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Disentangling high-order effects in the transfer entropy
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Transfer entropy (TE), the primary method for determining directed information flow within a network system,
can exhibit bias—either in deficiency or excess—during both pairwise and conditioned calculations, owing to
high-order dependencies among the dynamic processes under consideration and the remaining processes in the
system used for conditioning. Here, we propose a novel approach. Instead of conditioning TE on all network
processes except the driver and the target, as in its fully conditioned version, or not conditioning at all, as
in the pairwise approach, our method searches for both the multiplets of variables that maximize information
flow and those that minimize it. This provides a decomposition of TE into unique, redundant, and synergistic
atoms. Our approach enables the quantification of the relative importance of high-order effects compared to
pure two-body effects in information transfer between two processes, while also highlighting the processes
that contribute to building these high-order effects alongside the driver. We demonstrate the application of our
approach in climatology by analyzing data from El Niño and the Southern Oscillation.
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Introduction. A central task in analyzing complex systems
is to understand the joint dynamics of its components. Granger
causality (GC) [1] and transfer entropy (TE) [2,3] are widely
used tools to detect and quantify statistical relationships be-
tween random processes mapping the evolution of coupled
dynamic systems over time in terms of reduction of variance
and surprise, respectively. For Gaussian systems, GC and TE
are equivalent [4]; a symbolic version of TE has been devel-
oped in Ref. [5].

The target properties of these statistical dependencies have
been called “information flow” or “causality,” names which
are used in this paper to indicate a measured effect [6];
this clarification pairs an important distinction that needs in-
deed to be made between mechanisms and behaviors in this
context [7].

In recent years, alongside the growing interest in high-
order interactions [7,8], there has been increasing attention
devoted to the emergent properties of complex systems,
which manifest through high-order behaviors sought in ob-
served data, moving beyond traditional dyadic descriptions.
A key framework in this literature is the partial information
decomposition (PID) [9] and its subsequent developments
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[10], which utilize information-theoretic tools to reveal
high-order dependencies among groups of three or more ran-
dom variables and describe their synergistic or redundant
nature. Within this framework, redundancy refers to informa-
tion retrievable from multiple sources, while synergy refers to
statistical relationships existing within the whole system that
cannot be observed in its individual parts. Importantly, while
the PID was originally proposed for sets of random variables,
it was then generalized to random processes [11].

It is worth mentioning that in Ref. [12], a critique of TE
has been raised: if one believes that a dyadic network accu-
rately models a complex system, then one implicitly assumes
that polyadic relationships are either unimportant or nonex-
istent. However, assessing the relative importance of these
high-order interactions compared to dyadic relations remains
an open problem. Moreover, in Ref. [13], the influence of
synergy and redundancy on the inference of information flow
between two subsystems of a complex network, in terms of
GC, has been studied. This research demonstrates that both
pairwise and fully conditioned GC analyses encounter chal-
lenges in the presence of synergy or redundancy in time series
data, indeed pairwise GC fails to reveal synergistic effects
whilst fully conditioned GC may fail to reveal redundant
effects.

The question we address here is: how can we compare
the pure dyadic influence with the many-body effects due to
the remaining processes in a network, given a driving ran-
dom process and a target process? Within the framework of
partial conditioning in multivariate data sets [14], we propose
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a straightforward decomposition of the maximal informa-
tion flow from the driver to the target into three positive
components: unique, redundant, and synergistic TEs. The
magnitudes of these components quantify the relative impor-
tance of high-order effects and pure dyadic effects in the
influence from the driver to the target. Moreover, the proposed
analysis highlights the processes that, along with the driver,
contribute to synergistic (or redundant) effects on the target.

To introduce our approach, we start observing the follow-
ing fundamental fact behind any approach to PID: for any
three (scalar or vector) random variables a, b, and c, with
H being the entropy and I being the mutual information,
we will always have H (a) � H (a|c), but we will not nec-
essarily have I (a; b) � I (a; b|c). In fact, conditioning on c
can either reduce the information shared between a and b or
increase it: the two cases are related to redundancy [I (a; b) >

I (a; b|c)] or to synergy [I (a; b) < I (a; b|c)] among the three
variables. Now, suppose that c is the set of all the variables
at hand that describe the environment around the pair (a, b);
the quantity I (a; b) − I (a; b|c) has been proposed to assess
the redundant (if positive) or synergistic (if negative) nature of
the interaction among a, b, and the full environment [15,16].
Nevertheless, considering only a subset of all the variables in
c, it is intuitive that searching for cmin minimizing I (a; b|c)
should better capture the amount of redundancy R that the en-
vironment shares with the pair, i.e., R = I (a; b) − I (a; b|cmin).
On the other hand, searching for cmax maximizing I (a; b|c)
leads to the amount of synergy S that the environment pro-
vides in terms of the increase of mutual information S =
I (a; b|cmax) − I (a; b). The definitions given above for R and
S constitute the core of our approach. In the next section we
apply this heuristics to the transfer entropy.

