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a b s t r a c t

In the last years, the debate about the success or failure of Linked Data (LD) has been growing. Despite the ever-increasing number of available 
ontologies and LD datasets, there is still a limited number of applications to let people benefit from using this huge amount of data. Some evident 
problems relate to the limited opportunities offered to the end users, i.e., people without skills in computer programming, to access, navigate and 
visualize LD. Tools supporting such tasks typically do not consider the end users’ needs; even when they provide abstraction mechanisms to avoid 
programming, they do not properly hide the complexity of getting oriented into the plethora of available resources. Thus, they end up to be 
inadequate to real daily scenarios. In this paper, we propose an approach that enables end users to create visually entry points, which we call 
Metamorphic Data-Sources (MDSs), to query and visualize the LD without requiring any prior knowledge of semantic Web or visualization 
technologies. Through the MDS visual paradigm, end users can tailor ad-hoc data sources to retrieve information on topics they are interested in. 
The MDS creation process is also driven by a quality model that further helps users select LD elements potentially free of data quality problems. 
The paper also reports on the results of a user study that we conducted to assess the validity of the MDS paradigm with respect to the user needs.

1. Introduction

Recent advancements in Web technologies have provided a
strong potential for gathering data from distributed data sources
and applications. We are increasingly dealing with a huge amount
of information generated by resources accessible through APIs.
However, these resources expose data in different formats re-
ferring to diverse data models. To alleviate such heterogene-
ity, the research community has thus been working on alterna-
tive paradigms for data publishing and access. One promising
paradigm is the Linked Data (LD), which was proposed by Tim
Berners-Lee in 2006 as a set of best practices for publishing and
connecting structured data on the Web [1]. The most important
example of adoption of the LD principles has been the Linking
Open Data (LOD) project [2], a powerful blend of LD and Open
Data, since it is both linked and available open-source. Before
the LD paradigm, the Web was essentially a collection of HTML
pages connected by hyperlinks. The goal of LD is to make Web
data available in a format that is readable by people and by
automatic agents as well. The main idea is that HTTP URIs, which
are used to access Web pages in the traditional vision of WWW,

are also exploited to identify real or abstract entities (e.g., a
person, a city, an organization). Data publication is grounded on
the Resource Description Framework (RDF), a graph data model
designed for publishing structured data on the Web, which uses
hyperlinks to connect not only Web documents, as in the tra-
ditional Web, but every data entity [3]. According to the RDF
syntax, each entity is coded as a set of triplets in the form t =

⟨subject, predicate, object⟩. The subject represents the entity that
always consists of a URI. The object can be a literal or another
entity identified by a URI. The predicate is represented by a URI;
it is defined in ontologies used to provide information about a
domain and indicates a semantic relation between the subject
and the object.

Today thousands of open-source datasets can be accessed and
navigated through the LOD paradigm.1 The opportunity to access
and navigate this wide amount of open, interlinked data has
fostered the proliferation of semantic Web browsers that permit
to retrieve LOD entities, inspect their properties and navigate
through their hyperlinks,2 also supporting complex queries that
could not be formulated in traditional search engines.

1 https://lod-cloud.net/ reports that LOD contains 1,234 datasets with 16,136
links (as of June 2018).
2 https://www.w3.org/2001/sw/wiki/Category:Semantic_Web_Browser.
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To tech-savvy users, LD consumption is easy: they have the
necessary knowledge of the languages (e.g., SPARQL), as well as
the capability, based on their accumulated experience, to retrieve
entities and connections between pieces of information. However,
there are several users for whom there is a gap between their
need to access LD and the skills that this requires, even when they
try to use semantic Web browsers [4]. These are the regular Web
users, who browse Web sites to satisfy their situational informa-
tion needs without any knowledge of the intrinsic structure of the
Web, as well as domain experts, who lack technical expertise but
have a good understanding of the data available in their domain,
and need sophisticated, domain-specific analysis tools to obtain
insights for decision making from very large amounts of hetero-
geneous data [5,6]. Our research focuses especially on domain
experts and their frequent need to integrate heterogeneous data
from distributed resources into unified, interactive workspaces.
This indeed raises important challenges for the definition of al-
ternative paradigms to support the exploration of the plethora of
Web resources and the extraction of actionable knowledge.

1.1. Motivations

Despite the encouraging premises and the initial efforts in-
vested in developing semantic Web browsers, there are still no
evident results for the adoption of LD-based systems by the
mass [7]. In the last years, this lack has been fueling a debate
about the success or failure of LD: at the ‘‘AI, Graph Databases
and Linked Data Conference’’ in 2017, different leaders in the
LD sector argued that one reason for the failure is ‘‘a perceived
lack of intuitive and accessible LD infrastructures’’. Indeed, given
the huge number of datasets, entities, ontologies, classes, and
attributes, the LD exposes an intrinsic complexity that is even
more accentuated by the difficulty for the end users to master
ad-hoc query languages.

The current LD browsers mainly address the needs of com-
puter scientists, researchers or members of technical communi-
ties, who are acquainted with the RDF data model and are able
to extract data using a formal query syntax [5,6]. In other words,
such tools do not provide adequate abstractions on top of query
languages, nor visual mechanisms that can hide the LD complex-
ity. In order to empower lay users to take advantage of LD data,
this paper proposes a visual approach to assist them in creating
their own access points on top of LD, so that they can easily
retrieve data on topics of interest and represent them according
to visual templates that they can also visually configure. The pro-
cess for creating an access point consists of two main activities,
which are facilitated by a visual paradigm: (1) the selection of an
ontology class related to a specific topic and (2) the projection of
a subset of pertinent class attributes that is operated by mapping
attributes to visual elements of a visualization template. The
result is a tailored data source coupled with a configured visual-
ization template, which can then be exploited any time by users
who need to retrieve and visualize entities related to the chosen
topic. We call this mechanism Metamorphic3 Data Source (MDS),
since end users can define access points on LD, whose structure
can be adapted to their specific needs. MDSs can be fruitfully used
within visual environments for the integration of heterogeneous
resources, for example, the different mashup platforms that have
been proposed in the last decade [8–11]. The notion of MDS has
been indeed conceived as part of a larger project focusing on the
design of mashup platforms that offer visual notations to enable

3 The term metamorphic is due to the analogy with metamorphic rocks,
which change their shape under the influence of factors like heat or pressure,
in a process called metamorphism — which means ‘‘change in form’’.

the integration by end users of heterogeneous data sources and
Web APIs [12–14].

It is worth remarking that MDSs should not be considered as
an alternative to search engines that regular Web users typically
adopt for daily and generic queries. Rather, MDSs would bet-
ter support domain experts or community of users in satisfying
domain-specific needs that imply performing queries repeatedly
on specific topics. Let us think, for example, to physicians, who
often search for illness and drugs on digital handbooks before
making prescriptions; or attorneys, who search for laws in civil,
criminal or similar codes to prepare their lawsuits; or chemists,
which look for elements or formulas to prepare chemical com-
pounds. In these and other similar situations, domain experts
daily perform dozens or hundreds of queries on their domain top-
ics. Thus, MDSs built on domain-specific and/or general-purpose
datasets can be a valid alternative to traditional search engines to
speed up and make more efficient their queries, without getting
lost in hyperspace [15] and reducing cognitive overload [16].

In usage scenarios like the one described above, the quality of
data can strongly influence the user productivity. LD, however,
are typically affected by errors, inconsistencies, missing or out-
dated values and other issues that can limit their usage. The MDS
creation uses an LD quality model [17] to assist the selection of
elements (ontology classes and their properties) that can reduce
the occurrence of quality problems in the final integrated dataset.

1.2. Contribution

The work illustrated in this paper has been developed in the
context of a larger research project that aims to promote End-
User Development as a solution for letting non-technical users
to make sense of the huge availability of Web APIs and online
resources [12–14]. The leading question of this research relates to
the support that the proposed visual paradigm can offer to users in
creating and querying MDSs. With respect to our previous results,
the work described in this paper proposes the following new
contributions:

• A visual paradigm for LD exploration. We introduce tech-
niques for end users to make sense of LD by means of (i)
a visual paradigm to build and query MDS and (ii) User
Interfaces (UIs) for visualizing the retrieved data. In relation
to data visualization, our approach is still in an initial stage.
Our aim is indeed to investigate primarily the advantages of
providing easy mechanisms to explore LD and build visual-
izations for selected topics. Extensions and improvements in
relation to the quality of the provided visualizations are still
possible. In this paper, we already show how the engine for
LD querying can be connected to an external API that is able
to build adequate and adaptive visualizations. Other, more
sophisticated services or software modules can be easily
plugged in.

• LD consumption within interactive information workspaces.
We show how LD can be consumed in a context where the
end user is also enabled to access other APIs and might
be interested in the integration of all such data within
unified interactive workspaces where visualization and data
manipulation functions are also offered.

• A technique for tailoring access to LD. We propose a tech-
nique that helps users identify and filter data that are per-
tinent in respect to their situational needs and to the cur-
rent status of the information workspace under composition
(i.e., the other data already retrieved and integrated into
their workspace). With respect to other systems, we do not
focus on providing end users with RDF graphs representing
all the available information. Some studies indeed show that



this kind of data representation is difficult to understand
for non-technical users [18]. We rather provide algorithms
that help users select LD entities that are deemed useful
for them during a given exploration session, also taking
into account the data already integrated into the workspace
under composition.

• A quality-driven process for MDS creation. Given the quality
problems LD generally suffer, we show how the assessment
of data quality measures on LD classes and attributes can
lead to an incremental process for LD exploration where
user choices are driven by indications on the quality of data
that can be accessed through the MDS under creation.

• Lesson learned: Based on the results of an experimental
study involving a sample of users, we present some lessons
learned ranging from methodological aspects to more tech-
nical features that can drive the design of visual environ-
ments for LD consumption.

1.3. Paper organization

This article is organized as follows. Section 2 discusses the
rationale and background behind our research, with reference to
the related literature. It summarizes the main characteristics of
the Semantic Web browsers so far proposed for LD exploration
(Section 2.1); it motivates the need for adopting a quality model
for the MDS creation (Section 2.2), and also explains how the
mashup paradigm for the visual integration of heterogeneous
data sources can be exploited for LD consumption within interac-
tive workspaces. Section 3 illustrates in detail the notion of MDSs.
Through a running example (Section 3.1) it describes the different
steps for MDS creation; then it introduces the algorithms and
the mechanisms that support the creation steps and the MDS
execution within interactive workspaces (Section 3.2). Section 4
shortly illustrates the software architecture of the platform to
clarify how different software modules interoperate to enable
the functions described in the previous sections and support
flexibility in the MDS creation and execution. Section 5 then
reports on an experimental study that we performed to compare
two different versions of the MDS paradigm (with and without
quality measures) and the Google search API. Section 6 finally
concludes the paper by reporting on some lesson learned from
the study and outlining our future work.

2. Rationale and background

The LD paradigm ensures the creation of a layer where access
to the available resources is facilitated by a standard way of
storing and sharing data. However, data access by users who do
not possess technical skills is still an issue [18–22], as it generally
requires the formulation of SPARQL queries [23]. In the last years,
some visual mechanisms have been proposed to facilitate the
use of query languages. However, current techniques are still
inadequate with respect to lay-user skills. Alternative ways of
exploring, integrating and sharing information are needed to
improve the usability of access mechanisms so that the huge
availability of LD resources can offer advantages to the mass too.
Such mechanisms should also consider the quality of LD. Indeed,
despite the numerous advantages in terms of data availability,
exploring LD can become difficult, as they are not free from
quality problems, especially incompleteness [24].

In the following, we illustrate the most relevant paradigms
so far proposed to facilitate LD access — the so-called visual
browsers. We then discuss the quality of LD and how adequate
models can help users select LD resources and LD elements even
when they lack the needed technical experience. Finally, we also
discuss the benefits that LD can offer when end users are enabled
to explore and integrate them within interactive information
workspaces.

2.1. Visual browsers for LD exploration

In this section, we describe the most popular visual browsers
for LD exploration. Table 1 summarizes the main features of the
selected systems. Most comprehensive surveys can be found in
[6,25–27]. As it can be noted, many of such tools have been
dismissed. We discuss them anyway with the aim is to survey
pros and cons of the interactive visual paradigms so far proposed.

One of the first LD browsers proposed in literature was Disco,
a search engine that, given a resource URI, retrieves its data from
LD and renders them in a tabular fashion, i.e., not as a simple
list of attributes but through a proper HTML page layout [28].
If the results include hyperlinks, the user can navigate to the
linked resources, as the browser is able to dynamically retrieve
the corresponding data by dereferencing URIs. Similar to Disco,
also Zitgist displays the RDF data reachable through a URI given
in input by the user [29]. Depending on the retrieved information,
the RDF browser then shapes the layout of the result page to
optimize the user browsing experience.

The previous browsers assume that users know in advance
the URIs to be accessed, which might be a non-trivial activity for
those who have a low familiarity with linked datasets [6]. To solve
this problem, in addition to URI search, LD Cloud Cache provides
keyword-based search, as well as a language to specify structured
queries for LD data collections hosted by a Virtuoso engine [30].
Keyword-based search is also supported by Sindice [31], which
then lists the retrieved resources in a format similar to Google
search results, and also sorts them according to a ranking algo-
rithm. Swoogle also allows users to enter plain text to retrieve
ranked, hyperlinked resources from both datasets and ontologies
[32]. It then offers an ‘‘advanced’’ search interface to specify some
additional conditions as an SQL query. Similarly, VisiNav offers an
interactive paradigm designed to easily search and navigate large
amounts of Web data [33]. In addition to the keyword search
and result ranking, it enables three kinds of search tasks: object
focus, path traversal, and facet specification. Through these atomic
operations, users incrementally assemble complex queries that
yield sets of objects as result.4 More complex queries can then
be formulated in Falcons [34] that, with respect to the previous
browsers, is able to process complex queries that go beyond
the object names. For example, a query can describe relations
between objects (e.g., ‘‘AVI 2018 Conference’’ AND ‘‘demo chair’’).
In addition, when presenting the objects that match the query
keywords, Falcons recommends further related objects the user
might be interested in.

Tabulator is an open-source Firefox plugin [18] originally writ-
ten as a linked-data browser [35]. It provides visual mechanisms
to navigate the LD, without requiring any domain-specific pro-
gramming skill. It supports two kinds of operations: exploration,
to see what information is available, and querying, to gather sim-
ilar subgraph patterns. These operations are performed on tables
similar to spreadsheets. Exploration is supported by presenting
results in a table of predicate/object pairs. If the object is a
URI, the users may recursively open a nested view showing the
property objects in turn. Querying is activated by starting a search
for a subset of fields retrieved in the exploration mode; the LD
subgraphs matching the given fields are still displayed in a tabular
format.

