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Abstract

The aim of this study is to carry out an experimental investigation on electricity consumption in wastewater treat-
ment plants in Italy based on aerobic and anaerobic digestion wastewater treatment plants (WWTP). The data
refer to plants managed by two major water resources management companies in Italy, Hera and Acquedotto
Pugliese (AQP). The survey makes use of statistical tools for data analysis of 202 urban wastewater treatment
plants. In order to extend the reliability of the survey, electricity consumption data were analysed through
three specific energy demand indicators: kwh/m?3, kwh/PEeyear, kWh/kgCODyemoved Feferred to each plant.
The results show that anaerobic systems are advantageous in terms of electricity consumption per m® as
they achieve more than 50% saving with values ranging from 1.02 kwh/m?3 for aerobic plants, instead of
0.43 kwh/m? for the anaerobic ones. Differences have been found in terms of anaerobic digestion efficiency
between the data concerning the plants in northern Italy — Hera Company with an average of 0.33 kwh/m?®-
and those in Apulia — AQP company with an average of 0.53 kwh/m?3. Aerobic systems showed more energy
consumption also for HERA-managed WWTP. If anaerobic digestion were implemented on all the AQP WWTP,
energy savings should be of approximately 16% and approximately 42% if related to HERA anaerobic-based
WWTP average performance.
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Highlights

e Aerobic digestion WWTP:1.02 kwh/m?; Anaerobic: 0.43 kWh/m?.

® MPV are 0.92 kwh/m?3, 63 kwh/PE*yr and 1.9 kWh/COD.

e The most probable values are for AQP anaerobic plants: 0.53 kwh/m?® and: 1.09 kwh/m? for aerobic digestion
plants.

e MPV for all plants are: 1.9 kwh/kg CODremoved.

e |f all the AD AQP plants higher than 10,000 PE were converted to anaerobic digestion, we would have a saving
equal to 42%.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying,
adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Stabilization processes represent a consistent part of the electrical costs in a Conventional Activated
Sludge (CAS) WWTP. Aerobic digestion involves biologically stabilizing wastewater in an open vessel
using an air blower and bacteria under aerobic conditions to convert the organic solids content to
carbon dioxide, water, and nitrogen. Pathogens and odors (and the potential to generate odors) are
reduced in the process. Aerobic digestion is commonly used by smaller WWTPs due to consistent
electrical costs for aeration (McCarty 1964; Gretzschel et al. 2014). Anaerobic digestion involves bio-
logically stabilizing wastewater in a tank without a blower to reduce the organic content, mass, odor
(and the potential to generate odor), and pathogen content of wastewater. In this process, microorgan-
isms consume a part of the organic portion of the wastewater. Anaerobic archaea that thrive in the
oxygen-free environment convert solubilized and fermented organic solids to carbon dioxide,
methane (which can be recovered and used for energy), and ammonia resulting in electrical cost sav-
ings (Capodaglio & Olsson 2020). As a consequence of the increase of energy costs and to minimize
GHG emissions, an efficient use of sludge as a renewable energy resource should be considered, even
for smaller WWTP with design capacities more than 10,000 population equivalent (PE) (Gretzschel
et al. 2014; Soares et al. 2017).

In the present study, a comparison between anaerobic and aerobic WWTPs managed by two of the
greatest Italian Water Management Companies - HERA, which operates in Emilia Romagna and
Acquedotto Pugliese (AQP) Spa, on Apulian territory - is carried out, on the basis of the electrical
consumptions in CAS plants. According to the US Environmental Protection Agency EPA (2010),
3% of all US electricity consumption is related to wastewater treatment.

The energy consumption of wastewater treatment plants (WWTPs) is about 4,200 GWh/year only
in Germany (Enerwater 2015); in Italy, the electricity consumption in WWTPs is about 3,250 GWh/
year (Campanelli ef al. 2013; Foladori et al. 2015), which corresponds to about 0.5 billion Euros per
year. So it is fundamental to apply the appropriate technology for more savings in terms of electricity
and CO, emissions. An increase of 12% of energy required by AQP WWTPs has been shown from to
2013 to 2018, reaching a total value of approximately 182 GWh/year. This is due to the increasingly
stringent environmental requirements and the need to enhance the plants’ capacity, which have led to
the upgrading of the main treatment stations, and also the installation of new, more powerful and effi-
cient electromechanical equipment (Acquedotto Pugliese 2019).