Method. Given a zero-mean stationary two-dimensional
Markov process consisting of the scalar processes X and Y ,
we aim at evaluating the transfer entropy X → Y . Denoting
the present state of the target as Yt , the vector of the target’s
past variables as Y<t = [Yt−1 . . .Yt−p], and the vector of the
driver’s past variables as X<t = [Xt−1 . . . Xt−p], with p being
the order of the process, the pairwise TE, Tp, is defined as

Tp = TX→Y = I (Yt ; X<t |Y<t ), (1)

where I (·; ·|·) indicates the conditional mutual information.
Suppose now that we also simultaneously measure n other
processes Z = {Z1, Z2, . . . , Zn}. The fully conditioned TE, Tf ,
is defined as

Tf = TX→Y |Z = I (Yt ; X<t |Y<t , Z1,<t , . . . , Zn,<t ). (2)

Now, instead of fully conditioning on all processes, we con-
dition only on a subset in Z; i.e., we compute Tα = TX→Y |Zα

,
where Zα , α ⊂ {1, . . . , n}, is an element of the powerset of
{Z1, Z2, . . . , Zn}. We denote Zm as the subset of processes in
Z which minimizes Tα , and the corresponding value of the TE
is denoted as Tm:

Tm = TX→Y |Zm = I (Yt ; X<t |Y<t , Zm,<t ). (3)

Similarly, ZM represents the subset of processes in Z that
maximizes Tα , with the corresponding value of the transfer
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FIG. 1. (a) Representation of the pairwise transfer entropy Tp and
of the values obtained maximizing and minimizing Tα , called TM and
Tm, respectively. Redundant influences are depicted by red arrows,
and synergistic influences are depicted by blue arrows. (b) Pairwise,
synergistic, and redundant conditioning paths are represented on a
simple model with four nodes, with simulated couplings indicated
by the dashed gray arrows.

entropy denoted as TM :

TM = TX→Y |ZM = I (Yt ; X<t |Y<t , ZM,<t ). (4)

This decomposition is illustrated in Fig. 1(a).
Given that the reduction of TE is associated with redun-

dancy (R), we express this relationship as R = Tp − Tm, where
the unique information (U ) flowing from X to Y is identified
with Tm. On the other hand, the synergistic information flow
(S) signifies the increase in transfer entropy when additional
variables are included in the set of conditioning variables. This
relationship can be expressed as S = TM − Tp. It follows that

TM = S + R + U . (5)

In other words, the maximal information flow from X to Y
can be decomposed into the sum of a unique contribution (U ),
representing a pure two-body effect, and synergistic and re-
dundant contributions that describe higher-order components
of the interdependence between X and Y . In the Appendix
we describe the assumption for the PID which corresponds to
these definitions of R, S, and U in the case of three variables.

Conducting an exhaustive search for subsets Zm and ZM be-
comes unfeasible for large n. Therefore, we employ a greedy
search strategy, wherein firstly we perform a search over all
the processes for the first process to be tentatively used as a
conditioner. Subsequently, one process is added at a time, to
the previously selected ones, to construct the set of condition-
ing processes that either maximize or minimize the TE. The
criterion for terminating the greedy search for conditioning
processes, minimizing (maximizing) the TE, is to stop when
the corresponding decrease (increase) of the TE can be ex-
plained as being due to chance. Therefore, one can estimate
the probability that the increase in Tα is lower (higher) than
that corresponding to the inclusion of a process sharing the
individual statistical properties of the selected one but being
otherwise uncoupled from X and Y (realizations of the se-
lected Z process are obtained as iterative amplitude-adjusted
fourier transform [17] surrogates). When such a probability
is lower than a given threshold, after correction for multiple
comparisons, the selected process is thus added to the multi-
plet of conditioning processes.
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As a toy model (which in the distinction between mech-
anism and behavior would constitute a model for the former,
but which should be reasonably echoed by the latter), consider
a system of four random processes, with X1 and X2 influencing
X3, whilst X3 influences X4, as depicted by the gray dashed
arrows in Fig. 1(b):

