d

}
. (3.4)

Finally, we have to find ρ such that

Ck(ρ) :=

∫
Rn

(E +N (Φ)− L(Φ)) = 0.

and in the next lemma we estimate Ck(ρ).

Lemma 3.4. It holds true that

(1) if q + 1 6= r

Ck(ρ) = v∞A1
k

ρν+1
(1 + o(1))− A2

(
k

ρ

)n−1
2

e−
2πρ
k (1 + o(1))

− βA3

(
k

ρ

)min{q+1,r}n−1
2

e−min{q+1,r} 2πρ
dk (1 + o(1)) + Ξk(ρ),

(2) if q + 1 = r > n+1
n−1

Ck(ρ) = v∞A1
k

ρν+1
(1 + o(1))− A2

(
k

ρ

)n−1
2

e−
2πρ
k (1 + o(1))

− βA3

(
k

ρ

)r n−1
2

e−r
2πρ
dk (1 + o(1)) + Ξk(ρ),

(3) if q + 1 = r = n+1
n−1

Ck(ρ) = v∞A1
k

ρν+1
(1 + o(1))− A2

(
k

ρ

)n−1
2

e−
2πρ
k (1 + o(1))

− βA3

(
k

ρ

)r n−1
2

e−r
2πρ
dk ln ln k(1 + o(1)) + Ξk(ρ),

(4) if q + 1 = r < n+1
n−1

Ck(ρ) = v∞A1
k

ρν+1
(1 + o(1))− A2

(
k

ρ

)n−1
2

e−
2πρ
k (1 + o(1))

− βA3

(
k

ρ

)r(n−1)+n−1
2

e−r
2πρ
dk (1 + o(1)) + Ξk(ρ),

where the Ai’s are positive constants

Ξk(ρ) = k

(
‖Φ‖2∗ +

(
1

ρν
+ e−

2πρ
k
τ

)
‖Φ‖∗

)
, τ := min

{
1, p− 1− α, q − 1− α

d
,
r − 1− α

d

}
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and Φ satisfies (3.4).

Proof. We argue as in Lemma 2.9. The leading term is
∫
R3 E∂ρWρ :

∫
R3

E∂ρWρ :=

∫
R3

(1− V (x))Wρ∂ρWρ︸ ︷︷ ︸
=I1

+

∫
R3

(
∆Wρ −Wρ +W p

ρ

)
∂ρWρ︸ ︷︷ ︸

=I2

+

∫
Rn

W q
ρ

d∑
i=2

W r
ρ (Θ̂ix)∂ρWρ

︸ ︷︷ ︸
=I3

The first term I1 is given in Lemma 2.9. We estimate I2 (see the estimate of I2 in Lemma
2.9)

I2 = k

∫
Σ

((
U1 +

k∑
h=2

Uh

)p
− Up1 −

k∑
h=2

Uph

)(
∂ρU1 +

k∑
i=2

∂ρUi

)

= k

k∑
h=2

∫
Σ
pUp−1

1 Uh∂ρU1 + h.o.t.

= k
k∑

h=2

∫
Σ
pUp−1(x− ρξ1)U ′(x− ρξ1)

〈x− ρξ1,−ξ1〉
|x− ρξ1|

U(x− ρξh)dx+ h.o.t.

= k
k∑

h=2

∫
R3

pUp−1(x+ ρ(ξh − ξ1))U ′(x+ ρ(η̃` − ξ1))
〈x+ ρ(ξh − ξ1),−ξ1〉
|x+ ρ(ξh − ξ1)|

U(x)dx︸ ︷︷ ︸
=〈∇ζΓp,1(ζ),ξ1〉, ζ=ρ(ξh−ξ1)

+h.o.t.

= −ck
k∑

h=2

〈
ξ1 − ξh
|ξ1 − ξh|

, ξ1

〉
e−ρ|ξ1−ξh|

(ρ|ξh − ξ1|)
n−1
2

+ h.o.t.