An analysis of the COD values in the influent has also been performed considering that the concen-
tration and the nature of the organic matter can have a considerable influence on both energy
consumption and on the choice between the two technologies of stabilization.
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The average COD values input to the plants show clear differences between the two Italian regions.
The average COD input value of the plants managed by HERA was equal to 406 mg/L, while for AQP
plants it was 828 mg/L.

It must be considered, however, that the nature of COD can be different depending on the activities
carried out in the territory: unlike the one produced in Apulia, which is less industrialized than in
Emilia Romagna, where the COD concentrations are quite lower, probably due to a higher degree
of pre-treatment at the factory before entering the municipal WWTP.

The electrical consumption in WWTPs is principally due to aeration basins and recirculation of
mixed liquor and settled sludge (US EPA 2010; Daw et al. 2012; Foladori et al. 2015), but the
aerobic stabilisation represents a noteworthy energy consumption, with simpler operational mainten-
ance, if compared to anaerobic stabilization (Soares ef al. 2017; Maktabifard et al. 2018; Guo et al.
2019).

In order to evaluate the reduction of electricity consumption, electrical costs related to aerobic and
anaerobic digestion have been evaluated. Anaerobic digestion produces biogas recoverable and reu-
sable for energy production, instead of aerobic digestion, which consumes more energy for aeration
(Capodaglio & Olsson 2020). In addition, anaerobic plants are able to treat all types of organic
waste regardless of their humidity, unlike composting, which requires a certain dry matter content
in the starting mixture; in fact, anaerobic plants are closed reactors and therefore there is no release
of foul-smelling gaseous emissions into the atmosphere, as can occur during the first thermophilic
phase of anaerobic digestion. Anaerobic digestion is a biological process in which biodegradable
organic matter is broken down by bacteria in the absence of oxygen into biogas consisting of methane
(CHy), carbon dioxide (CO.,), and trace amounts of other gases. Methane production occurs in a lim-
ited pH range (about 6.5-8.5): optimal conditions for methanogenic archae are between 7 and 8,
while the optimal range of acid-forming bacteria is at lower values (Capodaglio et al. 2016). The
pH value can be increased by degradation of proteins into ammonia, and can be lowered by the pres-
ence of H,S and VFAs, produced by hydrolysis, inhibiting the whole methane fermentation process.
Manure, with its alkalinity, can help stabilize the process, even if its high-water content tends to dilute
the substrate (Nielsen & Angelidaki 2008).

Anaerobic digestion plants require higher initial investments than aerobic plants (Monnet 2003) and
retrofitting conventional aerobic plants to anaerobic processes could be costly and would require more
concentrated sewage to achieve optimal efficiency (McCarty ef al. 2011; Ciudin et al. 2014; Stazi &
Tomei 2018; Mahmoodi-Eshkaftaki & Ebrahim 2019; Capodaglio & Olsson 2020; McAteer ef al. 2020).

Anaerobic digestion has increasingly been shown as a possible solution to reduce process energy
requirements and has the potential to achieve net energy production while meeting stringent efflu-
ent standards (He ef al. 2021). Anaerobic digestion also has the best practical potential for
capturing wastewater’s embedded energy content and should be considered a preferred option
in future design of domestic WWTP where strict effluent standards can be achieved using natural
systems like constructed wetlands (Ranieri 2003, 2012; Gikas et al. 2015; Borges et al. 2016; But-
terworth et al. 2016). Further, the optimisation of energy efficiency leads to an important
reduction of primary energy consumption. Other positive aspects include increased cost stability
(due to higher energy self-sufficiency), as well as a reduction of public expenditure (Hobus et al.
2010; Ciudin et al. 2014), if operational stability is guaranteed by the application of correct main-
tenance procedures and proper monitoring and adequate control of influent characteristics
(Killilea et al. 2000; Ranieri & Swietlik 2010; Ranieri ef al. 2017).

The aim of this investigation is to compare energetic consumptions in conventional WWTP adopt-
ing Aerobic Digestion (AD) and Anaerobic Digestion (AnD) as a function of the flow, Population
Equivalent (PE) and influent COD. This comparison should give useful information to designers or
Water Management Companies about which technology should be used, with the aim of reducing
the electrical cost and having a high degree of sludge stabilization.
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MATERIAL AND METHODS

Acquedotto Pugliese S.p.a. manages about 180 WWTPs in the entire territory of Apulia. The Hera
Group manages the sewerage and treatment service in many municipalities in Emilia Romagna, hand-
ling a total of over 382 million cubic metres of wastewater. In the present study, most representative
data concerning WWTPs were used for the analysis: 178 managed by AQP and only 24 WWTP man-
aged and deemed more representative by HERA. In Figure 1, the location of the WWTP whose data
have been analysed, both managed by AQP Spa and by HERA, is reported.