While the previous browsers present the query results in
a tabular format, other approaches exploit graph-based visual-
izations that strongly reflect the graph data model characteriz-
ing RDF. LODWheel [36] is a prototype for visualizing RDF data
through graphs and charts; its development implied an extensive
evaluation of open-source JavaScript libraries for visualizing data,

4 https://youtu.be/7FaSDpMIXXo.
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Table 1
List of the most important tools for LD visual exploration and classification dimensions.
System Client type Access Starting point Available Visualization

DBpedia mobile Mobile App Read GPS position Yes Geo Map
Disco Browser Read URI Dismissed Tabular
Falcons Browser Read keywords Dismissed List
FenFire Browser Read URI Dismissed Graph
FERASAT Browser Read/Write Keywords Yes UI Components
graphVizdb Browser Read Keywords Yes Graph
Horus Desktop/App Read keywords Dismissed List/Graph
iLD Mobile Read URI Dismissed Tabular
IsaViz Desktop/App Read/Write keywords/URI Yes Graph
LENA browser Desktop/App Read keywords Dismissed Tabular
LD Cloud Cache Browser Plugin Read keywords/URI Yes List
Lod Live Browser Read keywords/URI Yes Graph
LODWheel Browser Read keywords Yes Graph
Marbles Browser Read URI Dismissed Tabular
ObjectViewer Browser Read/Write URI Dismissed Graph
OpenLink DataExplorer Browser Read keywords/URI Yes List/Tabular/Graph
Piggy Bank Browser Read keywords Dismissed Tabular
RelFinder Browser Read keywords Yes Graph
Sig.ma Browser Read keywords Dismissed Tabular
Sindice Browser Read keywords Yes Tabular
SWiPE Browser Read Search by example Dismissed Wikipedia page
Swoogle Browser Read keywords Yes List
Tabulator Browser Plugin Read URI/SPARQL Dismissed Tabular
VisiNav Browser Read keywords Dismissed List
Watson Browser Read keywords Dismissed Tabular/Graph
Zitgist Desktop/App Read URI Dismissed Tabular

to identify the ones with the highest score based on a number
of evaluation criteria adopted to rank the offered visualizations.
In [37], the authors focus on the interactive discovery of re-
lationships between selected elements via the Semantic Web.
In line with our research goals, they recognize the importance
of providing users with interactive tools to efficiently get an
overview on relationships found in the considered datasets, to in-
teractively explore them and to easily spot relationships that are
relevant in a certain situation. They, therefore, propose RelFinder,
a tool that supports: (i) an overview that aggregates relationships
according to different dimensions (e.g., statistical, topological, or
semantic ones), then (ii) an exploration of the found relation-
ships by means of interactive features (e.g., dynamic filtering)
and visual clues (e.g., highlighting). LodLive [38] then proposes a
nice, graph-based visual metaphor with big circles representing
a class, also identified by a color and a label, and small circles
placed around the big ones to represent object properties, such
as direct and inverse relations and owl:sameAs properties. The
selection of small circles progressively opens new big ones, thus
facilitating the graph navigation. Fenfire [39]. makes the graph
visualizations scalable in the number of nodes by allowing the
users to focus on one node at a time, which is displayed to-
gether with its adjacent nodes. In [6] the authors discuss the
usability of mechanisms for LD consumption. They propose a nice
mechanism to filter out irrelevant elements from a graph-based
representation of LD datasets. ObjectViewer [40] displays RDF
data through an interactive graph, with labels acting as links to
other graphs. The graph display works well for smaller datasets,
but quickly becomes very large to scroll around when the RDF
graph becomes more complex. To solve this problem and facil-
itate graph exploration, graphVizdb [41] proposes an interactive
visualization of very large graphs, which can be easily applied to
LOD exploration. The platform allows the user to interact with a
visualized graph in a way that is very similar to the exploration
of maps at multiple levels. The user navigates on the graph by
moving a viewing window (‘‘horizontal’’ navigation); based on
the new coordinates reached on the client-side canvas, a spatial
range query (i.e., a window query) is identified and computed.
This query retrieves all elements of the graph (nodes and edges)
that overlap with the current window. A system that combines

many of the features available in the above-described browsers
is Watson [42]. In addition to its keyword-based search function
and the capability to present results both in a tabular and a
graph-based format, it offers APIs exposing high-level functions
for finding, exploring and querying semantic data and ontologies
available online. Programmers can execute functions for ontology
construction, matching, sense disambiguation and question an-
swering. Unfortunately, no visual mechanism is provided to open
these opportunities also to non-technical users.

Despite the accurateness of graph-based visualizations, due to
their exact match with the LD data model, it is acknowledged that
the graph-based visual metaphor does not fit the mental model
of non-technical users [21,22] and is not always the best way to
represent large amounts of data items [19].

Marbles offers a different kind of visualization [43]. It is a
server-side application that shows Semantic Web content in a
human-readable way by using Fresnel lenses and formats. Lenses
specify which properties of an RDF resource have to be displayed
and how these properties have to be ordered. Fresnel formats
determine how the selected properties are rendered by specifying
RDF-specific formatting attributes and by providing hooks to CSS,
which are used to specify fonts, colors, margins, borders, and
other decorative elements.5 For example, in Marbles, colored dots
are used to relate the origin of displayed data with a list of data
sources. The Fresnel visualization technique has been exploited
by other RDF browsers like Piggy Bank [44], LENA browser [45],
Horus [46], IsaViz [47].

Another interesting LD visualization is available in Sig.ma [48].
Starting from a textual search, this application enables the cre-
ation of Entity Profiles, which usually include information ag-
gregated from multiple Web sources and presented to the user
in an interactive visual interface. The most relevant properties
and their values are listed, also specifying the data sources of
provenance. Users are able to interactively explore the results
and the related data sources. The Entity Profile is created by
combining large-scale semantic web indexing, logic reasoning,
data aggregation heuristics, ad-hoc ontology consolidation.

5 https://www.w3.org/2005/04/fresnel-info.
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Based on a completely different paradigm, SWiPE [49] sup-
ports users in expressing complex queries on DBpedia such as:
‘‘Who are the U.S. presidents who took office when they were
55-years old or younger, during the last 60 years’’. It offers a
search-by-example paradigm that allows users to enter the query
conditions directly in the Infobox of a Wikipedia page. SWiPE
then returns a description of the Wikipedia pages that satisfy the
query conditions entered by the user.

Some mobile applications to navigate LD have also been pro-
posed. One of the most famous is DBpedia Mobile, an Android
app (also available for desktop computers). Based on the current
GPS position of a mobile device, this app creates a map depicting
information about nearby locations extracted from the DBpedia
dataset. Starting from the map, users can explore information
about locations and then can navigate into DBpedia and other
interlinked datasets such as GeoNames, Revyu, EuroStat, and
Flickr. Another mobile app was iLD, a linked-data browser for the
iPhone that, taking in input a resource URI, retrieves and display
in tabular fashion the results.

In comparison with the tools described above, the goal of
MDSs is not only facilitating the LD exploration and visualization
but also defining customized entry points that the users can
reuse to retrieve data within interactive workspaces in different
usage situations. MDSs have intrinsic visualization capabilities
that derive from the construction process itself: the user building
an MDS can decide which visualization template (which we call
UI components) to use to render the MDS data. Each type of
UI component also offers a set of manipulation functions which
make the displayed data actionable. The inclusion of data into
UI component also facilitates the integration of MDSs with other
data sources, through an event-driven synchronization at the UI
level that adds interactivity to the whole workspace [50,51]. This
aspect further increases the MDS added value, as Linked Data can
also be consumed in a larger context where different data can be
integrated and compared.

A similar component-based paradigm for LD consumption is
adopted by FERASAT [20], a faceted LD browser that proposes
a set of structured UI components, each one offering a differ-
ent type of visualization, that can be dynamically adopted to
present some selected properties on the fly, i.e., while the user
interacts with the system. The component-based organization of
the FERASAT interactive workspace is very similar to the one
proposed by our approach. However, while our platform enables
the integration of different components, in FERASAT the different
UI components provide separate (i.e., not synchronized) visu-
alizations of properties of the same entity. Also, while MDSs
enable accessing data till reaching the instance level, FERASAT
focuses on browsing class properties, offering visualizations of
aggregate values for selected properties of a class. Finally, another
distinguishing feature of MDS, which is discussed in Section 2.2.,
is that its creation is driven by data quality dimensions. This
aspect is not addressed by any of the visual tools described above.

2.2. Quality issues

It is indubitable that LD offers a powerful paradigm to store,
link and share data on theWeb in a structured fashion, which rep-
resents an opportunity to enrich interactive information
workspaces with information that would not be found easily
by invoking Web APIs. However, principles governing LD do
not guarantee the quality of the published data. Different stud-
ies demonstrated that often LD datasets are affected by quality
problems that reduce their adoption in real contexts [3,24]. To
consume data from this global data space in an integrated fashion,
data quality is an important challenge to be addressed. Indeed,
the LD cloud is growing very fast and it contains data orig-
inating from hundreds of data sources, whose quality is very

diverse, as values may be incomplete or incorrect. Even though
gathering and publishing such huge amounts of data open new
opportunities, data is only as useful as its quality.

In literature, there are different models, frameworks, and tools
for assessing data quality, in particular for data stored in a re-
lational database [52–54]. Nevertheless, quality of LD introduces
new problems like coherence via links to external datasets, data
representation quality or consistency with regard to implicit in-
formation. A comprehensive survey on LD quality is reported in
[24]. Starting from dimensions typically used to evaluate tradi-
tional data quality [55], the article surveys 21 approaches and
extracts 23 data quality dimensions along with their definitions
and corresponding metrics, which can be applied to assess the
quality of LD. The resulting model is valuable since it consid-
ers several quality aspects, but it can be cumbersome to apply,
especially if an automatic, on-the-fly computation of metrics is
needed. This is an important requirement for our framework,
where quality dimensions are used, at composition time, to sug-
gest to users’ classes and properties that might have in the end a
reduced number of quality problems.

In [17], a simplified version of the previous model is proposed.
The authors identified a minimal set of dimensions, and related
metrics, built by considering and redefining all the 23 original
dimensions, and adding some new concepts. The resulting model
is composed of the following dimensions:

• Amount of data: the extent to which the quantity or volume
of data is appropriate for a particular task [56]. It can be
measured through the average number of properties that
characterize an entity in the considered dataset.

• Conciseness: the degree to which a resource is characterized
by a set of properties that is free of redundancy [56]. It
can be measured through the ratio of the number of non-
redundant properties and the total number of properties.
For the whole dataset, conciseness is then the average of the
conciseness measures for all its entities.

• Completeness: the extent to which data are of sufficient
depth, breadth and scope for the task at hand [56]. It can be
measured through the ratio of the number of retrieved prop-
erties of an entity and the number of required properties
for a specific resource; the required properties are the ones
included in an ideal list of properties considered complete.

• Navigability: the degree to which different entities in the
same dataset are linked. Starting from a specific entity and
all the triples in which it is involved as subject, the mea-
sure considers the percentage of objects that are URIs with
respect to the total number of objects.

• Interlinking: the degree to which resources in the dataset
are linked with the same resource of an external dataset.
It corresponds to the total number of owl:sameAs links of a
whole dataset.

As explained in Section 3.2.6, we have adopted this model for
assisting users in the selection of classes and their properties. In
the context of the MDS creation, this model represents a good
alternative to the original one [24], as it focuses on dimensions
that can be automatically computed; thus it can be used to
evaluate dynamically the user’s choices.

2.3. The mashup paradigm for linked data consumption

The notion of MDS has been conceived as part of a larger
project focusing on the design of EFESTO [13,14,57,58], a mashup
platform that offers visual notations to enable the integration by
end users of heterogeneous data sources and Web APIs. The expe-
rience that we gained in the last years and different field studies



[12,57] led us to observe that, despite the wide availability of
APIs, very often it is difficult for users to find mashup components
that satisfy their diverse and very specific information needs. The
data sources available today describe a portion of a domain and
in several cases they do not provide details that are deemed
relevant for a given application or user. Even worse, it is not
possible to tailor the access to their dataset, which is constrained
by the exposed APIs. This limitation could be overcome by letting
users integrate multiple data sources, for example by means
of lightweight platforms and composition paradigms based on
mashup techniques [8].

Still, the components that can be integrated within mashup
platforms could not be enough to satisfy specific information
needs, and importing new components within interactive
workspaces implies the configuration and wrapping of external
services and data sources — an activity that cannot be performed
by lay users and requires the intervention of platform adminis-
trators. This aspect represents an obstacle to the diffusion and
acceptance of mashup platforms in real contexts and everyday
use. We, therefore, investigated how LD, thanks to its huge
amount of entities and attributes, and its standard paradigm
for data publishing and access, would improve the openness of
mashup platforms.

Leveraging the LD paradigm for data access, MDSs provide
tailored access points over LD datasets that are not pre-packaged
and are shaped by the users themselves. MDSs can be therefore
considered a mechanism for the interactive exploration of LD
by end users, as well as an improvement towards the open-
ness of mashup platforms. This last aspect gives more flexibility
to mashup composition, thus increasing its effectiveness as a
paradigm that allows end users to manage the integration of
heterogeneous data [8,59].

We devised the MDS paradigm as an extension of the EFESTO
platform, where users can visually define how to integrate data
extracted from Web APIs, and select and visually configure tem-
plates for data visualization (e.g., by means of a list, a map,
a graph) [60]. EFESTO also provides a set of tools, which we
call Actionable UI components, that exploit functions local to the
platform or exposed by remote APIs to allow the user to ‘‘act’’
on the extracted contents, for example to collect&save favorites,
to compare items, to plot data items on a map, to inspect full
content details, or to arrange items in a mind map to highlight
relationships [51]. This enables a kind of active sense-making,
i.e., the information can be elastically transformed towards the
actual accomplishment of task goals. Through these tools, and
their particular task semantics, users are empowered to interact
with the displayed information in a contextual manner, thus
raising information in mashups to the level of task objects the
user can act upon [61]. In Section 3.2.5, we will show in more
detail how the notion of Actionable UI components can be applied
to MDSs.

3. Metamorphic data sources

In [6], the authors highlight some challenges to face in order to
encourage the consumption of Linked Data by a larger audience
of lay users:

• Exploration starting point: several LD browsers require the
user to start browsing from a specific, valid URI. How can the
users identify their starting point when they do not know
what an LD URI is?

• Combating information overload: LD resources are character-
ized by a high information density, e.g., a high number of
entities, entity properties and links to other entities, which
lead to information overload and make it difficult for the
users to identify the information they are looking for.

• Returning something useful: LD are represented in RDF, which
is not easily understandable by users. Adequate, i.e., easy to
understand, abstractions are needed on top of RDF, so that
to improve the usability of LD. The quality of the retrieved
data can also influence the usability of data.

• Enabling interaction: lay users are familiar with interactive
mechanisms to explore and manipulate data on the Web. A
similar experience should be offered also for LD exploration
and manipulation.

In the rest of this section, we show how our approach based on
MDS tries to give solutions to the previous aspects. Before illus-
trating in detail the algorithms and the techniques that enforce
the elements listed above, we introduce a motivating scenario
that explains how an MDS can be created and used within the
interactive, mashup-based composition environment offered by
the EFESTO platform.

3.1. Motivating scenario

Leonard is a journalist. He has to write a newspaper article
about some US Presidents, thus he decides to use the EFESTO
mashup platform to retrieve the information needed to argument
what he wants to discuss in the article. To this aim, after logging
into the platform and choosing the MDS creation, he types the
keyword ‘‘Politic’’, which refers to the topic he is interested in
(Fig. 1a). EFESTO thus shows a list of topics (Fig. 1b) and Leonard
can choose one of them.