= −A2

(
k

ρ

)n−1
2

e−2ρπ
k + h.o.t. because of (2.34)
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and also I3 (see the estimate of I3 in Lemma 2.9)

I3 =β

∫
R3

(
k∑

h=1

Uh

)q d∑
i=2

 k∑
j=1

Uj(Θ̂ix)

r

∂ρWρ

= βk

∫
Σ

(
U1 +

k∑
h=2

Uh

)q d∑
i=2

 k∑
j=1

Uij

r(
∂ρU1 +

k∑
i=2

∂ρUi

)

= βk

∫
Σ
U q1∂ρU1

d∑
i=2

k∑
j=1

U rij + h.o.t.

= βk
∑
`∈I
` 6=0

∫
Σ
U q(x− ρξ1)U ′(x− ρξ1)

〈x− ρξ1,−ξ1〉
|x− ρξ1|

U r(x− ρη̃`)dx+ h.o.t.

= βk
∑
`∈I
` 6=0

∫
Rn
U q(x+ ρ(η̃` − ξ1))U ′(x+ ρ(η̃` − ξ1))

〈x+ ρ(η̃` − ξ1),−ξ1〉
|x+ ρ(η̃` − ξ1)|

U r(x)dx︸ ︷︷ ︸
=− 1

q+1
〈∇ζΓq+1,r(ζ),ξ1〉, ζ=ρ(η̃`−ξ1)

+h.o.t.

=



− βA3

(
k

ρ

)min{q+1,r}n−1
2

e−min{q+1,r} 2πρ
dk + h.o.t. if r 6= q + 1

− βA3

(
k

ρ

)r(n−1)+n+1
2

e−r
2πρ
dk + h.o.t. if r = q + 1 <

n+ 1

n− 1

− βA3

(
k

ρ

) r(n−1)
2

e−r
2πρ
dk ln ln k + h.o.t. if r = q + 1 =

n+ 1

n− 1

− βA3

(
k

ρ

) r(n−1)
2

e−r
2πρ
dk + h.o.t. if r = q + 1 >

n+ 1

n− 1

because of (2.30).
Moreover, the higher order terms

∫
Rn
N (Φ)∂ρWρ and

∫
Rn
L(Φ)∂ρWρ can be estimated

as∫
Rn

N (Φ)∂ρWρ . k

(
‖Φ‖2∗ +

∥∥∥∥∥W q−1
ρ

d∑
`=2

|Wρ(Θ̂ix)|r
∥∥∥∥∥
∗

‖Φ‖∗ +

∥∥∥∥∥W q
ρ

d∑
`=2

|Wρ(Θ̂ix)|r−1

∥∥∥∥∥
∗

‖Φ‖∗

)

where (arguing as in Lemma 2.5)∥∥∥∥∥W q−1
ρ

d∑
`=2

|Wρ(Θ̂ix)|r
∥∥∥∥∥
∗

. e−(min{q−1,r}−α) 2πρ
dk

and ∥∥∥∥∥W q
ρ

d∑
`=2

|Wρ(Θ̂ix)|r−1

∥∥∥∥∥
∗

. e−(min{q,r−1}−α) 2πρ
dk ,
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and ∫
Rn

L(Φ)∂ρWρ . k

(
1

ρν
‖Φ‖∗ + e−min{1,(p−1−α)} 2πρ

k ‖Φ‖∗
)
,

since we have (see the estimate of L2 in Lemma 2.9)

k∑
h=1

Up−1
h 〈∇Uh, (−ξh)〉 −W p−1

ρ ∂ρWρ

= Up−1
1 〈∇U1, (−ξ1)〉+

k∑
h=2

Up−1
h 〈∇Uh, (−ξh)〉

−

(
U1 +

k∑
h=2

Uh

)p−1(
〈∇U1, (−ξ1) +

k∑
h=2

〈∇Uh, (−ξh)〉

)

. Up−1
1

k∑
h=2

Uh + U1

k∑
h=2

Up−1
h .

�

At this point it is clear that a solution to the non-local equation (3.2) does exist if we
find ρ so that Ck(ρ) = 0. At this aim, it is useful that the last term Ξk(ρ) is an higher
order term in the expansion of Ck and this is achieved if we choose the exponents p, q
and r and the number of equations d in a proper way. We will focus on the particular
case q = p−1

2 and r = p+1
2 .