Figure 1 | WWTP managed by HERA (on the left) and by AQP (on the right).

With reference to 202 wastewater treatment plants that have been considered, 146 are equipped
with aerobic digestion treatment and 56 are equipped with anaerobic digestion plants managed by
both Companies, Hera and AQP. Most of the plants considered, about 88%, are located throughout
the Apulian land, while the remaining 12% are located in the Emilia Romagna region.

RESULTS AND DISCUSSION

The analysis of the data showed energy consumption associated with WWTPs using aerobic sludge
digestion treatment with a much higher digestion electricity use than with anaerobic digestion. In
fact, the energy used by plants in terms of kWh/m? for all plants with aerobic digestion is on average
1.02 kWh/m? while for plants with anaerobic digestion it is significantly lower at 0.43 kWh/m> on
average, in line with literature, for similar climate conditions (Herndndez-Sancho et al. 2011,
Maston 2017). Curtis (2010) reported even higher electrical consumption differences.

A further difference can be found between the average energy consumption data for plants with
anaerobic digestion in Emilia Romagna and those in Apulia: in the former case, the average consump-
tion is lower, at 0.33 kWh/m> compared to 0.53 kWh/m> of the Apulian plants. In any case, the
results are in line, rather slightly lower than other Italian and international studies that report as a
range of energy consumption of WWTPs, values between 0.4 and 0.7 kWh/m?> (Campione & Campo-
donico 2017) and about 0.6 kWh/m? specifically in Southern Italy (Utilitatis 2018). Mizuta &
Shimada (2010) report, for 985 Japanese WWTPs, the distribution of specific power consumptions
(SPCs) for the oxidation Ditch (OD) method and for the CAS method without incineration. On the
one hand, the amount of inflow was between 100 and 8,500 m®/day, and the SPC was between
0.44 and 2.07 kWh/m? for the OD method.

Energy consumption and flow rates
The frequency histogram in Figure 2 shows that the distribution is quite similar to Gauss distribution.

In most cases, the consumption of kWh/m? is in a range between 0.21 and 1.90 kWh/m?>. The values
are comparable with those referred to Japanese WWTP (Mizuta & Shimada 2010).
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Figure 2 | Distribution of energy consumption in Italian municipal WWTPS in terms of kWh/m?.

Figure 3(a) and 3(b) report the energy consumption for AQP WWTP versus influent flow (Q) high-
lighting a decreasing trend both for aerobic and anaerobic WWTP.
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Figure 3 | (a, b) Correlations between energy consumption and flow rates of AQP WWTP with AD (a) and AnD (b).

For plants equipped with AD, the equation of the exponential curve that best fits the energy con-
sumption data in relation to flow rates is: Energy (E) =7.31 Q2% with linear regression equal to
R? = 0.34, while the one for AnD plants is E = 15.19 Q °3*® with linear regression equal to R* = 0.38.

The analysis of AQP data shows that the parametric value kWh/m?> decreases exponentially as a
function of the influent flow, for both aerobic and anaerobic digestion plants, but the one for AD
plants decreases faster than the other. This means that, on the basis of the analysis of energy consump-
tion data alone, anaerobic digestion should be more cost-effective above all for plants with an high
capacity.

In fact, case studies developed in Germany (Gretzschel ef al. 2014) have shown that, depending on
rising energy prices and interest rates, and in the case of a presumed interest rate of 3% and price
increase of 5%, a conversion of existing aerobic stabilization plants into anaerobic digestion plants
can be the most cost efficient choice, even for plants larger than 7,500 PE a conversion could also
be an option for digestion plants with a project capacity greater than 7,500 PE. It follows that,
when choosing the type of sludge treatment in the plants, it is important to take into account
additional factors, such as the COD load in the incoming effluent, in addition to the capacity of
the plant itself.

This is confirmed by the data relating to the plants managed by HERA, as shown in the following
Figure 4(a) and 4(b).
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Figure 4 | (3, b) Correlations between energy consumptions and flow rates of HERA WWTP with AD (a) and AnD (b).

For plants based on AnD, the equation of the interpolation curve that best fits the energy consump-
tion data in relation to flow rates has the following equation, E = 8.18 Q °3%* with linear regression
equal to R? = 0.724, while for plants equipped with aerobic treatment the trend is not very clear due to
the low number of available data, and the most probable interpolation curve is E = 0.0055 Q°>15.