The topic selection is assisted by three quality indexes (see
Section 3.2.6 for more details), whose values are normalized on
a five-stars rating.6 Leonard can access an explanation of these
indexes by moving the mouse pointer on the index names, as
shown in Fig. 1b. Given his information need and the quality
indexes, Leonard selects ‘‘Politician’’, then the UI template to
visualize the final MDS properties (Fig. 1c). He can now define
how to visualize the Politician properties inside the selected
UI template. Starting from the properties visualized on the left
(Fig. 1d, circle #1), Leonard drags & drops birthPlace, birthDate
and party into the fields of the selected UI template (Fig. 1d,
circle #2). During this mapping activity, a box under the template
schema shows a preview of how the data will be visualized at
runtime, which also includes some representative values (Fig. 1d,
circle #3). A WYSIWYG paradigm is indeed provided to facilitate
the understanding of what Leonard is creating. As in the topic
selection step, also in this phase three quality indexes drive the
user’s selection of properties. After filling in all the fields of the
UI template, Leonard saves the MDS configuration.

From now on, Leonard will be able to use the created ‘‘Politi-
cians’’ MDS to retrieve details about a specific US President. For
example, in Fig. 2 he has typed ‘‘Barack Obama’’ in the search
field, and the retrieved data are visualized according to the visual
template previously configured. The entity properties can then
be inspected by clicking on the ‘‘+’’ button. A pop-up window
appears with a wider set of attributes that the users can, in turn,
navigate (see Fig. 3).

3.2. Metamorphic data source: Behind the scene

Looking behind the scene, an MDS is a view on the LD space,
tailored to all the entities belonging to an ontology class, i.e., the
topic selected by the user. The resulting MDS can be queried
through visual mechanisms that help users filter the relevant

6 A min–max normalization is performed on the resulting index values: min
and max are used as the lowest and highest values among the values resulting
for all the retrieved ontology classes.



Fig. 1. MDS creation process. The users have to: (a) type one or more keywords to indicate the topics they are interested in; (b) select a topic from the list of topics
semantically related to the user keyword; (c) choose a UI template to visualize the MDS results; (d) map topic properties into the chosen template.

attributes. In the following sections, we show all the steps for
creating an MDS and exploiting it within an interactive infor-
mation workspace where it can be composed with other data
sources. The current prototype supports the creation of MDSs on
top of DBpedia. This choice is due to two main reasons: first,
DBpedia is one of the widest general-purpose datasets in the
LOD cloud, and almost all the remaining LD datasets are linked
with it. Second, operating on all the LOD datasets requires the

development of an endpoint able to perform federated queries,
as well as to merge their results [62]. This aspect is an important
challenge for LD [63], however, it is out of the scope of this
research. Thanks to the richness of DBpedia, we can safely assume
it is a valid starting point to build significant MDSs. Anyway, the
MDS paradigm was devised so that it can be easily plugged on
top of any LD dataset/ontology — this will be better explained in
the next paragraphs.



Fig. 2. Results of a query to a metamorphic data source created from scratch.

Fig. 3. Detailed view of the entity Barack Obama: the users can inspect each attribute by clicking on the related link.

3.2.1. Retrieving the most relevant topics
As explained in our scenario, the first step for configuring an

MDS is the selection of a topic of interest. This step technically
consists in selecting an ontology class. However, LD ontologies are
often characterized by hundreds of classes, thus a manual explo-
ration would be inefficient if not impossible. In order to facilitate
the topic selection, we developed an algorithm (see Algorithm
1) that, starting from a user keyword(s), retrieves from any LD
ontology (DBpedia ontology in the current implementation) a
set of classes that are semantically related to the user typed
keyword(s). The algorithm takes in input (i) the set K of user-
typed keywords, (ii) the set W of words available in the WordNet
lexical ontology and (iii) the set C of classes available in the LD
ontology. It then acts according to two main phases: (1) it finds all
the WordNet words semantically linked to the typed keywords,
and (2) it retrieves all the ontology classes whose names are
syntactically similar to the WordNet words previously found.

The goal of the first step is to extend the user keywords
with other words semantically linked. For this purpose, some
WordNet semantic relationships about nouns are exploited [64]:

synonymy, which holds between words that denote the same
concept and are interchangeable in many contexts; hyperonymy,
which links more general words, e.g., ‘‘furniture’’, to increasingly
specific ones, e.g., ‘‘bed’’; hyponymy, which is the opposite of the
previous one; holonymy, which associates a term denoting the
whole with a term denoting a part of (e.g., ‘‘tree’’ is a holonym
of ’’leaf’’); Meronymy, which is the opposite of holonymy. For
adverbs/adjective, we also considered Related nouns. At the cur-
rent stage, we do not use other semantic relationships. Indeed,
a preliminary assessment of the algorithm showed that if fur-
ther relationships for verbs (entailment) and adverbs/adjective
(verb participles, derivational information) are included, often the
retrieved classes are not relevant.

The algorithm first finds, for each keywords k, if a similar word
w exists in WordNet. Stemming is applied to both k and each w
retrieved in WordNet before their comparison7. The stemming

7 In our implementation, a copy of WordNet with all the words al-
ready stemmed was cached to avoid the WordNet words stemming for each
comparison.



phase reduces inflected (or derived) words to their word stem,
base or root form. If the similarity score, i.e., the Soundex distance
[65], between the stemmed k and w is major than a given thresh-
old (0.8/1 in our algorithm according to a tuning phase performed
on dozens of trials), the word w is added into the set T.

As second step, the algorithm finds all the ontology classes
whose stemmed name are syntactically similar to the stemmed
words in T. The found classes are added into the set O that is the
final output of the algorithm. Since the resulting list can include
irrelevant classes, the algorithm exploits a relevance measure to
first rank and then reduce the result list, cutting out results whose
relevance is below a threshold. The relevance is computed on the
basis of the composition context, as explained in the following.

3.2.2. Exploiting the composition context to rank the retrieved
classes

Algorithm 1 helps the users filter the LD ontologies to find all
the classes semantically related to the given keyword(s). How-
ever, the resulting list can still include irrelevant classes or a large
number of classes, due to the multiple semantic relationships
that are considered in WordNet, and because of the large number
of classes in the LD ontologies. For this reason, we consider the
composition context: we take advantage of the inclusion of MDS
within an interactive information workspace and thus exploit a
characterization of the content of the workspace under creation
in order to (1) rank the list of resulting classes based on their
relevance with the content already in place, and (2) reduce the
list by removing the classes whose relevance is under a given
threshold.

This is a problem typical of information retrieval and different
systems exploit additional contextual information to improve
retrieval accuracy. There are several types of information that can
be exploited as context. For example, relevance feedback [66] is

a technique that asks users to provide context details about an
information-search task. This technique is widely recognized to
be effective for improving retrieval accuracy; however, it requires
explicit feedback by users who have, for example, to express the
topic they are interested in or, in some cases, indicate explicitly
which of the retrieved results are relevant. Since these additional
actions might introduce cognitive effort and time overload, this
technique is typically not adopted in real contexts. A widely
diffused technique is instead the implicit feedback, whose main
advantage is that it does not require any user effort [67–70]. The
context characteristics are in fact derived from the interaction
history, past queries, documents the user has chosen to view.

During MDS creation, implicit feedback can be introduced by
tracking the status of the information workspace under con-
struction. In EFESTO, a workspace indeed includes several UI
components [51], each one offering a view over one or more data
sources. Each UI component is associated with a set of terms
that characterize the dataset displayed through it. These terms
derive from annotations specified for the related data sources
when they are registered into the platform, and describe the
main information entities (e.g., musician, video, upcoming events,
documents) that can be retrieved. Since MDSs do not follow
the same registration process, for the UI components in charge
of displaying MDS data the set of terms consists of the topics
(e.g., the classes) selected by the users among the ones in the
set O constructed by Algorithm 1. The union of all the terms
that characterize every single UI component in the workspace
contributes to determine the implicit feedback.

We thus adapted a well-known algorithm that considers im-
plicit feedback [71], click-through information and previous queries.
The KL-divergence retrieval model [72] is at the ground of this
approach and proposes to treat context-sensitive retrieval as
estimating a query-language model based on the current query



and any search context information. According to this model, the
retrieval task involves computing a query language model θQ for a
given query and a document language model θD for a document,
and then computing their KL divergence D(θQ ∥ θD), which can
be used as the score assigned to the document. Formally, let HQ
= (Q1, . . .Qk−1) be the query history and the current query be
Qk. Let HC = (C1,. . ., Ck−1) be the click-through history, where Ci
is the concatenation of all clicked documents’ summaries in the
i-th round of retrieval since we may reasonably treat all these
summaries equally. The problem is then to estimate a context
query model, which we denote by p(ω|θk), based on the current
query Qk, as well as on the query history HQ and click-through
history HC . In [71] the authors proposed and compared four
different models, from which we selected the one with the most
promising performance, the Batch Bayesian updating, also called
BatchUp.

Some adaptations were required to use the BatchUp model in
our system. In particular, HQ becomes the history of the topics
the users searched for, while HC contains the history of the
MDS topics/properties and the queries performed on the MDSs.
According to the BatchUp model, when the users perform a query
Qk to search for topics, we rank and select the most pertinent
classes by using p(ω|θk). In particular, for each class we calculate
p(ω|θk) as relevance value used to rank the resulting list and, if
necessary, to remove results below a threshold that in our current
implementation is 0.5/1.

3.2.3. Querying the metamorphic data source
At the end of the configuration, an MDS component is ready

to retrieve entities related to the selected topic. As depicted in
Fig. 2, the final representation of an MDS within the interactive
workspace is a UI component displaying the query result(s) ac-
cording to the chosen visual template. A search box is available
in the top part of the MDS. Searching MDS results is supported
by an algorithm (see Algorithm 2) that finds relevant LOD entities
starting from the keywords that the user enters in the search box.

The algorithm first executes a SPARQL query that retrieves
from the plugged datasets entities whose labels contain the user
typed keywords (step 1 in Algorithm 2). An example of SPARQL
query referring to ‘‘Barack Obama’’ launched in the Leonard’s
MDS is the following (we report in bold the keyword used as
parameter):

The resulting entities can belong to classes slightly or com-
pletely different from the one used to build the MDS. LD entities
are often labeled in a wrong way due to the automatic or manual
translation of HTML pages/databases into the RDF format. There-
fore, in order to find relevant results, the query does not limit
the search to the only entities belonging to the MDS class, as
the risk would be not retrieving relevant entities that belong to a
different class. To better understand this problem, let us suppose
that Leonard builds the MDS by using the President class, and
then launches the query on Barack Obama.8 The first result in
the returned list is the entity that Leonard would expect from

8 The DBpedia API that executes the SPARQL query related to Barack Obama
is available at: https://bit.ly/2G8ZaxP.

the MDS (http://dbpedia.org/page/Barack_Obama). However, the
class of this entity is Politician, a superclass of President (http:
//mappings.dbpedia.org/server/ontology/classes/). When none of
the retrieved entities belongs to the MDS class, the algorithm
selects entities belonging to classes that maximize the probability
of being relevant with respect to MDS topic. Thus, for each entity
found by the previous SPARQL query, the algorithm runs a second
query to get entity class and its properties (step 1 in Algorithm
2), i.e.:

Given the result of the second query, the algorithm first
searches for and selects entities belonging to the MDS class (step
2 in Algorithm 2). If not any, then the nearest entity is chosen
(step 3 in Algorithm 2). For this purpose, the ontology is repre-
sented as an n-ary tree. For each entity, a distance dist between
the entity class and the MDS class is calculated according to the
metric proposed in [73]. In particular, the following elements are
determined: (1) the height h1 of the entity class; (2) the height h2
of the MDS class; (3) the LCA (Lowest Common Ancestor, [74]);
(4) the height h3 of the LCA. Then, the distance is calculated as
dist=(h1+h2)−(2∗h3). After computing all the dist for each entity,
the entity whose class has the minimum dist is selected and its
properties displayed. If several entities with equal minimum dist
are identified all of them are selected and displayed.

3.2.4. Visualizing the retrieved data
After the algorithm selects the entities, their attributes are

plotted into the visual template according to the visual mapping
performed by the user during the MDS creation. It is worth
remarking that if the algorithm retrieves entities not belonging
to the MDS class, the risk is to have null values for some of the
properties the MDS was configured for. For instance, for the MDS
built for the President class, if some properties specific of this sub-
class were chosen to be displayed in the MDS (e.g., prefect), some
null values are rendered in the MDS UI template if the retrieved
entities belong to some President super-class. This is for example
the case of Barack Obama result belonging to Politician, which
is a super-class of President. However, users can still reconfigure
the MDS by choosing another class and other more suitable
properties.

The visualization of a more detailed set of entity properties
(see the pop-up windows in Fig. 3) then is managed by invoking
an external API for entity summarization, SUMMA [75]. Starting
from an entity URI, SUMMA builds a visual representation of the
n most relevant properties. As default, SUMMA shows properties
whose value is a URI to foster the LD, but this logic can be
customized to visualize also properties with literal values. The vi-
sualization of entity properties is an aspect that can be improved
in our platform. The adoption of an external API, however, shows
how the platform privileges separation of concerns, an aspect that
can facilitate handling data visualizations through any other local
or external service that can be plugged on top of the logic for MDS
management.

3.2.5. Visual manipulation of MDS results
As already described in Section 2.3, we use Actionable UI

components to elastically manipulate MDS data. Thanks to this
paradigm, users can act on entities retrieved through MDSs,
for example they can collect and save favorites, plot data on a
map, compare different results based on some properties [51].

https://bit.ly/2G8ZaxP
http://dbpedia.org/page/Barack_Obama
http://mappings.dbpedia.org/server/ontology/classes/
http://mappings.dbpedia.org/server/ontology/classes/
http://mappings.dbpedia.org/server/ontology/classes/


Going back to our scenario, after creating his MDS, Leonard can
introduce in the workspace a Map tool, which he calls Birth
place, to visualize on a map the birthplaces of US Presidents
(see Fig. 4). Leonard can drag & drop inside this tool the entities
found through the MDS, to visualize them as pins on the map
depending on the value of the birth-place property. Similarly,
he uses another Map tool he calls Alma Mater, to visualize the
locations of Universities where US Presidents got their degrees,
and interestingly he discovers that Barack Obama graduated at
the Columbia University in 1983 and also at the Harvard Law
School in 1991. A third tool, Comparing, is used in this exam-
ple to compare different Presidents’ properties, like birthplace,
birthdate and party.