Proof of Theorem 1.2: completed. If d > p+1
2 and p > 5 (n = 2 because the exponent 5

is critical in 3D), by (2) of Lemma 3.4

Ck(ρ) = v∞A1
k

ρν+1
(1 + o(1))− βA3

(
k

ρ

) p+1
4

e−
(p+1)πρ
dk (1 + o(1)). (3.5)

Indeed, in this case p+1
2d < 1 and Ξk(ρ) can be estimated using (3.4) with

σ =
p− 1

2d
, τ =

p− 3

2d
, 2σ >

p+ 1

2d
and σ + τ >

p+ 1

2d
.

By (3.5), there exists ρ(k) ∈ Dk (see (2.10)) such that Ck(ρ(k)) = 0 if either v∞ and β
have the same sign.

On the other hand if d ≤ p−1
2 and p > 3 the coupling term is an higher order term in

the expansion (2), (3) or (4) of Lemma 3.4 and

Ck(ρ) = v∞A1
k

ρν+1
(1 + o(1))− βA2

(
k

ρ

)n−1
2

e−
2πρ
k (1 + o(1)). (3.6)

Indeed in this case 1 < p+1
2d and Ξk(ρ) can be estimated using (3.4) with

σ = 1, τ > 0, 2σ > 1 and σ + τ > 1.

By (3.6), there ρ(k) ∈ Dk (see (2.10)) such that Ck(ρ(k)) = 0 if v∞ > 0 whatever β is.
�
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Appendix A. Auxiliary results

We recall the result [1, Lemma 3.7].

Lemma A.1. Let W1,W2 : Rn → R be two positive continuous radial functions such
that

Wi(x) ∼ |x|−aie−bi|x| as |x| → ∞

where ai ∈ R, bi > 0. Then for some constant c > 0 we have

(i) If b1 < b2 then∫
R3

W1(x+ ζ)W2(x)dx ∼ ce−b1|ζ||ζ|a1 as |ζ| → ∞

Clearly, if b1 > b2 a similar expression holds, by replacing a1 and b1 with a2 and
b2.

(ii) If b1 = b2 =: b then, suppose that a1 ≤ a2

∫
R3

W1(x+ ζ)W2(x)dx ∼


ce−b|ζ||ζ|−a1−a2+n+1

2 if a2 <
n+ 1

2

ce−b|ζ||ζ|−a1 ln |ζ| if a2 =
n+ 1

2

ce−b|ζ||ζ|−a1 if a2 >
n+ 1

2

as |ζ| → ∞.

Let s, t ≥ 1. Set

Γs,t(ζ) :=

∫
R3

U s(x+ ζ)U t(x)dx, ζ ∈ Rn.

By Lemma (A.1) and (2.11) there exists c > 0 such that

(i) if s < t then

Γs,t(ζ) ∼ ce−s|ζ||ζ|−s
n−1
2 as |ζ| → ∞

(ii) if s = t then

Γs,t(ζ) ∼


ce−s|ζ||ζ|−s(n−1)−n+1

2 if s <
n+ 1

n− 1

ce−s|ζ||ζ|−s
n−1
2 ln |ζ| if s =

n+ 1

n− 1

ce−s|ζ||ζ|−s
n−1
2 if s >

n+ 1

n− 1

as |ζ| → ∞.

We are going to prove that all the previous estimates hold true in the C1−sense.

Lemma A.2. It holds true that

(i) if s < t then

∇ζΓs,t(ζ) ∼ −cs ζ
|ζ|
e−s|ζ||ζ|−s

n−1
2 as |ζ| → ∞
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(ii) if s = t then, suppose that a1 ≥ a2

∇ζΓs,t(ζ) ∼



− cs
ζ

|ζ|
e−s|ζ||ζ|−s(n−1)−n+1

2 if s <
n+ 1

n− 1

− cs
ζ

|ζ|
e−s|ζ||ζ|−s

n−1
2 ln |ζ| if s =

n+ 1

n− 1

− cs
ζ

|ζ|
e−s|ζ||ζ|−s

n−1
2 if s >

n+ 1

n− 1

as |ζ| → ∞.