X1,t = ε1,t ,

X2,t = ε2,t ,

X3,t = 0.5(X1,t−1 + X2,t−1) + 0.1 ε3,t ,

X4,t = 0.9 X3,t−1 + 0.1 ε4,t , (6)

where ε’s are unit variance zero mean i.i.d. Gaussian pro-
cesses. Taking X1 as the driver and X4 as the target, we easily
obtain Tp = 0.32 nats, Tm = 0 nats (with Zm coinciding with
X3), and TM = 1.25 nats (with ZM coinciding with X2); it
follows that U = 0 nats (there is no pure two-body influence),
while R = 0.32 nats and S = 0.93 nats are the redundant and
synergistic TEs, respectively. Noting that X1 and X2 are col-
liders for X3, and that the chain X1 → X3 → X4 is a redundant
circuit, it is easy to realize that these results are what one
should expect for this example. We remark that the output,
on this toy model, for the fully conditioned TE is Tf = 0
nats, whilst for the pairwise TE it is Tp = 0.32 nats: both
approaches fail to highlight many-body effects.

Application to climate science. As an example of an appli-
cation to a real dataset, we consider a case study in climate
science, i.e., the influence of NINO34 (the East Central Trop-
ical Pacific sea surface temperature anomaly, also called El
Niño) on the SOI (Southern Oscillation Index, the standard-
ized difference in surface air pressure between Tahiti and
Darwin). These two indexes are crucial for the description
of El Niño and the Southern Oscillation (ENSO), a periodic
fluctuation in sea surface temperature and the air pressure of
the overlying atmosphere across the equatorial Pacific Ocean.
ENSO is considered the most prominent interannual climate
variability on Earth [18]. Since the exact initiating causes of
an ENSO warm or cool event are not fully understood, it is
important to analyze the statistical relation between the two
components of ENSO—atmospheric pressure (SOI) and sea
surface temperature (NINO34). The question we consider is:
what fraction of the total information flow NINO34 → SOI is
due to pure two-body effects?

The other climatic indexes that we consider here are AIR
(All Indian Rainfall), AMO (Atlantic Multidecadal Oscil-
lation), GMT (Global Mean Temperature anomaly), HURR
(total number of hurricanes or named tropical storms in a
given month in the Atlantic region), NOA (North Atlantic Os-
cillation of pressure anomalies over the Atlantic), NP (North
Pacific pattern of sea level pressure), NTA (North Tropical
Atlantic), PDO (Pacific Decadal Oscillation), QBO (Quasi-
Biennial Oscillation), Sahel (Sahel Standardized Rainfall),
and TSA (Tropical Southern Atlantic Index). All time series
have been detrended and deseasonalized; globally, these 13
monthly sampled time series coincide with those analyzed
using an approach based on a linear approximation of the
pairwise transfer entropy in Ref. [19]. It is worth stressing
that these variables are not guaranteed to measure separate
processes and that latent factors are likely to be present. This
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FIG. 2. (a) The transfer entropy NINO34 → SOI is depicted for
various numbers of conditioning variables along the greedy search to
minimize the transfer entropy (Tm), together with the values obtained
on 4000 surrogates of the added time series. Conditioning to a second
variable results in values compatible with the null hypothesis that
the decrease is due to chance; hence, the set Zm reduces to the
first variable (Pacific Decadal Oscillation). The value of the pairwise
transfer entropy (Tp) is indicated by the dashed black line. (b) As
in panel (a), but referring to the greedy search that maximizes the
transfer entropy, resulting in TM . Conditioning to a third variable
results in values compatible with the null hypothesis; hence, the set
ZM reduces to the first and second variables (North Tropical Atlantic
and Tropical Southern Atlantic Index).

further motivates an analysis that takes shared information
into account.