Each of these tools is conceived as a general-purpose instru-
ment that users can instantiate in multiple ways on MDS data.
The tools are initially agnostic of how to deal with the data of a
given MDS, thus users are in charge of defining their behavior,
i.e., based on which properties the tools have to compute their
function. For example, a Map tool was used by Leonard in two
different ways to add different views on his MDS: (i) to visualize
US Presidents birthplaces and (ii) to visualize degree Universities
of US Presidents. To define how each tool has to operate with
the MDS results, we adopt a programming-by-example technique:
the first time one tool is applied on an MDS entity, the user has
to map the MDS class properties onto the capability of the tool.
For example, as shown in Fig. 5, when Leonard moves for the
first time an MDS entity inside the Comparing container, a pop-up
window asks him to map specific Politicians properties onto the
container characteristic attributes. As a result, the container will
use the associated properties for its visualization. In other words,
by means of simple drag & drop actions, the user trains the tool to
visualize, for Politicians entities, Birth place, Birth data and Party.
From now on, each time a Politicians entity is moved inside the
Comparing container, the entity is automatically visualized on the
basis of this training example.

3.2.6. Exploiting an LD quality model to assist class and property
selection

As discussed in Section 2.2, LD are affected by quality issues
that can limit their usage [3,24]. In [17] the authors propose a set
of LD quality dimensions to assist the selection of LD resources.
In our framework, we assume that the model is used when the
system is configured in order to select quality data sources. We
then use some adapted dimensions to let users quantify the
quality of (i) single classes of a dataset during the topic selection
and (ii) class attributes during the visual mapping onto the visual
template.

As illustrated in Section 2.2, the original model proposes five
dimensions. We selected those dimensions that could be dy-
namically measured on the subset of entities belonging to the
classes retrieved by the system during the MDS creation. The
three selected dimensions are Amount of data, Navigability and
Interlinking. For classes, such dimensions are measured as in the
following:

• Class amount of data: we compute the average number of
properties that characterize entities belonging to a class.

• Class navigability: we consider all the triples having one
of the class entities as subject, and we then compute the
percentage of objects that are URIs, with respect to the total
number of objects.

• Class interlinking: it is the total number of owl:sameAs links
of the selected class entities.

For class properties, the three dimensions are measured as in the
following:

• Attribute amount of data: it is the ratio between the number
of class entities that have a value for the attribute, and the
total number of entities belonging to the class.

• Attribute navigability: it is the ratio of the number of entities
where the attribute appears as URI, and the total number of
entities having a value for that attribute.



Fig. 4. Example of an interactive workspace with an MDS that retrieve US Presidents and three tools (two Maps and one Comparing component) to manipulate and
visualize the MDS results.

Fig. 5. Training by the user of an Actionable UI Component (Comparing tool in the example): drag&drop actions map three MDS class properties (Politicians properties)
onto the capability of the Actionable UI Component (textual fields displaying the attributes to compare).

• Attribute interlinking: it is the total number of owl:sameAs
links in the selected attribute.

We did not consider completeness as its assessment would require
knowing an ‘‘ideal list’’ of properties that can be considered as
complete with respect to the user task. Computing this measure
would be feasible if the user tasks are known, i.e., the platform is
configured to support only specific tasks. Conciseness assessment
then requires a syntactic and semantic analysis of the returned
entities and properties, also at the instance level. This would be
too demanding to be performed on the fly; therefore, we decided
to not consider this dimension in our current prototype. Showing
conciseness values would be however feasible by pre-computing
the metrics (based for example on caching strategies).

4. Platform architecture

The architecture of the platform supporting the MDS paradigm
is organized along three layers (Fig. 6). On top, the UI layer
provides and manages visual composition operations expressed
by users through direct manipulation actions on UI elements
[13]. Two main components characterize this layer, i.e., (1) UI
Components that use UI Templates and (2) Actionable UI Compo-
nents that allow users to visualize and manipulate data extracted
from UI Components. UI Components are widgets that expose
data. We can distinguish two types of UI Components, i.e., the
ones created on top of a Web service (e.g., YouTube API can be
used to retrieve and visualize videos), and MDSs built on top of
LD datasets. In both cases, their creation is facilitated by visual
mashup mechanisms, like the one we described in Section 3.1 for
MDSs, or the one to deal with Web APIs reported in [13]. The UI



layer runs in the user’s Web browser and communicates with the
Logic and Data layer that run on the Web server.

The Logic Layer implements the Mashup Engine module that
translates the actions performed by end users at the Interaction
Layer into the mashup execution logic. It consists of three dif-
ferent components, i.e., Source Manager, MDS Manager and Event
Manager.

The Source Manager is invoked each time users create UI
Components on top of API data sources. It receives from the UI
Layer a JSON file that codifies the user’s composition actions and
translates it into an object able to query the remote API. For
example, if users create a UI Component by using the YouTube
API, an object is instantiated that receives the user query, requests
data from the API, receives the API results, filters the result
attributes chosen by the user and gives back the results to the UI
Component, which is finally in charge to visualize the results. This
component is able to manage different types of APIs (e.g., REST-
ful and SOAP Web services), as well as different authentication
methods like OAuth 2.0, OpenID and Custom Authentications.

The MDS Manager behaves in an analogous way. It receives
a JSON file that codifies the actions the users perform when
creating the MDS, and translates it into an object able to query
the LD dataset. For instance, when Leonard creates his MDS,
this module instantiates an object that receives user queries,
performs the SPARQL query by using an LD endpoint,9 receives
the resulting entities, applies the algorithm for entity selection
(see in Section 3.2.3), filters the result attributes chosen by the
users, and gives back the results to the MDS for visualization.

The Event Manager, instead, manages the UI Components cou-
pling. When users define a synchronization between two UI Com-
ponents A and B, it instantiates a listener that waits for an event
on A that, when triggered, causes the execution of an action on
B, according to the coupling defined by the user.

The Data Layer consists of four JSON-based repositories. The
Service Descriptor repository stores JSON files providing abstract
specifications on how to query each data source registered in
the platform and how to read its results. The UI Component
repository includes files that specify the services included in the
components, the user-defined queries to integrate the services
datasets, and the specification of the component UI template.
The UI Template Descriptors repository stores JSON file reporting
an abstract representation of the UI templates. The Workspace
Descriptors repository contains files representing the workspaces
created by each user and, for each workspace, it specifies the
included UI components and possible UI synchronizations defined
among them, as well as Actionable UI Components included in
the workspace. The Workspace and UI Component descriptors
are associated with the user who creates them, and thus can be
accessed depending on the user’s access rights. Some ‘‘default’’
workspace descriptors are also available to any user; they provide
the specification for pre-packaged workspaces related to specific
topics or domains.

EFESTO currently implements this architecture by means of
the Java Spring framework.10 The UI was programmed by using
Thymeleaf,11 a Java HTML5 template engine, and the Bootstrap12
front-end framework. The use of Bootstrap allowed us to build
responsive UIs, which adapt their layout to the device on which
they are run (e.g., PCs, smartphone, tablet). EFESTO has been
deployed on a virtual machine created in the Windows Azure
cloud platform (4 core, 8 GB RAM, Windows Server 2012).

9 In the current implementation the system is set to query DBpedia through
the endpoint at the URI https://dbpedia.org/sparql.
10 https://spring.io/.
11 5http://www.thymeleaf.org/.
12 http://getbootstrap.com/.

Fig. 6. A high-level overview of the EFESTO three-layer architecture.

5. Comparative study

We carried out an experimental study to understand if and
how MDSs support users in accessing and exploring the LD space.
Specifically, we compared two MDS versions, i.e., the one in-
cluding quality indexes (MDS_QM in the following), and one
without such indexes (MDS in the following). We conducted this
comparison as we also wanted to investigate pro and cons of
considering the quality model. Besides these two systems, we
introduced the Google search engine (Google SE) as a baseline.
Google SE is largely considered the ‘‘search engine giant’’, for
its powerful algorithms, easy-to-use interface and personalized
user experience. According to several studies (see for example
the latest netmarketshare report, released on November 2018
[76]), Google SE holds the first place in search with a stunning
difference of around 65% from the second place (held by Bing). A
number of studies investigating strategies for information search
have shown that Google SE is the search engine that better
supports the behavior of Web users performing search tasks on
the web [77–79]. We also considered Wikipedia as an alternative
baseline for our study, given that it offers access to the same
DBpedia content. However, we chose Google SE to accommodate
the search strategies that regular Web users would adopt most.
It is also worth considering that Google SE grants the access to a
very large content that also includes Wikipedia.

We therefore built a UI component on top of the Google Search
API, with the same look&feel and features of the original search
engine (Google in the following). It is worth remarking that the
goal of our research is not the design of a search engine and the
assessment of its precision and recall. Rather, we aim at the devel-
opment of a novel paradigm to simplify LD access and querying.
Choosing a baseline between Google and Wikipedia was due to
the unavailability of tools offering exploration paradigms compa-
rable with MDS. Indeed, some of the LD visual browsers that we
reviewed are not anymore available or are not available as open-
source projects [6,18,31–34,43–46]. Others are too technical and
thus complex for lay users [28,29,39,40,42]. FERASAT provides a
similar paradigm [20], which still is not comparable as it provides
only aggregated visualizations on entity properties which are not
synchronized and do not offer functions to manipulate data. We
thus reached the conclusion that Google, even if it has a coverage

https://dbpedia.org/sparql
https://spring.io/
http://www.thymeleaf.org/
http://getbootstrap.com/


larger than MDSs in terms of data, and even if the users are
already familiar with Google searches, under certain assumptions
(i.e., specific search tasks) could be the only significant baseline to
gather useful indications about the MDS data exploration process.

The leading question of this research relates to the support
provided to users by the visual interaction paradigm in creating and
querying MDSs. Specifically, the research questions driving this
study were:

• What is the difference between the considered systems in terms
of user performance in searching for information?

• What is the difference between the considered systems in terms
of user satisfaction in searching for information?

5.1. Participants and design

We recruited 12 participants (3 females, 9 males) among the
students of the third year of the Bachelor Degree in Computer
Science. Their mean age was 23.25 years (SD = 3.99, min = 20,
max = 30). As resulting from the demographic questionnaire that
they filled in at the beginning of the study, participants had a
high experience in IT (x̄ = 8.2, SD = 1.48, min = 5, max =

10) but a low experience in using linked open data (x̄ = 3.83,
SD = 2.72, min = 1, max = 7). Likert scales ranging from 1 to
10 (1 very low–10 very high) were used to assess such skills.
Since the overall goal of this study was to investigate the support
offered to the users by the proposed interaction paradigm in
creating and using MDSs, we purposely recruited people with
different information needs, who would allow us to collect data
from different domains and different perspectives and make the
study results generalizable. To this goal, we defined some tasks
(see Type 2 tasks in Section 5.2) so that all the participants
were enabled to search content they preferred most, without any
specific constraint.

The performed controlled experiment adopted a within-
subject design, with the system as an independent variable and
three within-subject levels, i.e., MDS, MDS_MQ, Google. Each
participant used all the three systems in sequence. In order to
minimize learning effects [80], based on the Latin-Square de-
sign they used the system in a different order by considering
permutations of the three systems and of the experimental tasks.

5.2. Tasks

With each system, the participants performed 4 tasks, each
requiring finding specific information. Such tasks can be classified
in two types: (1) Type 1 consisted in finding information that was
available on the DBpedia dataset, so that the participants could
have a high probability of finding the requested information;
(2) Type 2 asked the participants to freely propose the information
they wanted to find and then search it. Each type was used to
generate two tasks. Type 2 tasks were purposely defined to verify
in which measure MDS creation and its following querying actu-
ally satisfy the users’ needs, even when the information required
is not available in the DBpedia dataset. To achieve higher internal
validity, each task required performing three different queries. To
enhance external validity, we chose information that users often
search on search engines.13 The final task list was:

• Task 1 (Type 1) – Find the date of birth, place of birth,
political party of the following American presidents: Barack
Obama, Donald Trump, Bill Clinton.

• Task 2 (Type 1) – Find the description, music genre, date of
birth of the following music artists: U2, James Blunt, Andrea
Bocelli.

13 https://trends.google.com/trends/yis/2018/US/.

• Task 3/Task 4 (Type 2) – Think to a topic to search (e.g.,
buildings, movies, politicians different from the one of the
previous task), identify three entities (e.g., U2, James Blunt,
Andrea Bocelli, not these of course) and try to find infor-
mation related to them, selecting three properties as you
like.

For the two MDS systems, before performing the task queries,
the participants had also to create an MDS to search the specific
task information. In accordance with the within-subjects design,
each participant performed 12 tasks that required executing three
queries each, for a total of 432 queries (3 systems × 4 tasks × 3
queries × 12 participants). Each participant also created 8 MDSs,
for a total of 96 MDSs (2 systems × 4 tasks × 12 participants).

5.3. Procedure

The study took place in a quiet university room where the
study apparatus was installed. Two HCI researchers were in-
volved: one acted as an observer, the other as a facilitator. A
laptop with a 15-in. retina display provided with an external
mouse was available. The observation of the user interaction
with the systems was facilitated by an external monitor that
duplicated the laptop screen.

The comparative study lasted 4 days, 3 participants were
individually observed per day. Each study session followed the
same procedure. First, a 10-min presentation was given by the
facilitator to introduce the participants to the goal of the study
and what they had to do. Then, they were asked to sign a consent
form for video-audio recordings and photo shoots, and to fill in
the questionnaire for collecting demographic data and their IT
and LD competences. The facilitator introduced the first system to
be evaluated demonstrating how to perform a search and, in case
of the MDS systems, how to build and query an MDS. Then each
single participant was invited to perform the four experimental
tasks. The participant read aloud the task text and then started it.
At the end of all the experimental tasks, the participant filled in
an online questionnaire about the system used. Before repeating
the same procedure with the next system, the participant was
invited to relax for 5 min.

An online questionnaire was administered at the end of the
participant session. It asked to rank the three systems on the
basis of their usefulness, completeness, and ease of use, and to
choose which system the participant would like to use in her/his
activities. This procedure was preliminarily assessed by a pilot
study involving two further participants.

5.4. Data collection

Both qualitative and quantitative data were collected to an-
alyze user performance and satisfaction on the three systems.
We considered the set of notes taken by the observer during the
task execution, the video recorded during the different study ses-
sions, the questionnaire answers, the free comments participants
provided during the study. Regarding qualitative analysis, two
researchers transcribed the audio/video recordings, the observer’s
notes, and the questionnaire open questions. A thematic analysis
was carried out on these data. Then, the two researchers indepen-
dently double-checked the results. The initial reliability value was
91%, thus the researchers discussed the differences and reached a
full agreement [81]. Regarding user performances, the researchers
built an excel file reporting for each query task performed by
each user the following data: user ID (from 1 to 12), type of
system (MDS, MDS_QM, Google), task ID (T1–T4), task activity
(MDS creation, query 1, query 2, query 3), time (in seconds), task
success (success – partial success – failure).

https://trends.google.com/trends/yis/2018/US/


Regarding user satisfaction, two online questionnaires were
administered during the study. The first questionnaire, organized
in 4 sections, was used to evaluate each system. The first sec-
tion included the System Usability Score (SUS) [82], which gives
an overview of the user’s subjective usability evaluation of a
given system. It is a closed-ended questionnaire encompassing
10 statements on an ordinal 5-point Likert scale from ‘‘strongly
disagree’’ to ‘‘strongly agree’’. This questionnaire was chosen for
its reliability, brevity and wide adoption [83].