Proof. We only prove the case s < t, being the proof of other cases similar. We point
out that∫

Rn

U s(x+ ζ)∂xiU
t(x)dx = −

∫
Rn

∂xiU
s(x+ ζ)U t(x)dx = −

∫
Rn

∂ζiU
s(x+ ζ)U t(x)dx

and we are going to prove that∫
Rn

∂ζiU
s(x+ ζ)U t(x)dx ∼ −cs ζ

|ζ|
e−s|ζ||ζ|−s

n−1
2 as |ζ| → ∞.

Set f(ζ) := g(ζ)h(ζ) with

g(ζ) :=

∫
Rn

U s(x+ ζ)U t(x)dx and h(ζ) := es|ζ||ζ|s
n−1
2 .

We know that

lim
|ζ|→∞

f(ζ) = c, (A.1)

We are going to prove that

lim
|ζ|→∞

∂ζif(ζ) = 0. (A.2)

Since

∂ζif = g∂ζih+ h∂ζig (A.3)

and

∂ζih(ζ) = s
ζi
|ζ|
h(ζ)(1 + o(1)), (A.4)

by (A.1), (A.2), (A.3) and (A.4) the claim follows. To prove (A.2), by Lemma A.3 we
need to show that there exists c > 0 such that

|∂2
ζiζi

f(ζ)| ≤ c if |ζ| is large enough.

We have

∂2
ζiζi

f = g∂2
ζiζi

h+ 2∂ζig∂ζih+ h∂2
ζiζi

g.

It is easy to check that

|∂ζih|, |∂
2
ζiζi

h| = O (h) .
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By (A.1) g = O
(

1
h

)
. We only need to estimate ∂ζig and ∂2

ζiζi
g. We have

∂ζig(ζ) =

∫
Rn

∂ζiU
s(x+ ζ)U t(x)dx

=

∫
Rs

sU s−1(x+ ζ)U ′(x+ ζ)
x1 + ζi
|x+ ζ|

U t(x)dx

.
∫
Rn

U s−1(x+ ζ)|U ′(x+ ζ)|U t(x)dx since |U ′| = O(U)

.
∫
Rn

U s(x+ ζ)U t(x)dx .
1

h(ζ)
because of (A.1)

and

∂2
ζiζi

g(ζ) =

∫
Rn

s∂ζi

(
U s−1(x+ ζ)U ′(x+ ζ)

x1 + ζi
|x+ ζ|

)
U t(x)dx

=

∫
Rn

sU s−2

(
U ′(x+ ζ)

x1 + ζi
|x+ ζ|

)2

U t(x)dx

+

∫
Rn

sU s−1(x+ ζ)U ′′(x+ ζ)

(
x1 + ζi
|x+ ζ|

)2

U t(x)dx

+

∫
Rn

sU s−1(x+ ζ)U ′(x+ ζ)

(
1

|x+ ζ|
− (x1 + ζi)

2

|x+ ζ|3

)
U t(x)dx

.
∫
Rn

U s(x+ ζ)U t(x)dx since |U ′|, |U ′′| = O(U)

+

∫
Rn

1

|x+ ζ|
U s(x+ ζ)U t(x)dx

︸ ︷︷ ︸
=O

(
e−s|ζ||ζ|−s

n−1
2 −1

)
because of Lemma A.1 with b1 = s < b2 = t and a1 = −sn−1

2 − 1

.
1

h(ζ)
because of (A.1).

That concludes the proof. �

Lemma A.3. Let f : Rn → R be a C2−function such that

lim
|x|→∞

f(x) = l ∈ R
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and there exists c > 0 such that

sup
x∈Rn

|∂2
x1x1f(x)| ≤ c

then
lim
|x|→∞

∂x1f(x) = 0.