It should be considered that only anaerobic Hera WWTP satisfies the same order for both: less than
7,500 PE or more. While for aerobics, there is a change of order from negative to positive when
exceeding 7,500 PE, the costs increased. It follows that a larger plant capable of accommodating
and treating higher incoming flow rates is advantageous from an environmental point of view only
for plants with AnD treatment, where higher energy consumption per cubic meter is associated
with systems treating low flow rates.

There is a clear difference between the order of magnitude of the energy values present along the
Abscissa axis for aerobic digestion and that of the values for anaerobic digestion; in fact, the former
vary in a range between 0.37 kWh/m?> and 5.59 kWh/m? as illustrated in Figure 5 where the last two
energy values, for larger WWTP, are slightly higher, probably due to a lower degree of pre-treatment
at the factory before entering the municipal WWTP. The range of the energy values, for anaerobic
treatment, varies between 0.21 and 1.72 kWh/m?, as illustrated in Figure 6. The lower value of
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Figure 5 | Correlation between energy consumption and flow rates for all AD WWTP.
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0.21 kWh/m> were found in two plants, one managed by AQP, the other by Hera. Both are associ-
ated with high inlet flow rates corresponding respectively to approximately 62,175 m®/d and
98,552 m>/d. Only 9% of all WWTPs with anaerobic digestion report an energy consumption
value greater than 1.0 kWh/m?>.
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Figure 6 | Correlation between energy consumption and flow rates for all AnD plants.

In addition, all the data of both managing companies have been analysed separately with respect to
the type of treatment.

For all plants equipped with AD, the equation of the exponential curve that best fits the energy con-
sumption data in relation to flow rates has the following equation: E = 38.263 Q %2’ with linear
regression equal to R®>=0.379, while the one for AnD plants of both corporations is E =153.23
Q 3% with linear regression equal to R?=0.535. Trend curves decrease one order of magnitude
of difference, the degrowth is slightly faster for plants with AD treatment.

The ratio between kWh and flow rates is a widely used parameter as an indicator of specific energy
consumption. However, it is more likely that larger volumes of wastewater are received in the WWTP
due to some factors such as stormwater flow, groundwater infiltrations system that could possibly
offers an apparent energy discount due to higher denominator in the calculation of the kWh/m?
(Gurung et al. 2018).

Finally, it is important to note that the use of kWh/m?> as unique index should not give all infor-
mation useful to select uniquely the technology more appropriated (Enerwater 2015). Based on
these reasons, the correlations between energy consumed and PE served and COD input have
been also investigated.

Energy consumption and population equivalent

The energy consumption per PE is considerably depending on the type of process. In fact, it goes from
an average value of energy per year consumed equal to 24.4 kWh/PE per year for treatment with
AnD, to an average value per year for plants with AD higher than double and about 50.9 kWh/PE
per year. Campione & Campodonico (2017) report similar electrical consumptions for other italian
WWTP ranging from 10 to 40 kWh/PE per year for treatment with AnD and ranging from 40 to
70 kWh/PE per year for treatment with AD.
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The frequency histogram was therefore produced in Figure 7, which indicates approximately
63 KWh/PE per year the most frequent value, and higher values of specific consumption are related
to smaller WWTPs. Most of the energy consumption data in relation to the population served is
between 11 kWh/PE per year and 126 kWh/PE per year. The data range has been divided into
25 classes for an extension of each class equal to 25 kWh/PE per year.

kKWh/PE HERA+AQP

Number of AQP WWTPs

0 25 51 76 101126152177202227253278303328354379404
Energy consumption (KkWh/PE)

Figure 7 | Distribution of energy consumption in Italian municipal WWTPs in terms of kwh/PE per year.

For all plants equipped with AD, the equation of the exponential curve (Figure 8) that best fits the
energy consumption data in relation to flow rates has the following equation: E = 1.395 e~ 1-00E~05 (PE)
with linear regression equal to R*=0.19, while for AnD plants (Figure 9) of both companies the
equation is E=0.77 e >9E~96 (PE) with linear regression equal to R?=0.37; the degrowth is faster
for plants with AD treatment.
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Figure 8 | Correlation between energy consumption and PE for all AD plants.

As a general trend, the specific energy consumption tends to decrease with the increase of number
of PE and influent flow rate. This behaviour should be enhanced reaching economies of scale in larger
systems, leading to larger but efficient equipment, better performing automation and regulation and,
often, more and better trained staff operating the plant (Enerwater 2015).
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Figure 9 | Correlation between energy consumption and PE for all AnD plants.