The second section included the NASA-TLX questionnaire, used
as ‘‘Raw TLX’’ [84]. It is a 6-item survey that rates perceived
workload in using a system through 6 subjective dimensions,
i.e., mental demand, physical demand, temporal demand, per-
formance, effort, and frustration, which are rated within a 100-
points range with 5-point steps (lower is better). These ratings
were combined to calculate the overall NASA-TLX workload index
[85].

The third section had three questions about the (1) easiness of
data retrieval process related to Type 1 tasks, (2) easiness of data
retrieval process related to Type 2 tasks, and (3) quality of the
retrieved data. Likert scales ranging from 1 to 10 (1 very low–
10 very high) were used for these questions. This section ends
with two open questions on the advantages and disadvantages of
the system.

Finally, the fourth section was composed of an incremental
number of questions. In particular, at the end of the use of
the second system, a single open-question asked the partici-
pants to illustrate the differences they had found between the
first two systems. Analogously at the end of the study session,
i.e., when the participants had used the third system, a single
open-question asked them to illustrate the differences between
the three systems.

The second questionnaire was administered before dismissing
the study participant. It asked to rank the three systems based on
their utility, completeness and ease of use (from 1 to 3, 1 is the
best), and to explain the reasons for the expressed order.

One-way repeated measures ANOVAs (all Greenhouse–Geisser
corrected) with posthoc pairwise comparisons (Bonferroni cor-
rected) were adopted to analyze SUS, NASA-TLX results and some
efficiency measures, such as task time, task success rate. Friedman
test was adopted to analyze differences in systems ranking and
the learning curve for the MDS building activity, with Wilcoxon
signed-rank test used as posthoc pairwise comparisons.

5.5. Results for user performance

In order to answer the first research question, namely, if there
is any difference in terms of user performance in searching for
information, we structured our analyses along different measures.
In the following, we report on the results for all the considered
performance dimensions.

5.5.1. Time to build an MDS
We first analyzed the time participants spent in building MDSs

with the two systems (MDS x̄ = 106.33, SD = 55.27; MDS_QM
x̄ = 187.41, SD = 148.62). The paired-samples t-test test high-
lighted that there is a significant difference among these systems
(t(47) = 3.467, p = .001) in favor of the MDS system. The par-
ticipants spent a significantly higher amount of time when using
MDS_QM due to the extra time required to examine the quality
indexes for both classes and their properties. However, this result
does not mean that the longer the time spent, the higher the
quality of the MDS and the results found. To understand this
aspect, we will examine in the next sections the MDSs queries
success rates and the user satisfaction.

Another considered aspect was how fast participants learned
to build the MDSs. Fig. 7 shows three learning curves, the blue

Fig. 7. The three learning curves represent the time the participants spent to
build MDSs with the two systems and the average between them. The x-axis
represents the number of MDSs created . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

and green ones are related to the time to build MDSs with the
MDS and the MDS_QM systems respectively, while the red curve
represents their average. These curves refer to data gathered in
four different moments of task execution, i.e., after the creation
by participants of 2, 4, 6, and 8 MDSs. For each moment, we
averaged the time the participants spent in building the re-
lated MDSs. Friedman test was applied to understand where each
learning curve significantly improves. For the MDS system, this
test highlighted a significant difference among the four moments
(χ2(3) = 14.550, p = .002). The posthoc comparison also revealed
significant differences between round 1–2 and round 3–4 (Z =

−1.807, p = 0.050), and between round 3–4 and round 5–6 (Z =

−2.240, p = 0.025). For the MDS_QM system, the test highlighted
a significant difference among the four moments (χ2(3) = 9.038,
p = .029), but the posthoc tests were not able to reveal significant
differences between the different rounds.

This analysis highlighted that with the MDS system users
learn very fast how to build MDSs, already after the first two
sessions and that after creating 6 MDSs their learning curve
stabilizes, i.e., they are able to master MDS creation. Slightly
different results emerged for the MDS_QM system. Indeed, the
participants performed in an analogous way during the first four
sessions and only after there was a significant improvement in
their learning curve. This means that the indexes introduce a
mental overload that slows down the learning curve. More details
about the cognitive aspects will be discussed in 5.6.

5.5.2. Time to retrieve the information
The first indication comes from the time the participants spent

to retrieve the information, i.e., the time to specify the task
queries and detect all information required by the task (Google:
x̄ = 52.47, SD = 35.89; MDS: x̄ = 16.07, SD = 11.02; MDS_QM:
x̄ = 19.63, SD = 11.86). The ANOVA test highlighted a significant
difference among the systems (F (1.237, 144.718) = 88.671, p
<.000, partial η2

= .431), and posthoc test revealed that the
participants were faster with MDS than with both the MDS_QM
(−3.568, SE = 1.398, p = 0.36) and Google (−36.407, SE = 3.526,
p < 0.000), as well as they were faster with MDS_QM than Google
(−32.839, SE = 3.587, p < 0.000).

A more detailed analysis focused on the average time spent on
performing the tasks of Type 1 and Type 2 with the three systems



(see Fig. 8). For the time taken for Type 1 queries (Google x̄ =

46.30, SD = 29.05; MDS: x̄ = 13.46, SD = 8.03; MDS_QM: x̄ =

16.11, SD = 8.15), the ANOVA test highlighted a significant dif-
ference among the systems (F (1.230, 86.094) = 69.823, p <.000,
partial η2

= .431), and posthoc test revealed that the participants
were faster with MDS than with Google (−32.831, SE = 3.637,
p < 0.000), and they were faster with MDS_QM than Google
(−30.183, SE = 3.656, p < 0.000).

For the time taken for Type 2 queries (Google x̄ = 56.91, SD
= 44.58; MDS: x̄ = 18.87, SD = 13.86; MDS_QM: x̄ = 25.37, SD
= 14.37), the ANOVA test found a significant difference among
the systems (F (1.187, 53.398) = 22.000, p <.000, partial η2

=

.328), and posthoc test showed that participants were faster with
MDS than with Google (−38.043, SE = 7.341, p < 0.000) or with
MDS_QM (−6.5, SE = 2.547, p = 0.043), and faster with MDS_QM
than with Google (−31.543, SE = 7.249, p < 0.000).

Both for general analysis and for the analysis of the two types
of tasks, the lower Google performance can be explained by
considering the significant amount of time that the participants
spent first to identify the right page among the returned query
results, and then the required information inside single pages.
However, a not so trivial difference also emerged between the
MDS and MDS_QM systems, with a lower MDS_QM performance
mainly caused by queries for Type 2 tasks. For this aspect, even
considering the data gathered through the satisfaction question-
naire, we were not able to identify a reasonable motivation. This
aspect will be the object of further studies.

From the previous analyses, it clearly emerged that queries
performed with MDSs are significantly faster than the ones per-
formed with traditional search engines. However, our aim is not
to claim that the MDSs are in general more efficient than a search
engine like Google. In contrast, we want to discuss how the MDS
approach can be more effective in some specific situations it was
conceived for, i.e., queries that domain experts have to perform
repeatedly on the same topic.

To this aim, we determined a breakpoint, i.e., the minimum
number of queries beyond which it makes sense to consider
MDSs in place of traditional search engines. We considered the
average time taken by the participants to carry out 10 different
queries with MDS_QM, MDS and Google. As shown in Fig. 9, of
course, both MDS and MDS_QM require a certain time for MDS
creation. After that, each query time Qn is calculated summing up
the times taken from the previous query, plus the MDS creation
process in case of the MDS systems. The first breakpoint occurs
slightly before the third query (Q3 in Fig. 9), where the time
the participants needed to perform three queries is the same
between Google and MDS. From that moment on, the use of the
MDS for searching for information on the same topic becomes
significantly faster that Google of around 36 s for each query.
In case of MDS_QM, a higher time is required to justify its use
instead of Google; indeed its breakpoint is between the fifth and
sixth queries (Q5 and Q6 in Fig. 9). After that, the participants
become significantly faster than Google of around 32 s for each
query.

5.5.3. Query success rate
The success rate is a measure typically adopted to evaluate

the effectiveness of a system in supporting the completion of
a task. In our study, each query executed by the participants
was coded as ‘‘Success’’ if the information was completely found,
‘‘Partial success’’ in case of some missing data in the retrieved
information, or ‘‘Failure’’ if the participant did not found anything
or if the retrieved information was wrong. Fig. 10 reports the
query success rate for each system, also detailed for queries
of Type 1 and queries of Type 2. The participants successfully
completed all the queries by using Google. On the contrary, the

MDSs systems were obviously more prone to partial success or
failure due to the minor amount of data available and to their
lower quality with respect to Google. In general, the participants
adopting the MDS_QM system successfully completed 79 queries,
partially completed 39 queries and failed in 26 queries. When
using the MDS system, they successfully completed 74 queries,
partially completed 47 queries and failed in 23 queries. A more
detailed analysis was carried out by focusing on the different
types of tasks. In case of Type 1 tasks with MDS_QM, the partici-
pants successfully completed 55 queries and partially completed
17 queries, without failing in any query, while when using the
MDS system they successfully completed 53 queries, partially
completed 18 queries and failed just 1 query. More critical results
were found in case of Type 2 tasks: with MDS_QM, the partici-
pants successfully completed 24 queries, partially completed 22
queries and failed 26 queries, while when using the MDS system
they successfully completed 21 queries, partially completed 29
queries and failed just 22 queries.

While the time analysis highlighted a lower performance of
Google, an opposite result emerged here. Indeed, as expected,
Google never failed in assisting users to find the requested in-
formation, while the MDS systems often caused a partial or a
total failure. No great differences appeared between the two MDS
systems. On the contrary, a clear difference emerged between the
two types of tasks, since it is evident that Task 2 queries have
brought out the limits of the MDS. It is worth remarking that the
results of this analysis are dependent on the specific dataset used
to build the MDS, i.e., DBpedia in the current implementation of
our platform. Inevitably, the MDS data quality, and especially data
completeness, depends on the quality of the underlying datasets.
Thus, we are confident that this problem can be alleviated or
almost totally solved by combining multiple datasets, thus max-
imizing the possibility to retrieve results for the user queries.
However, as already pointed out, the integration of multiple LD
datasets poses further challenges that are out of the scope of this
paper.

5.6. Results with user satisfaction

In order to answer the second research question, namely, if
there is any difference in terms of user satisfaction in search-
ing for information, we structured our analyses along different
measures. In the following, we report on the results of all the
satisfaction dimensions.

5.6.1. Usability
SUS scores revealed the perceived usability of the three sys-

tems (Google: x̄ = 84.08, SD = 5.79; MDS: x̄ = 68.00, SD =

16.77; MDS_QM: x̄ = 68.08, SD = 18.22), and the ANOVA test
highlighted a significant difference among these scores (F (1.681,
18.492) = 5.095, p = .021, partial η2

= .317). Posthoc test only
shown that Google was perceived better than both the MDS
(+16.000, SE = 5.629, p = 0.48) and the MDS_QM (+16.093, SE
= 4.699, p = 0.17) systems.

According to Lewis and Sauro [86], we also split the overall
SUS score into two factors, i.e., SUS-Learnability considering SUS
statements #4 and #10 (Google: x̄ = 86.25, SD = 6.08; MDS: x̄
= 65.00, SD = 21.74; MDS_QM: x̄ = 66.67, SD = 21.67) and SUS-
Usability considering all the other statements (Google: x̄ = 83.54,
SD = 6.55; MDS: x̄ = 68.85, SD = 18.12; MDS_QM: x̄ = 68.33, SD
= 16.83), as shown in Fig. 11. Regarding the SUS-Learnability, the
ANOVA test showed that there is a significant difference among
the systems (F (1.677, 18.448) = 5.559, p = .016, partial η2

= .336)
and posthoc test discovered that Google was perceived better
than both the MDS_QM (+19.583, SE = 6.468, p = 0.34) and MDS
(+21.250, SE = 6.065, p = 0.15) systems. Regarding the SUS-
Usability, the ANOVA test highlighted that there is a significant



Fig. 8. Average time to find the information through queries for tasks of Type 1 and Type 2.

Fig. 9. Time progression of the execution times of 10 queries for the three systems studied.

Fig. 10. Bar chart reporting the query success rate of each system (first three bars) also detailed for the query of Type 1 (the fourth, fifth and sixth bars) and of
Type 2 (the last three bars).

difference among the systems (F (1.703, 18.730) = 4.278, p =

.035, partial η2
= .280) and posthoc test revealed that Google was

perceived better than only the MDS_QM system (+15.208, SE =

4.794, p = 0.27).



Fig. 11. SUS score of the three systems and its decomposition in SUS-Usability and SUS-Learnability. A higher score is better.

Table 2
Mean and the standard deviation of the NASA-TLX dimensions for the three
systems.

Google MDS_QM MDS

Mean SD Mean SD Mean SD

Effort 28.33 24.06 34.17 21.52 33.33 22.93
Frustration 23.33 24.98 22.50 14.85 24.17 16.76
Mental demand 26.67 16.14 32.50 26.67 32.50 20.06
Performance 15.83 7.93 39.17 17.81 32.50 13.57
Physical demand 17.50 8.67 24.17 21.52 20.83 19.75
Temporal demand 26.67 25.70 24.17 18.89 25.00 24.68

It is evident, and not surprising, that Google SUS scores were
better than the ones of the MDS systems. However, the aims of
the SUS analysis were to (1) quantify the differences between the
different systems and (2) compare the MDS scores. For the first
point, the Google SUS score were significantly better thanks to
factors like the habit of use, the reduced complexity given the
absence of the creation phase, the professional look&feel. On the
contrary, MDSs scores were negatively affected by the prototypal
state of the systems, the required MDS creation phase, the use
of a novel process to retrieve information. Anyway, the MDS
scores are in line with SUS scores (69.5) of one thousand studies
reported in [87], thus it can be considered a promising result.
Regarding the second point, the absence of differences between
the two systems revealed that the use of quality indexes does not
downgrade the perceived usability.

5.6.2. Workload
Differently from the SUS score, the workload caused by each

system and estimated through the NASA-TLX was quite similar
(Google: x̄ = 23.06, SD = 13.22; MDS_QM: x̄ = 29.44, SD = 17.51;
MDS: x̄ = 28.06, SD = 15.29), as also demonstrated by the ANOVA
test that did not reveal any significant difference between the
three systems (F(1.865, 20.515) = .541, p = .578, partial η2 =

.047). We also analyzed possible differences between the systems
by considering each single NASA-TLX dimension, whose mean
and standard deviation are reported in Table 2 and depicted in
Fig. 12.

The ANOVA test found a significant difference only for the
Performance dimension (F (1.779, 19.567) = 8.290, p = .003).
Posthoc analysis discovered that Google was scored better than
the MDS_QM (−23.333, SE = 5.817, p = 0.006) and MDS
(−16.667, SE = 4.975, p = 0.019) systems. No significant
differences emerged for Effort (F (1.515, 25.759) = 1.377, p =

.265, partial η2 = .075), Frustration (F (1.944, 33.048) = 1.634, p

= .211, partial η2 = .088), Performance (F (1.885, 32.052) = .328,
p = .710, partial η2 = .019), Physical Demand (F (1.274, 21.665) =

.126, p = .787, partial η2 = .007) and Temporal Demand (F (1.509,
25.654) = 2.457, p = .117, partial η2 = .126).