Proof. Let ε > 0 be fixed. If δ = ε2

4c there exists R > 0 such that if |x| ≥ R then
|f(x) − l| ≤ δ. Now take e1 := (1, 0, . . . , 0) ∈ Rn, t ∈ (−1, 1) so that |x + te1| ≥ R if
|x| ≥ R+ 1 and apply mean value theorem

f(x+ te1) = f(x) + ∂x1f(x)t+
1

2
∂2
x1x1f(x+ εte1)t2

for some ε ∈ (0, 1). Then if |x| ≥ R+ 1

|∂x1f(x)| ≤ 1

|t|
2δ +

1

2
c|t| for any t ∈ (−1, 1), t 6= 0 ⇒ |∂x1f(x)| ≤ 2

√
δc = ε

and the claim follows. �

Appendix B. Proof of Proposition 2.2

Let us consider the Hilbert space W 1,2(Rn) equipped with the scalar product

〈u, v〉 =

∫
Rn

(∇u∇v + uv) dx.

It is well known that the embedding I : W 1,2(Rn) ↪→ L2(Rn) is continuous. We define
the adjoint operator I ∗ : L2(Rn)→W 1,2(Rn) by duality, i.e.

I ∗f = u if and only if u is a weak solution to −∆u+ u = f in Rn.
Let us introduce the space

H⊥ρ :=

Φ ∈H : 〈Φ,I ∗ (∂ρWρ)〉 =

∫
Rn

Φ∂ρWρ = 0


where H is defined in (2.5).

It is immediate to check that linear problem

L(Φ) = h in Rn,
∫
Rn

Φ∂ρWρ =

∫
Rn

h∂ρWρ = 0 (B.1)

can be rewritten as

Φ + K (Φ) = h∗ := I ∗h, h∗,Φ ∈ H⊥ρ ,
where

K (Φ) = I ∗

[
(V (x)− 1) Φ− 3W 2

ρΦ− βΦ
d∑
i=2

W 2
ρ (Θ̂ix)− 2βWρ

d∑
i=2

Wρ(Θ̂ix)Φ(Θ̂ix)

]
is a compact operator since Wρ decays exponentially and V satisfies (1.10). Therefore,
by Fredholm alternative solving problem (B.1) is equivalent to prove that it has a unique
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solution when h = 0. Now, it is important to point out that if h ∈ B∗ then the solution
Φ ∈ W 1,2(Rn) to (B.1) also belongs to B∗, i.e. it belongs to L∞(Rn). It is enough to
apply the standard regularity theory. Indeed, by (2.23) we deduce that h ∈ Lq(Rn) for
any q > 1. Moreover, since Wρ ∈ L∞(Rn) and Φ ∈ L2(Rn), by (B.1) we immediately
deduce that Φ ∈W 2,2(Rn), which is embedded in L∞(Rn) if n = 2, 3.

Finally, to prove the Proposition 2.2 it is enough to prove the a priori estimate (2.24).
At this aim it is useful to decompose L as

L(Φ) = −∆Φ + V (x)Φ− 3W 2
ρΦ− βΦ

d∑
i=2

W 2
ρ (Θ̂ix)︸ ︷︷ ︸

L0(Φ)

−2βWρ

d∑
i=2

Wρ(Θ̂ix)Φ(Θ̂ix)︸ ︷︷ ︸
L1(Φ)

.

and to point out that the non-local linear part is small, since by (2.29)

‖L1(Φ)‖∗ ≤ ce−(1−α) 2πρ
dk ‖Φ‖∗.

So our problem reduces to prove that if Φ ∈ H⊥ρ solves

L0(Φ) = h+ c∂ρWρ in Rn (B.2)

for some c ∈ R then the priori estimate (2.24) holds and this is done using the same
arguments of Lemma 4.3 of [3]. For sake of completeness, we give the proof below.

First, we prove that

|c| .
[(

1

ρν
+ e−(1−α) 2π

kd

)
‖Φ‖∗ + ‖h‖∗

]
. (B.3)

Indeed, by (B.2) ∫
Rn

L0(Φ)∂ρWρ −
∫
Rn

h∂ρWρ = c

∫
Rn

(∂ρWρ)
2 ,

where arguing as in Lemma 2.9∣∣∣∣∣∣
∫
Rn

L0(Φ)∂ρWρ

∣∣∣∣∣∣ .
(
k

ρν
+ ke−(1−α) 2π

dk

)
‖Φ‖∗,

moreover ∣∣∣∣∣∣
∫
Rn

h∂ρWρ

∣∣∣∣∣∣ . k‖h‖∗,because |∂ρWρ| .Wρ

and ∫
Rn

(∂ρWρ)
2 ∼ ck for some positive constant c.