We consider the period 1950–2016 (i.e., 792 data points)
for which all the values of the 13 time series are available,
and we adopt the assumption of Gaussianity so as to identify
transfer entropy with GC (we remark that also in Ref. [19]
the Gaussian assumption was adopted). We find that the pair-
wise TE, NINO34 → SOI, is Tp = 0.078 nats, using p = 2 as
the order the model fixed by minimum description length, a
widely used criterion for model selection [20]. Then we find
Tm = 0.074 nats [with Zm equal to PDO, see Fig. 2(a)] and
TM = 0.094 nats [with ZM equal to the pair NTA and TSA,
see Fig. 2(b)]: therefore, in this case we have S = 0.016 nats,
R = 0.004 nats, and U = 0.074 nats. Since (R+S)

TM
= 0.2, we

conclude that about 20% of the total information flow from
NINO34 to SOI can be ascribed to many-body effects, and
80% can be ascribed to pure two-body effects. Moreover, we
note that in Ref. [19], using a pairwise approach, eight drivers
of SOI were identified among the 13 time series, including
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NINO34, NTA, and TSA; moreover PDO was found to be
target for both NINO34 and SOI. The proposed approach
allows one to identify which drivers play a role in producing
high-order effects on SOI in cooperation with NINO34.

Conclusions. In summary, we have introduced a decom-
position of transfer entropy (TE) that separates pure dyadic
dependence from many-body effects resulting from inter-
actions with other variables. Applying this methodology to
the interplay between NINO34 and SOI, two components of
ENSO, revealed the presence of non-negligible redundant and
synergistic high-order effects. We posit that this approach
serves as a bridge between dyadic and polyadic methodolo-
gies, offering a complementary perspective to those focusing
on the assessment of high-order effects [9,15,21]: indeed,
these approaches aim at decomposing the total information
about the target from many sources, whilst our framework’s
focus is on assessing how the environment changes the trans-
fer entropy between two variables. In other words, our goal
here is to provide a tool to anatomize the transfer entropy
into a pure two-body component and two many-body compo-
nents, and not to rigorously define redundancy and synergy
for the whole group of drivers at hand (we note that the
number of atoms in PID explodes exponentially with the
number of sources). It follows that the quantities R and S,
here introduced, should be considered only in relation with
the driver-target pair whose transfer entropy is under evalu-
ation. Moreover, the computational demand of the proposed
methodology is not intensive, especially when employing a
greedy search strategy to identify the optimal multiplet of con-
ditioning variables. Further work will be devoted to assessing
how R, S, and U are affected by influencing factors typically
encountered in empirical studies (e.g., coupling strengths,
bidirectional couplings, number of data points in time series,
noise, mixed processes), especially in the case of a large
number of conditioning variables.

The code to simulate and analyze data is available from
Ref. [22]. Climate data as described in Ref. [19] can be
downloaded at the NOAA website [23], with the exception
of AIR, which is available via the Indian Institute of Tropical
Meteorology [24].
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Appendix: Relation with partial information decomposi-
tion. In order to clarify the relation between the proposed
decomposition and the PID [9], we analyze the case of only
three stochastic variables: a, b, and c. For simplicity we con-
sider here the decomposition of the mutual information, as
described in the Introduction; a similar reasoning holds for
the transfer entropy. The PID of the mutual information from
the pair of sources {a, c} to the target b is as follows:

I (b; a, c) = R + S + Ua + Uc,

I (b; a) = R + Ua,

I (b; c) = R + Uc. (A1)

It follows that

I (b; a|c) = S + Ua,

I (b; a) = R + Ua. (A2)

Now, in the proposed frame the variable c is tentatively used as
a conditioning variable If I (b; a|c) > I (b; a), then cmax = {c}
and cmin = ∅; therefore,

S = I (b; a|c) − I (b; a) = −II,

R = 0, (A3)

where II is the interaction information, i.e., the classical
three-body measure of information [25]. On the other hand,
if I (b; a|c) < I (b; a), then cmin = {c} and cmax = ∅; therefore,

S = 0,

R = I (b; a) − I (b; a|c) = II. (A4)

Note that one always has II = R − S, i.e., also in the proposed
decomposition the interaction information is the balance be-
tween redundancy and synergy; however, we note that one
between R and S always vanishes in this frame. We conclude
that, in the case of three variables, the proposed decomposi-
tion is equivalent to the PID with the requirement that either
S or R should vanish. This is different, e.g., from the min-
imum mutual information prescription [26], which requires
that R = min{I (b; a), I (b; c)}.

We remark, however, that unlike PID, our framework is not
designed to provide a decomposition of the total information
about the target from many sources: its focus is rather on the
way the environment influences the transfer entropy between
two variables, with practical applicability also in the case of a
large number of variables.
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