The NASA-TLX analysis complements the SUS one, focusing on
different workload aspects. It is interesting to notice that, in con-
trast to the SUS, no differences exist between the three systems
for the overall NASA-TLX score. Thanks to the triangulation with
the other results, we can safely assume that two main factors
contributed to equalize the workload of the three systems. The
first one was the creation phase required in the MDS systems
but not needed in Google. The second one was the exploration
phase that is required in Google but not needed in both the MDS
systems. Thus, in a different way, these factors increased the
perceived user’s workload balancing the final score.

Regarding the detailed analysis, the only notable difference
emerged in the Performance dimension, which revealed that
Google was the best system. Considering that in the NASA-
TLX questionnaire the Performance item asks: ‘‘How hard did
you have to work to accomplish your level of performance’’, a
plausible explanation for the identified difference can be found in
the task success rate. Indeed, participants felt more satisfied with
Google because this was the unique system that did not create
problems in terms of success of the queries, thus significantly
improving the perceived performance.

5.6.3. Perceived quality of the data retrieval process
Specific qualities of the data retrieval process were also eval-

uated (see Fig. 13). The ANOVA tests did not found significant
differences among the systems both in case of easiness of the data
retrieval process related to tasks of Type 1 (F (1.604, 17.646) =

3.795, p = .051, partial η2
= .257) and Type 2 (F (1.314, 14.453)

= 3.554, p = .071, partial η2
= .244). Regarding the quality of the

retrieved data, the ANOVA test detected a significant difference
among the systems (F (1.157, 12.731) = 10.192, p = .006, partial
η2

= .481) and posthoc test revealed that Google was perceived
better than both MDS_QM (+3.333, SE = .396, p < 0.000) and
MDS (+3.083, SE = .848, p = 0.12). Similar to the NASA-TLX
Performance, the explanation lies in the task success rate, which
led to a higher perception of the quality of the results.

The last indications about the quality of the data retrieval
process come from the third questionnaire, which revealed dif-
ferences in how the participants considered the systems in re-
lation to Completeness, Utility and Ease of Use and their overall
preference on one of the three systems.



Fig. 12. NASA-TLX dimensions workload of the three systems. Lower score is better.

Regarding Completeness (Google: x̄ = 1.54, MDS_QM: x̄ =

1.92, MD: x̄ = 2.54), the Friedman test revealed a significant
difference between the three systems (χ2(2) = 6.682, p = 0.035)
and posthoc test found only that MDS_QM was significantly bet-
ter than MDS (Z = −2.333, p = 0.020). Regarding the Utility
(Google: x̄ = 1.79, MDS_QM x̄ = 2.04, MD x̄ = 2.17), there are no
significant differences between the three systems (χ2(2) = .977,
p = .614). Concerning the Ease of Use (Google: x̄ = 1.50, MDS_QM
x̄ = 2.21, MD x̄ = 2.29), the Friedman test revealed a significant
difference between the three systems (χ2(2) = 6.229, p =.044)
but posthoc tests were not able to detect significant differences
in the pairwise comparisons. There is only a notable result close
to the p-value threshold (p <.05), since Google was better than
MDS_QM (Z = −1.941, p = .052). Even if the p-value is not strictly
below the threshold, we highlight this trend as we will discuss it
in the following sections.

5.7. Qualitative data analysis

The participants appreciated very much MDSs because they
permit to perform specific queries on a specific topic, without los-
ing time and devoting effort in exploring different Web pages, as
it happens when using Google. In other words, MDS and MDS_QM
permit to lighten the effort for searches in large amounts of data
as they allow users to select pertinent properties and exclude
what might not be of interest already when the user configures
the search query. This aspect drastically reduces two problems
known in the literature, i.e., getting lost in hyperspace [15] and
cognitive overload [16]. The participants found MDSs quite simple
to use, and only two participants said that, in order to properly
use it, a minimum of computer skills is required.

The most severe problem of MDSs relates to the obsolescence
of data. This problem, however, cannot be ascribed to MDSs
per se. It could be alleviated by means of systematic quality
assessments applied on the entire dataset the system rely on and
on the choice a-priori of data sources that feature a high quality. A
further disadvantage concerns the language of the results, which
sometimes is different from the search language — in some cases
results were presented in Arabic. The participants also pointed
out that the results of the queries were not up to date (e.g., a
participant created an MDS to find F1 drivers and when he found
Lewis Hamilton the MDS visualized only 3 Word Championships
titles instead of 5) or even missing, and the waiting time was

often long. Finally, the participants suggested creating a more
attractive UI.

In the comparison between MDS and MDS_QM, in few cases
the participants did not notice any difference: they perceived
that a quality-based ranking was provided for MDS too, and
declared that they ‘‘automatically’’ associated the classes or at-
tributes listed at the first positions with data with a better quality.
In any case, since the MDS_QM explicitly allowed the participants
to understand which attributes could increase the quality of data,
they preferred this version of the system. For MDS_QM system
the participants showed difficulties in interpreting Interlinking
and Navigability quality indexes. The two indexes were often
confused since their meaning is quite similar, being related to
the possibility to navigate starting from the resulting entities. It
is reasonable to think that users would need prior knowledge
related to the LD paradigm to understand this difference, thus
a different approach should be adopted to simplify this aspect.
For example, an aggregate index can be used to immediately give
the users an overview of the topic and property quality, leaving
them the possibility to visualize on-demand the details on the
three indexes, e.g., by moving the mouse pointer on the aggregate
index icon.

Google was appreciated for its ease of use and the speed in
providing query results. The participants are used to query Google
for their daily searches, it is a system that nowadays everyone
knows. Another Google advantage, highlighted by many partici-
pants, was the richness of its results. Also, users can compare the
results with each other to verify their correctness and, if they are
not satisfactory, they can easily change the keywords. The same
richness of results was however highlighted as a Google disad-
vantage: the results were considered in many cases too generic,
and this forced participants to navigate through the different
returned Web pages in order to identify the correct ones.

5.8. Threats to validity

In this section, we analyze some issues that may threaten the
validity of the experimental study, also to highlight under which
conditions the study design offers benefits that can be exploited
in other contexts, and under which circumstances it might fail.



Fig. 13. Qualities about the search process. A higher score is better.

5.8.1. Internal validity
Internal validity can be threatened by some hidden factors

compromising the achieved conclusions:
Learning effect. In our experiment, this factor was minimized

by counterbalancing the order of the systems and tasks according
to a Latin Square design.

Subject-expectancy effects. Students are not the best partici-
pants for an experimental study due to the subject-expectancy
effect they can produce, i.e., a form of reactivity occurring when
a research subject expects a given result and therefore uncon-
sciously affects the outcome. We mitigated this effect by masking
details that could produce bias. In particular, we presented the
experiment to the participants in a way that suggests that we
had no stake in the outcome. For example, we introduced all the
experimental systems as already available tools; furthermore, in
order to foster the credibility of this aspect, we developed our
systems with a professional look-and-feel.

Method authorship. We eliminated the biases that different
facilitators running the experiment could introduce, as we had
the same facilitator for every session of the study. In this way,
we avoided any variability in the initial training as well as in the
way participants were observed.

Information exchange. Since the study took place over 4 days,
it is difficult to be certain whether the involved subjects did
not exchange any information. However, the participants were
recruited during the exams period thus, for many of them, it was
difficult to communicate. The participants were asked to return
all the material (e.g., the booklet) at the end of each session. We
asked the participants that typically study and travel together to
perform the test in the same session.

Understandability of the material. A pilot study involving two
further participants was performed to evaluate the system relia-
bility and the research methodology (e.g., time constraints, coding
techniques, video-recording activities), as well as the understand-
ability of experimental procedures and materials.

5.8.2. External validity
External validity refers to the possible approximation of truth

of conclusions in the attempt to generalize the results of the study
in different contexts. With this respect, the main threats of our
study are:

Users age and domain experience. Since the study participants
were young people, with different information needs, and not
experienced with LD, we have to take into account three potential
limitations of the study results. The first one is the participants’
age that limits the prediction of the benefits of the systems to
older people. Thus, we can safely accept the experiment results
for digital natives [88] but further studies have to be carried out
including older people. The second potential limitation is related
to the participants’ background: it would be interesting to extend
the sample to people with different education, background and
also with skills in LD. The last limitation regards the participants’
domains: to foster the generalization of the study results, we
purposely recruited participants with generic interests in content
spanning different domains. However, further validations with
domain experts of specific communities would be helpful to
assess the MDS performance in relation to the needs of specific
working domains.

Task Complexity. The two types of tasks administered dur-
ing the study guaranteed a wide coverage of real cases: Type
1 was designed considering the most trend topics on search
engines, while Type 2 tasks covered the specific needs of each
user. Despite that, due to the time constraints of the study, the
participants were asked to perform only 3 queries, thus it will
be useful to explore more real situations where user perform
dozens of tasks every day. To this aim, longitudinal studies or field
studies are appropriated.

Adoption of a wider number of LD datasets. In the current imple-
mentation, the MDS is built on top of DBpedia because federated
queries useful to search on the entire LD cloud pose challenges
out of the scope of this paper [62,63]. This aspect limits the great
potential of MDS to exploit the plethora of information available
in LD. It is therefore important to empower the MDS giving the
users the possibility to exploit on a higher number of datasets.

5.8.3. Conclusion validity
Conclusion validity refers to the validity of the statistical tests

applied for the analysis of the collected data. In our study, this
validity was ensured by applying the most common tests that are
traditionally employed in Empirical Software Engineering [89].



6. Conclusion

In this paper, we have presented the MDS paradigm to facil-
itate the consumption of linked data by users without techni-
cal competences on the RDF data model and the related query
languages. With this paradigm, we aim to contribute towards
spreading the adoption of linked data to a larger number of
users. One of the most severe problems afflicting LOD today is
indeed the scarce utilization of such data model outside research
communities.

We illustrated how the MDS approach revolves around some
key challenges for interacting with linked data [6], which we
addressed as follows:

• Exploration starting point: Identifying the starting point of
the exploration is facilitated by allowing users to specify
keywords.

• Combating information overload: The users are assisted in
tailoring their customized access points over LD, which can
then be reused in several situations when the same or
similar data are needed.

• Returning something useful: We adopt mechanisms that filter
out irrelevant resources by taking into account (i) the se-
mantic similarities between ontological entities and (ii) the
context of the user’s information seeking process, as derived
from the query history and the data already included in
the information workspace under construction. This last
point greatly characterizes our approach from others, as
we propose linked data consumption in a context where
LD datasets can be integrated with other heterogeneous
data sources and Web APIs. Considering the quality of class
entities and their attributes also improves the usability and
the usefulness of the retrieved data.

• Enabling interaction: By means of Actionable UI Components,
we provide interactive mechanisms to manipulate linked
data and extract useful insights from them.

The comparative study that we conducted to assess the validity
of the MDS paradigm featured some limitations, first of all, the
lack of tools to be used for the comparison which led us to
adopt Google as baseline. This compromised some results, es-
pecially those related to the usability of the two MDS systems:
Google is indeed the most popular search engine and offers an
incomparable data coverage and effective algorithms for informa-
tion retrieval that greatly enhance the user experience. However,
the study shed light on some important aspects of the MDS
paradigm and, more in general, for linked data consumption. In
the following, we summarize the most relevant findings and, also
taking into account some limits of our approach, we present some
lessons learned that can guide the design of systems for linked
data consumption. After, we conclude the paper by outlining our
future work.

6.1. Lessons learned

MDS for domain-specific search tasks, but not a panacea. The
comparative study demonstrated that, besides being an approach
to reduce LD exploration complexity, MDSs can also support
search tasks like in traditional search engines. However, MDS
promotes a different approach: on one hand, once MDSs are in
place, users can immediately find specific information without
exploring different results and being overwhelmed by useless
information; on the other hand, they have to spend time in
building their MDSs. It is clear that, as already pointed out, MDSs
cannot be considered as a substitute for search engines and are
not effective for any type of query. MDSs are beneficial in those
contexts and domains where users repeatedly perform queries on

the same or similar topics. This emerged from the time analysis
reported in Section 5.5.2 that highlighted that the user perfor-
mance with MDSs in terms of time improves of around 30 s per
query after the third query on the same topic (6 queries in case of
MDS_QM). These analyses can help understand in which contexts
and situations the use of MDS is better than the traditional search
engines. More in general, some considerations can be applied
to the LD model. Linked data, at least in their current format,
cannot replace the huge availability of data reachable through the
traditional Web and through search engines. This led us to reflect
also on the need of easy paradigms for creating and maintaining
LD datasets: if this aspect is improved, it can have an impact on
the creation and maintenance of LD, thus on their coverage and
quality.

The quality matters. Data quality is a crucial aspect of spreading
the adoption of LD datasets [17,24]. The limitations related to
the quality of MDS data clearly emerged when the participants
were completely free to build custom MDSs (Type 2 tasks), with
evident failures caused by missing data in DBpedia. The quality
indexes introduced in the MDS_QM were taken into account by
the users, as emerged by the higher time they took to build MDSs,
and influenced their opinion about the completeness, which was
better perceived for MDS_QM. However, in the end, quality in-
dexes for entity choice did not significantly help participants
build high-quality MDSs, as demonstrated by the same number of
partial or failure queries for both MDS and MDS_QM. The analysis
of notes and video clarified that participants read and evaluated
the entity indexes, but very often the system did not actually
return multiple topics with similar meaning to choose from. This
is because MDS systems currently operate only on the DBpedia
ontology, where it is reasonable that single topics are represented
by single classes. We are confident that, by introducing more
datasets and ontologies, quality indexes can better support users
in the selection of topics. If multiple datasets are available, it
also becomes important to evaluate the quality of the whole
datasets, an activity for which the quality model presented in [17]
was originally conceived. Regarding the difficulties that partici-
pants had in interpreting Interlinking and Navigability indexes,
we believe that their meaning would become more evident if
multiple datasets are included in the system. Also, more signifi-
cant abstractions are needed to help users understand better their
meaning, without requiring technical knowledge about LD and
their underlying data model.

Adequate mechanisms to tailor personalized entry points can
reduce LD complexity. Visual composition paradigms inherited by
mashup platforms lowered the LD exploration complexity, which
is one of the factors limiting the diffusion of LD to the mass.
However, not only the visual mechanisms helped users deal with
LD complexity, but also the opportunity to define customized
entry points that can then be reused to retrieve data. The ben-
efits of the algorithms presented in Section 3.2.1 would be even
more evident in case of adoption of multiple LD ontologies and
datasets: thousands of classes would be reduced to a set of dozen
of topics, also thanks to the composition context used to rank
and reduce the retrieved topics (Section 0), and to the LD quality
model that assists topic and property selection (Section 3.2.6).
The adequateness of both the visual paradigms and of the algo-
rithms assisting user selections of data also emerged from the
analysis of the time the users spent in building the MDSs. Indeed,
the learning curves presented in Section 5.5.1 show that users
quickly become able to build MDSs.