Correlation between energy consumptions and COD

The European community claims that general energy consumption indexes such as kWh/m?; kWh/
PE.year should be completed with an index that gives information on the variability of the influent
characteristics in WWTP (ENERWATER 2018). Then the index that express the unit energy consump-
tion per unit of COD removed (kWh/kg COD) should be also suitable (Vaccari ef al. 2018).

The distribution curve has been determined through a function that returns the normal distribution
for the specified mean and standard deviation.

On the basis of all WWTPs’ electrical consumption, the cumulative distribution functions have been
calculated in terms of COD removed (Figure 10) where the most probable value is approximately 1.9
kWh/kgCODrem, corresponding to approximately 1.6 kWh/kgCODin (Figure 11). Most values are
concentrated in the range: 0.7 kWh/kg COD and 3 kWh/kg COD.
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Figure 10 | Distribution of energy consumption in Italian municipal WWTPs in terms of kwh/kg CODrem.

For AQP plants (Figure 12(a) and 12(b)), the inputs have higher COD values; in fact, the average
COD input is equal to 828 mgCOD;,/L; on the contrary, for the HERA plants (Figure 13(a) and
13(b)), the incoming COD is equal to about half of that found for the Apulian plants and is equal
to 406 mgCOD;,,/L.
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Figure 11 | Distribution of energy consumption in Italian municipal WWTPS in terms of kwh/kg CODin.
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Figure 12 | (a, b) Correlations between energy consumptions and mg COD;./L of AQP WWTPs with AD (a) and AnD (b).

While the tendency for AD plants, either managed by AQP (Figure 12(a)) or by HERA
(Figure 13(a)), is represented by a decreasing line (y=—0.0003x+ 1.6 for AQP and y = —0,0002
x + 0.64 for Hera), only for anaerobic WWTP managed by AQP, there is an increasing trend with
the interpolating curve (line) equal to y = 0.0004x + 0.32 with R equal to 0.19.

This should be explained by the probable presence of a more refractory COD in the influent
WWTP that has higher COD values, and this results in greater difficulty in undertaking the treat-
ment and to higher electricity operating costs. Moreover, low COD concentration in the
wastewater entering the plants can be associated with lower energy consumption, as less energy
will be used for the oxidation of organic compounds (Hao et al. 2015), resulting in plants equipped
with anaerobic digestion having a well-defined trend with increasing energy consumption as a
function of a higher input COD value.
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Figure 13 | (a, b) Correlations between energy consumptions and mg CODin/L of HERA WWTP with AD (a) and AnD (b).

CONCLUSIONS

The results of the analysis show an overall average consumption for urban wastewater treatment
plants in Emilia Romagna and Apulia regions with aerobic sludge digestion of 1.02 kWh/m?>,
which is more than double compared to plants with anaerobic digestion of 0.43 kWh/m? on average.

For all the AD and AnD treatment and for all WWTP flows, the most probable value has been cal-
culated resulting in 0.92 kWh/m?>, 63 kWh/PE*yr and 1.9 kWh/COD,¢p,.

For all the Apulian region WWTPs, the average COD value in the WWTP influents is equal to
828 mg/L, the average energy per cubic meter consumed in aerobic based plants is approximately.
1.09 kWh/m?>, and 0.53 kWh/m> for anaerobic digestion-based WWTPs.

For all the WWTPs in the Emilia Romagna region, where the average COD concentration, equal to
406 mg/L, is quite lower, this is probably due to a higher degree of pre-treatment at the factory before
entering the municipal WWTP. The average value of energy consumed per cubic meter is equal to
0.56 kWh/m> for AD plants; AnD plants are more efficient with an average value equal to
0.33 kWh/m”®.

As regards the most probable values of kWh as a function of COD, this is equal to approximately
1.9 kWh/kg COD,emoved in Apulia and approximately 1.6 kWh/kg COD;, in Emilia Romagna.

In any case, it should be estimated the savings that would be achieved if anaerobic treatment were
adopted on all the plants for which it is advantageous compared to the total of the plants considered.
In fact, on the basis of the present analysis, if all the Apulian AD plants with a capacity higher than
10,000 PE were converted to anaerobic digestion, an energy saving, calculated on all plants, of about
16% would be achieved and by considering the Emilia Romagna anaerobic plants consumption index,
it would be possible to reach a total saving equal to 42%.
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