Next, we show that there exist constants τ and c (all independent of k ) such that for
any x ∈ Rn \

⋃
i=1,...,d
j=1,...,k

B(ρηij , τ)

|Φ(x)| ≤ C

‖L0(Φ)‖∗ + sup
i=1,...,d
j=1,...,k

‖Φ‖L∞(∂B(ρηij ,τ))

 d∑
i=1

k∑
j=1

e−α|x−ρηij |, (B.4)
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which immediately implies

‖Φ‖∗ ≤ C

‖L0(Φ)‖∗ + sup
i=1,...,d
j=1,...,k

‖Φ‖L∞(∂B(ρηij ,τ))

 . (B.5)

To prove the above pointwise estimate we first show the independence of τ on k for any
x ∈ Rn \

⋃
i=1,...,d
j=1,...,k

B(ρηij , τ). Indeed reasoning as in [3] and using Lemma 3.4 of [3] we

get that

Wρ(Θ̂ix) =
k∑
j=1

U(x− ρηij)

≤
∑

|x−ρηij |<ρ sin π
dk

U(x− ρηij) +
+∞∑
`=1

∑
`ρ sin π

dk
≤|x−ρηij |<(`+1)ρ sin π

dk

U(x− ρηij)

. U(τ) + c

+∞∑
`=1

`n−1e−`ρ
π
dk

≤ CU(τ).

Thus we can take τ sufficiently large (but independent of k) such that for any x ∈
Rn \

⋃
i=1,...,d
j=1,...,k

B(ρηij , τ)

3W 2
ρ (x) ≤ 1

2

V0 − α2

4
; β

d∑
i=2

W 2
ρ (Θ̂ix) ≤ 1

2

V0 − α2

4
.

Now we let Π±(x) =
∑d

i=1

∑k
j=1 e

±α|x−ρηij |. For x ∈ Rn \
⋃

i=1,...,d
j=1,...,k

B(ρηij , τ) we get

L0 (Π±(x)) =
k∑
i=2

k∑
j=1

e±|x−ρηij |

(
−α2 ∓ α(n− 1)

|x− ρηij |
+ V (x)− 3W 2

ρ (x)− β
d∑
i=2

W 2
ρ (Θ̂ix)

)

≥
k∑
i=2

k∑
j=1

e±|x−ρηij |
(
−α2 ∓ α(n− 1)

|x− ρηij |
+ V0 −

V0 − α2

4

)
Hence

L0(Π±(x)) ≥ c0Π±(x)

for some positive constant c0 independent of k.
Then we can use Π±(x) as barriers and we can apply the maximum principle to the
linear operator L0 obtaining

|Φ(x)| ≤ C

‖L0(Φ)‖∗ + sup
i=1,...,d
j=1,...,k

‖Φ‖L∞(∂B(ρηij ,τ))

 d∑
i=1

k∑
j=1

e−α|x−ρηij |+δ

d∑
i=1

k∑
j=1

eα|x−ρηij |

for any δ > 0 and C independent of k and δ. Letting δ → 0 we get the estimate (B.4).
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Finally, we prove (2.24) arguing by contradiction. Assuming that there is a sequence
(Φn, hn) satisfying (B.2) such that

‖Φn‖∗ = 1 and ‖hn‖∗ = o(1) as kn → +∞.
In the sequel we will omit the dependence on n. By (B.3) and the fact that ‖∂ρWρ‖∗ . 1,
we also have ‖L0(Φ)‖∗ = o(1). Hence (B.5) implies the existence of a subsequence of ηij
such that

‖Φ‖L∞(∂B(ρηij ,τ)) ≥ C > 0 (B.6)

for some fixed constant C which is independent of k.
Since ‖Φ‖L∞(Rn) ≤ 1 by elliptic regularity estimates we get that ‖Φ‖C1(Rn) ≤ C. By
applying the Ascoli-Arzela’s Theorem we get the existence of a subsequence of ηij such
that Φ(x+ ρηij) converges (on compact sets) to Φ∞ which is a bounded solution of

−∆Φ∞ + Φ∞ − 3U2Φ∞ = 0 or −∆Φ∞ + Φ∞ − βU2Φ∞ = 0.