Trade-off between results richness and data retrieval easiness.
We intentionally reduced the complexity of LD exploration by
creating an access point on top of LDs via the MDS, which is
in charge of displaying a small but essential, i.e., responding
to the user needs, amount of information. However, although



the search for the specific data for which MDS is tailored is
more precise and faster (if present), it then becomes difficult
to explore further information related to the returned results.
This was clear from the user’s comments who pointed out that
Google makes results exploration easier, as it highlights also
related information. Displaying too many information contrasts
our idea of making the LD access and navigation light. However,
this problem put the emphasis on the need for mechanisms for
the progressive exploration of results without worsening the MDS
performance. A possible solution can be the replacement of the
entity summarization currently adopted in the system, the one
provided by the SUMMA API [3], with other ad-hoc solutions
providing further information about a selected entity.

6.2. Future work

Our future work will especially address the MDS limits high-
lighted by the study. First of all, we will plug into the system
more LD datasets, to provide the users with more significant
results and improve the motivation for using the tool. Adding
further datasets will, first of all, imply extending the platform
to handle federated queries and the fusion of the returned data
[62]. However, this will allow us to deepen some features that
could not be completely assessed with our current version of the
system, such as the effectiveness of the algorithms for entity and
attribute filtering and the impact of the quality model on the
user selection of data. Further user studies will be conducted to
evaluate these aspects. The availability of several LOD datasets
would also allow us to validate the MDS approach with domain
experts that in a greater number of datasets can find information
that DBpedia might not provide, for example, related to laws,
molecules, government stats.

The study reported in this paper considered as failed those
queries that returned both wrong results and missing data. Due
to the limited number of queries, it is not worth to distinguish
between the two situations to estimate MDS precision and recall.
Thus, a further contribution towards improving the effectiveness
of the algorithms will be the evaluation of these two measures of
relevance on MDSs built on different datasets and on a wider set
of queries, also investigating correlations with LD quality.

Another contribution in relation to LD quality would be the
definition of paradigms for LD publishing that can help create
and maintain LD, thus improving their coverage and quality. This
aspect is rarely covered by the works present in the literature.
Among the approaches that we surveyed for our research, only a
few also cover RDF writing through intuitive, visual mechanisms
(see for example [90]). To promote the adoption of MDSs to
non-technical users, we will also investigate how to simplify
the quality model interpretation through the aggregation of its
indexes, providing the user with an overall score that can be
inspected to see the original indexes, if needed.

Another aspect that we aim to improve relates to the visu-
alization of data. The quality of the provided visualizations was
not central to the research that we conducted so far. However,
from the user study we realized that, now that the data access
mechanisms are in place, it is fundamental to invest more efforts
on mechanisms for the visualization of the whole set of properties
for the user-selected class, as well as of the class instances. Ad-
equate visualizations will allow users to get useful insights from
the displayed data, and to take advantage also of the interlinked
nature of linked data, giving them the opportunity to effectively
understand how to navigate throughout linked entities.

Finally, we plan to conduct further user studies to fully assess
the validity of the features offered by the MDS paradigm. The
study reported in this paper focused only on tasks for MDS
creation and querying. Also, since our goal was primarily to assess

the usability of the proposed visual paradigm, we involved regu-
lar Web users with domain-independent interests in the content
to be searched and not specifically motivated to consume LD
datasets. Also enabled by the extension of the platform for the
integration of different LOD datasets, future studies will involve
domain experts, to validate the acceptability of the proposed
framework by people who have specific interest in LOD content.
We will also focus on the data manipulation functions offered by
the Actionable UI Components, as the conducted study did not
adequately address their possible benefits.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] T. Berners-Lee, Linked Data - Design Issues. Retrieved from http://www.
w3.org/DesignIssues/LinkedData.html (Last Access 20.12.06).

[2] C. Bizer, T. Heath, T. Berners-Lee, Linked data-the story so far, Semant.
Serv., Interoper. Web Appl.: Emerg. Concepts (2009) 205–227.

[3] A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres, S. Decker, An
empirical survey of linked data conformance, Web Semant.: Sci. Serv.
Agents World Wide Web 14 (Supplement C) (2012) 14–44.

[4] A.-S. Dadzie, M. Rowe, D. Petrelli, Hide the stack: Toward usable linked
data, in: Proc. of the the Semantic Web: Research and Applications (ESWC
’11), Springer Berlin Heidelberg, 2011, pp. 93–107.

[5] M. Atzori, S. Gao, G.M. Mazzeo, C. Zaniolo, Answering end-user questions,
queries and searches on wikipedia and its history, IEEE Data Eng. Bull. 39
(3) (2016) 85–96.

[6] A.-S. Dadzie, M. Rowe, Approaches to visualising linked data: a survey,
Semant. web 2 (2) (2011) 89–124.

[7] O. Peña, U. Aguilera, D. López-de Ipiña, Linked open data visualization
revisited: a survey, Semant. Web J. (2014).

[8] F. Daniel, M. Matera, Mashups - Concepts, Models and Architectures,
Springer, 2014.

[9] D.D. Hoang, H.-y. Paik, B. Benatallah, An analysis of spreadsheet-based ser-
vices mashup, in: Proc. of the Conference on Database Technologies (ADC
’10), Australian Computer Society, Inc., Darlinghurst, Australia, Australia,
2010, pp. 141–150.

[10] M.A. Paredes-Valverde, G. Alor-Hernández, A. Rodríguez-González, R.
Valencia-García, E. Jiménez-Domingo, A systematic review of tools, lan-
guages, and methodologies for mashup development, Softw. - Pract. Exp.
45 (3) (2015) 365–397.

[11] J. Yu, B. Benatallah, F. Casati, F. Daniel, Understanding mashup
development, IEEE Internet Comput. 12 (5) (2008) 44–52.

[12] C. Ardito, P. Bottoni, M.F. Costabile, G. Desolda, M. Matera, M. Picozzi,
Creation and use of service-based distributed interactive workspaces, J.
Vis. Lang. Comput. 25 (6) (2014) 717–726.

[13] G. Desolda, C. Ardito, M. Matera, EFESTO: A platform for the end-user
development of interactive workspaces for data exploration, in: Rapid
Mashup Development Tools - ICWE ’15, in: CCIS, vol. 591, Springer, 2016,
pp. 63–81.

[14] G. Desolda, C. Ardito, M. Matera, Empowering end users to customize their
smart environments: model, composition paradigms and domain-specific
tools, ACM Tran. Comput.-Hum. Interact. 24 (2) (2017) 12, 52 pages.

[15] M. Otter, H. Johnson, Lost in hyperspace: metrics and mental models,
Interact. Comput. 13 (1) (2000) 1–40.

[16] D. Kirsh, A few thoughts on cognitive overload, Intellectica 1 (30) (2000)
19–51.

[17] C. Cappiello, T. Di Noia, B.A. Marcu, M. Matera, A quality model for
linked data exploration, in: Proc. of the International Conference on
Web Engineering (ICWE ’16), Springer International Publishing, 2016, pp.
397–404.

[18] T. Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey, E. Prud’hommeaux, M.M.C.
Schraefel, Tabulator redux: browsing and writing linked data, in: Proc. of
the Linked Data on the Web (LDOW ’08), CEUR-WS.org, 2008, p. 369.

[19] I. Herman, G. Melançon, M.S. Marshall, Graph visualization and navigation
in information visualization: A survey, IEEE Trans. Vis. Comput. Graph. 6
(1) (2000) 24–43.

[20] A. Khalili, P. van den Besselaar, K.A. de Graaf, FERASAT: A serendipity-
fostering faceted browser for linked data, in: Proc. of the European
Semantic Web Conference (ESWC ’18), Springer International Publishing,
2018, pp. 351–366.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb2
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb2
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb2
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb3
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb3
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb3
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb3
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb3
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb4
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb4
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb4
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb4
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb4
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb5
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb5
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb5
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb5
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb5
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb6
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb6
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb6
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb7
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb7
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb7
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb8
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb8
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb8
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb9
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb9
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb9
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb9
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb9
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb9
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb9
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb10
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb10
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb10
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb10
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb10
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb10
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb10
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb11
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb11
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb11
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb12
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb12
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb12
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb12
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb12
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb13
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb13
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb13
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb13
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb13
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb13
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb13
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb14
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb14
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb14
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb14
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb14
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb15
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb15
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb15
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb16
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb16
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb16
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb17
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb17
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb17
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb17
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb17
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb17
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb17
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb18
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb18
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb18
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb18
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb18
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb19
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb19
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb19
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb19
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb19
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb20
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb20
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb20
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb20
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb20
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb20
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb20


[21] A. Namoun, T. Nestler, A.D. Angeli, Service composition for non-
programmers: Prospects, problems, and design recommendations, in: Proc.
of the IEEE European Conference on Web Services (ECOWS ’10), IEEE
Computer Society, Washington, DC, USA, 2010, pp. 123–130.

[22] N. Zang, M.B. Rosson, What’s in a mashup? and why? studying the
perceptions of web-active end users, in: Proc. of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VLHCC ’08), IEEE
Computer Society, Washington, DC, USA, 2008, pp. 31–38.

[23] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL,
ACM Trans. Database Syst. 34 (3) (2009) 16.

[24] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, Quality
assessment for linked data: A survey, Semant. Web 7 (1) (2016) 63–93.

[25] F. Alahmari, J.A. Thom, L. Magee, W. Wong, Evaluating semantic
browsers for consuming linked data, in: Proc. of the Twenty-Third Aus-
tralasian Database Conference (ADC ’12), Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 2012, pp. 89–98.

[26] N. Bikakis, T.K. Sellis, Exploration and visualization in the web of big
linked data: a survey of the state of the art, in: Proc. of the International
Workshop on Linked Web Data Management (LWDM ’16), 2016.

[27] N. Marie, F. Gandon, Survey of linked data based exploration systems,
in: Proc. of the International Conference on Intelligent Exploration of
Semantic Data (IESD ’14), CEUR-WS.org, Aachen, Germany, Germany, 2014,
pp. 66–77.

[28] C. Bizer, T. Gauß, Disco - Hyperdata Browser. Retrieved from http://wifo5-
03.informatik.uni-mannheim.de/bizer/ng4j/disco/ (Last Access 12.02.18),
0000.

[29] M. Bergman, F. Giasson, zLinks: Semantic Framework for Invoking Contex-
tual Linked Data, in: Proc. of the Linked Data on the Web (LDOW ’08),
2008.

[30] Virtuoso. LOD Cloud Cache Retrieved from http://lod.openlinksw.com/fct/
(Last Access 12.02.18), 2018.

[31] G. Tummarello, R. Delbru, E. Oren, Sindice.com: Weaving the open linked
data, in: Proc. of the Conference on Semantic Web Conference (ISWC ’07),
Springer Berlin Heidelberg, 2007, pp. 552–565.

[32] L. Ding, T. Finin, A. Joshi, R. Pan, R.S. Cost, Y. Peng, P. Reddivari, V. Doshi,
J. Sachs, Swoogle: a search and metadata engine for the semantic web,
in: Proc. of the International Conference on Information and Knowledge
Management (CIKM ’04), ACM, 2004, pp. 652–659.

[33] A. Harth, Visinav: A system for visual search and navigation on web data,
Web Semant.: Sci., Serv. Agents World Wide Web 8 (4) (2010) 348–354.

[34] G. Cheng, Y. Qu, Searching linked objects with falcons: Approach, im-
plementation and evaluation, Int. J. Semant. Web Inf. Syst. 5 (3) (2009)
49–70.

[35] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach,
A. Lerer, D. Sheets, Tabulator: Exploring and analyzing linked data on
the semantic web, in: Proc. of the Proceedings of the 3rd International
Semantic Web User Interaction Workshop (SWUI ’06). Athens, Georgia,
2006, p. 159.

[36] M. Stuhr, D. Roman, D. Norheim, Lodwheel - javascript-based visualization
of RDF data, in: Proc. of the International Conference on Consuming Linked
Data (COLD ’11), CEUR-WS.org, 2010, pp. 73–84.

[37] P. Heim, S. Lohmann, T. Stegemann, Interactive relationship discovery via
the semantic web, in: Proc. of the Extended Semantic Web Conference
(ESWC ’10), Springer Berlin Heidelberg, 2010, pp. 303–317.

[38] D.V. Camarda, S. Mazzini, A. Antonuccio, Lodlive, exploring the web
of data, in: Proc. of the International Conference on Semantic Systems
(I-SEMANTICS ’12), ACM, New York, NY, USA, 2012, pp. 197–200.

[39] T. Hastrup, R. Cyganiak, U. Bojars, Browsing linked data with fenfire, in:
Proc. of the Linked Data on the Web workshop, in conjunction with WWW
2008 conference (LDOW2008), 2009.

[40] J. Lerner, T. Self, Objectviewer, Retrieved from http://projects.
semwebcentral.org/projects/objectviewer/ (Last Access 12.02.18), 2018.

[41] N. Bikakis, J. Liagouris, M. Krommyda, G. Papastefanatos, T. Sellis,
graphVizdb: A scalable platform for interactive large graph visualization,
in: Proc. of the International Conference on Data Engineering (ICDE ’16),
2016, pp. 1342-1345.

[42] M. d’Aquin, E. Motta, Watson, more than a semantic web search engine,
Semant. web 2 (1) (2011) 55–63.

[43] C. Becker, C. Bizer, marbles. Retrieved from http://mes.github.io/marbles/
(Last Access 12.02.18), 2018.

[44] D. Huynh, S. Mazzocchi, D. Karger, Piggy bank: Experience the semantic
web inside your web browser, Web Semant.: Sci. Serv. Agents World Wide
Web 5 (1) (2007) 16–27.

[45] T. Franz, J. Koch, R.Q. Dividino, S. Staab, LENA-TR: Browsing linked open
data along knowledge-aspects, in: Proc. of the AAAI spring symposium:
Linked data meets artificial intelligence (AAAI ’10), 2010.

[46] G.L. Napoleoni, M.T. Pazienza, A. Turbati, HORUS: A configurable reasoner
for dynamic ontology management, in: Proc. of the Sixth International Con-
ference on Advanced Cognitive Technologies and Applications (COGNITIVE
’14), 2014, pp. 66-71.

[47] E. Pietriga, IsaViz. Retrieved from https://www.w3.org/2001/11/IsaViz/
(Last Access 14.02.18), 2018.

[48] G. Tummarello, R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru, S. Decker,
Sig.ma: Live views on the web of data, Web Semant.: Sci. Serv. Agents
World Wide Web 8 (4) (2010) 355–364.

[49] M. Atzori, C. Zaniolo, Swipe: searching wikipedia by example, in: Proc. of
the International World Wide Web Conference - Demo Session (WWW
’12), 2012, pp. 309–312.

[50] C. Cappiello, M. Matera, M. Picozzi, A UI-centric approach for the end-user
development of multidevice mashups, ACM Trans. Web 9 (3) (2015) 1–40.

[51] G. Desolda, C. Ardito, M.F. Costabile, M. Matera, End-user composition of
interactive applications through actionable UI components, J. Vis. Lang.
Comput. 42 (2017) (2017) 46–59.