In the first case Φ∞ ≡ 0 because Φ ∈ H⊥ρ , while in the second case Φ∞ ≡ 0 because
β 6= Λκ. Finally, a contradiction arises because of (B.6).

References

[1] A. Ambrosetti, E. Colorado, D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear
Schrödinger equations, Calc. Var. Partial Diff. Equ., 30, 85–112, (2007).

[2] T. Bartsch, N. Dancer, Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches
of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Diff. Equ., 37, 345–361 (2010).

[3] M. del Pino, J. Wei, W. Yao, Intermediate reduction method and inifinitely many positive solutions
of nonlinear Schrödinger equations with non-symmetric potentials, Calc. Var. Partial Diff. Equ.,
(53) (1-2), 473–523 (2015).

[4] B.D. Esry, C.H. Greene, J.P. Burke Jr., J.L. Bohn, Hartree–Fock theory for double condensates,
Phys. Rev. Lett., 78, 3594–3597, (1997).

[5] B.D. Esry, C.H. Greene, Spontaneous spatial symmetry breaking in two-component Bose–Einstein
condensates, Phys. Rev. A, 59, 1457–1460, (1999).

[6] D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, E.A. Cornell, Dynamics of component sepa-
ration in a binary mixture of Bose–Einstein condensates, Phys. Rev. Lett., 81, 1539–1542, (1998).

[7] T. C. Lin, J. Wei, Solitary and self-similar solutions of two-component systems of nonlinear
Schrödinger equations, Physica D: Nonlinear Phenomena,220, 99–115 (2006).

[8] Lin, Tai-Chia; Wei, Juncheng Ground state of N coupled nonlinear Schrödinger equations in Rn,
n ≥ 3. Comm. Math. Phys. 255 (2005), no. 3, 629–653.

[9] Musso, Monica; Pacard, Frank; Wei, Juncheng Finite-energy sign-changing solutions with dihedral
symmetry for the stationary nonlinear Schrödinger equation. J. Eur. Math. Soc. (JEMS) 14 (2012),
no. 6, 1923–1953.

[10] A.S. Parkins, D.F. Walls, The Physics of trapped dilute-gas Bose–Einstein condensates, Phys.
Rep.,303, 1–80, (1998).

[11] S. Peng, Z.-Q. Wang, Segregated and Synchronized Vector Solutions for Nonlinear Schrödinger
systems, Archive for Rat. Mech. and Anal., 208, 305–339, (2013).

[12] Peng, Shuangjie; Wang, Qingfang; Wang, Zhi-Qiang On coupled nonlinear Schroedinger systems
with mixed couplings. Trans. Amer. Math. Soc. 371 (2019), no. 11, 7559–7583.

[13] S. Terracini, G. Verzini, Multipulse phase in k-mixtures of Bose-Einstein condensates, Arch. Ration.
Mech. Anal., 194, 717–741, (2009).

[14] W. C. Troy, Symmetry properties in systems of semilinear elliptic equations. J. Differential Equations
42 (1981), 400–413.

[15] J. Wei, T. Weth, Nonradial symmetric bound states for s system of two coupled Schrödinger equa-
tions, Rend. Lincei Mat. Appl., 18, 279–293 (2007).



SEGREGATED SOLUTIONS 34

[16] J. Wei, T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger
equations, Arch. Rational Mech. Anal., 190, 83–106 (2008)

[17] Wei, Juncheng; Wu, Yuanze Ground states of nonlinear Schroedinger systems with mixed couplings.
J. Math. Pures Appl. (9) 141 (2020), 50–88.

[18] J. Wey, S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger equations in R3,
Calc. Var. and PDEs,37, 423–439 (2010).

(A.Pistoia) Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Uni-
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