[52] Y.W. Lee, D.M. Strong, B.K. Kahn, R.Y. Wang, AIMQ: a methodology for
information quality assessment, Inf. Manag. 40 (2) (2002) 133–146.

[53] L.L. Pipino, Y.W. Lee, R.Y. Wang, Data quality assessment, Commun. ACM
45 (4) (2002) 211–218.

[54] R.Y. Wang, A product perspective on total data quality management,
Commun. ACM 41 (2) (1998) 58–65.

[55] C. Batini, C. Cappiello, C. Francalanci, A. Maurino, Methodologies for data
quality assessment and improvement, ACM Comput. Surv. 41 (3) (2009)
1–52.

[56] R.Y. Wang, D.M. Strong, Beyond accuracy: what data quality means to data
consumers, J. Manag. Inf. Syst. 12 (4) (1996) 5–33.

[57] C. Ardito, M.F. Costabile, G. Desolda, R. Lanzilotti, M. Matera, A. Piccinno, M.
Picozzi, User-driven visual composition of service-based interactive spaces,
J. Vis. Lang. Comput. 25 (4) (2014) 278–296.

[58] G. Desolda, C. Ardito, H.-C. Jetter, R. Lanzilotti, Exploring spatially-aware
cross-device interaction techniques for mobile collaborative sensemaking,
Int. J. Hum.-Comput. Stud. 122 (2019) (2019) 1–20.

[59] F. Casati, How end-user development will save composition technologies
from their continuing failures, in: M.F. Costabile, Y. Dittrich, G. Fischer,
A. Piccinno (Eds.), International Symposium on End-User Development -
Is-EUD 2011, in: Lecture Notes in Computer Science, vol. 6654, Springer
Berlin Heidelberg, 2011, pp. 4–6.

[60] G. Desolda, C. Ardito, M. Matera, EFESTO: A platform for the end-user
development of interactive workspaces for data exploration, in: F. Daniel,
C. Pautasso (Eds.), Rapid Mashup Development Tools - Rapid Mashup
Challenge in ICWE 2015, in: Communications in Computer and Information
Science, vol. 591, Springer Verlag, Berlin Heidelberg, 2015, pp. 63–81.

[61] C. Ardito, M.F. Costabile, G. Desolda, M. Latzina, M. Matera, Making
mashups actionable through elastic design principles, in: P. Díaz, V. Pipek,
C. Ardito, C. Jensen, I. Aedo, A. Boden (Eds.), End-User Development - Is-
EUD 2015, in: LNCS, vol. 9083, Springer Verlag, Berlin Heidelberg, 2015,
pp. 236–241.

[62] O. Görlitz, S. Staab, Federated data management and query optimization
for linked open data, in: A. Vakali, L.C. Jain (Eds.), New Directions in Web
Data Management, Vol. 1, Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 109–137.

[63] O. Hartig, C. Bizer, J.-C. Freytag, Executing SPARQL queries over the web of
linked data, in: Proc. of the International Semantic Web Conference (ISWC
’09), Springer Berlin Heidelberg, 2009, pp. 293–309.

[64] G.A. Miller, Wordnet: a lexical database for english, Commun. ACM 38 (11)
(1995) 39–41.

[65] J. Zobel, P. Dart, Phonetic string matching: lessons from information
retrieval, in: Proc. of the ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR ’96), ACM, New York, NY, USA, 1996,
pp. 166–172.

[66] J.J. Rocchio, Relevance feedback in information retrieval, in: G. Salton
(Ed.), The Smart Retrieval System - Experiments in Automatic Document
Processing, Prentice-Hall, Englewood Cliffs, NJ, 1971, pp. 313–323.

[67] T. Joachims, Optimizing search engines using clickthrough data, in: Proc. of
the the International Conference on Knowledge Discovery and Data Mining
(KDD ’02), ACM, New York, NY, USA, 2002, pp. 133–142.

[68] D. Kelly, J. Teevan, Implicit feedback for inferring user preference: a
bibliography, SIGIR Forum 37 (2) (2003) 18–28.

[69] K. Sugiyama, K. Hatano, M. Yoshikawa, Adaptive web search based on
user profile constructed without any effort from users, in: Proc. of the
Conference on World Wide Web (WWW ’04), ACM, New York, NY, USA,
2004, pp. 675–684.

[70] R.W. White, J.M. Jose, C.J. van Rijsbergen, I. Ruthven, A simulated study of
implicit feedback models, in: Proc. of the Conference on IR Research (ECIR
’04), Springer Berlin Heidelberg, 2004, pp. 311–326.

[71] X. Shen, B. Tan, C. Zhai, Context-sensitive information retrieval using im-
plicit feedback, in: Proc. of the Conference on Research and Development
in Information Retrieval (SIGIR ’05), ACM, New York, NY, USA, 2005, pp.
43–50.

[72] C. Zhai, J. Lafferty, Model-based feedback in the KL-divergence retrieval
model, in: Proc. of the Tenth International Conference on Information and
Knowledge Management (CIKM ’01), 2001, pp. 403–410.

http://refhub.elsevier.com/S0167-739X(19)30360-7/sb21
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb21
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb21
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb21
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb21
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb21
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb21
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb22
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb22
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb22
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb22
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb22
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb22
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb22
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb23
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb23
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb23
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb24
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb24
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb24
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb25
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb25
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb25
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb25
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb25
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb25
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb25
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb27
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb27
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb27
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb27
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb27
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb27
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb27
http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/disco/
http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/disco/
http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/disco/
http://lod.openlinksw.com/fct/
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb31
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb31
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb31
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb31
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb31
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb32
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb32
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb32
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb32
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb32
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb32
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb32
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb33
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb33
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb33
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb34
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb34
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb34
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb34
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb34
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb36
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb36
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb36
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb36
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb36
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb37
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb37
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb37
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb37
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb37
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb38
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb38
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb38
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb38
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb38
http://projects.semwebcentral.org/projects/objectviewer/
http://projects.semwebcentral.org/projects/objectviewer/
http://projects.semwebcentral.org/projects/objectviewer/
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb42
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb42
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb42
http://mes.github.io/marbles/
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb44
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb44
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb44
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb44
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb44
https://www.w3.org/2001/11/IsaViz/
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb48
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb48
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb48
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb48
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb48
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb49
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb49
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb49
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb49
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb49
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb50
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb50
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb50
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb51
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb51
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb51
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb51
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb51
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb52
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb52
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb52
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb53
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb53
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb53
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb54
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb54
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb54
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb55
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb55
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb55
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb55
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb55
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb56
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb56
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb56
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb57
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb57
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb57
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb57
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb57
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb58
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb58
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb58
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb58
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb58
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb59
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb59
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb59
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb59
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb59
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb59
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb59
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb59
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb59
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb60
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb60
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb60
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb60
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb60
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb60
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb60
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb60
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb60
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb61
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb61
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb61
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb61
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb61
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb61
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb61
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb61
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb61
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb62
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb62
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb62
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb62
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb62
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb62
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb62
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb63
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb63
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb63
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb63
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb63
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb64
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb64
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb64
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb65
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb65
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb65
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb65
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb65
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb65
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb65
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb66
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb66
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb66
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb66
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb66
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb67
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb67
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb67
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb67
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb67
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb68
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb68
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb68
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb69
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb69
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb69
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb69
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb69
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb69
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb69
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb70
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb70
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb70
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb70
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb70
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb71
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb71
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb71
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb71
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb71
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb71
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb71
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb72
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb72
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb72
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb72
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb72


[73] H.N. Djidjev, G.E. Pantziou, C.D. Zaroliagis, Computing shortest paths and
distances in planar graphs, in: Proc. of the International Colloquium on
Automata, Languages and Programming (ICALP ’91), Springer-Verlag New
York, Inc, New York, NY, USA, 1991, pp. 327–338.

[74] M.A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, P. Sumazin, Low-
est common ancestors in trees and directed acyclic graphs, J. Algorithms
57 (2) (2005) 75–94.

[75] A. Thalhammer, S. Stadtmüller, SUMMA: A common API for linked data
entity summaries, in: P. Cimiano, F. Frasincar, G.-J. Houben, D. Schwabe
(Eds.), Engineering the Web in the Big Data Era - ICWE 2015, Springer
International Publishing, Cham, 2015, pp. 430–446.

[76] NetApplications.com. NetMarketShare. Retrieved from https:
//netmarketshare.com/ (Last Access 22.07.19), 2019.

[77] A. Aula, N. Jhaveri, M. Käki, Information search and re-access strategies of
experienced web users, in: Proc. of the International Conference on World
Wide Web (WWW ’05), ACM, New York, NY, USA, 2005, pp. 583–592.

[78] A. Aula, R.M. Khan, Z. Guan, How does search behavior change as search
becomes more difficult?, in: Proc. of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10), ACM, New York, NY, USA, 2010,
pp. 35–44.

[79] R.W. White, Interactions with Search Systems, Cambridge University Press,
2016.

[80] A.M. Graziano, M.L. Raulin, Research Methods: A Process of Inquiry, eightth
ed., Pearson, 2012.

[81] V. Braun, V. Clarke, Using thematic analysis, Psychol. Qual. Res. Psychol. 3
(2) (2006) 77–101.

[82] J. Brooke, SUS: A quick and dirty usability scale, in: P.W. Jordan, B.
Weerdmeester, A. Thomas, I.L. McLelland (Eds.), Usability Evaluation in
Industry, Taylor and Francis, 1996, pp. 189–194.

[83] S. Borsci, S. Federici, M. Lauriola, On the dimensionality of the system
usability scale: a test of alternative measurement models, Cognit. Process.
10 (3) (2009) 193–197.

[84] S.G. Hart, Nasa-task load index (NASA-TLX); 20 years later, in: Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, 50(9), 2006,
904-908.

[85] S.G. Hart, .L.E. Staveland, Development of NASA-TLX (task load index):
Results of empirical and theoretical research, Adv. Psychol. 52 (1988)
139–183.

[86] J. Lewis, J. Sauro, The factor structure of the system usability scale, in:
M. Kurosu (Ed.), Human Centered Design - HCD 2009, in: Lecture Notes in
Computer Science, vol. 5619, Springer Berlin Heidelberg, 2009, pp. 94–103.

[87] A. Bangor, P. Kortum, J. Miller, Determining what individual SUS scores
mean: Adding an adjective rating scale, J. Usability Stud. 4 (3) (2009)
114–123.

[88] M. Prensky, Digital natives, digital immigrants part 1, Horizon 9 (5) (2001)
1–6.

[89] N. Juristo, A.M. Moreno, Basics of Software Engineering Experimentation,
Springer Science & Business Media, 2013.

[90] M. Jusevičius, AtomGraph. Retrieved from https://github.com/AtomGraph/
Web-Client (Last Access 12.02.18), 2018.

Giuseppe Desolda is research fellow at the Computer
Science Department of the University of Bari ‘‘Aldo
Moro’’. He holds a Ph.D. in Computer Science of the
University of Bari in 2016. He is a member of the
Interaction, Visualization, Usability & UX (IVU) Lab,
coordinated by Prof. Maria Francesca Costabile. At the
IVU Lab Giuseppe Desolda coordinates research on
‘‘Mashup of services, Linked Data and smart objects’’
and ‘‘interaction with Internet of Things devices’’. His
research interests are in Human–Computer Interaction,
specifically Interaction with Ubiquitous Systems, Us-

ability and UX. In his research, Giuseppe Desolda is primarily investigating the
human side of mashup methods in IoT context, as well as the use of Linked
Open Data as new source of data in mashup platforms.

Maristella Matera is associate professor at the Depart-
ment of Electronics, Information and Bioengineering
(DEIB) of Politecnico di Milano. In 2000 she received
a Ph.D. in Computer Science and Automation Engi-
neering. In 2002 she achieved a position as assistant
professor, then in 2010 as associate professor. Maris-
tella’s research focuses on aspects at the intersection
between Web Engineering and Human–Computer In-
teraction, with emphasis on design methods and tools
for Web application development. She is author of
about 200 papers and four books. She organized several

international events related to the field of Web Engineering and HCI. She is
Associate Editor for the journals ‘‘Future Generation Compute Systems’’ (Elsevier)
and of ‘‘ACM Transactions on the Web’’. She regularly serves as Program Com-
mittee member of several international conferences. Since November 2018 she
is chairing SIGCHI Italy, the Italian Special Interest Group on Human–Computer
Interaction.

Rosa Lanzilotti is associate professor at the Com-
puter Science Department of the University of Bari
‘‘Aldo Moro’’. She is a member of the Interaction,
Visualization, Usability & UX (IVU) Lab, coordinated
by Prof. Maria Francesca Costabile. At the IVU Lab
Rosa Lanzilotti coordinates research on ‘‘Usability En-
gineering and UX’’. Her research interests are on
Human–Computer Interaction and, in particular, us-
ability and user experience, accessibility, technology-
enhanced learning, statistical methods for data analysis,
end-user development, UX practices in industry and

public institutions. She is member of ACM (Association of Computing Ma-
chinery), ACM SIGCHI (ACM’s Special Interest Group on Computer–Human
Interaction) and SIGCHI Italy (the Italian Chapter of ACM SIGCHI).

http://refhub.elsevier.com/S0167-739X(19)30360-7/sb73
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb73
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb73
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb73
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb73
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb73
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb73
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb74
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb74
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb74
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb74
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb74
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb75
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb75
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb75
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb75
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb75
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb75
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb75
https://netmarketshare.com/
https://netmarketshare.com/
https://netmarketshare.com/
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb77
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb77
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb77
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb77
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb77
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb78
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb78
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb78
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb78
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb78
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb78
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb78
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb79
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb79
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb79
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb80
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb80
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb80
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb81
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb81
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb81
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb82
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb82
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb82
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb82
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb82
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb83
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb83
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb83
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb83
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb83
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb85
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb85
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb85
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb85
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb85
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb86
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb86
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb86
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb86
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb86
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb87
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb87
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb87
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb87
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb87
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb88
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb88
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb88
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb89
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb89
http://refhub.elsevier.com/S0167-739X(19)30360-7/sb89
https://github.com/AtomGraph/Web-Client
https://github.com/AtomGraph/Web-Client
https://github.com/AtomGraph/Web-Client

	Metamorphic data sources: A user-centric paradigm to consume linked data in interactive workspaces
	Introduction
	Motivations
	Contribution
	Paper organization

	Rationale and background
	Visual browsers for LD exploration
	Quality issues
	The mashup paradigm for linked data consumption

	Metamorphic data sources
	Motivating scenario
	Metamorphic data source: Behind the scene
	Retrieving the most relevant topics
	Exploiting the composition context to rank the retrievedclasses
	Querying the metamorphic data source
	Visualizing the retrieved data
	Visual manipulation of MDS results
	Exploiting an LD quality model to assist class and property selection


	Platform architecture
	Comparative study
	Participants and design
	Tasks
	Procedure
	Data collection
	Results for user performance
	Time to build an MDS
	Time to retrieve the information
	Query success rate

	Results with user satisfaction
	Usability
	Workload
	Perceived quality of the data retrieval process

	Qualitative data analysis
	Threats to validity
	Internal validity
	External validity
	Conclusion validity


	Conclusion
	Lessons learned
	Future work

	Declaration of competing interest
	References




